
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2011, Article ID 638271, 15 pages
doi:10.1155/2011/638271

Research Article
On Constants in Nonoscillation Criteria for
Half-Linear Differential Equations

Simona Fišnarová and Robert Mařı́k
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We study the half-linear differential equation (r(t)Φ(x′))′ + c(t)Φ(x) = 0, where Φ(x) = |x|p−2x,
p > 1. Using themodified Riccati technique, we derive new nonoscillation criteria for this equation.
The results are closely related to the classical Hille-Nehari criteria and allow to replace the fixed
constants in known nonoscillation criteria by a certain one-parametric expression.

1. Introduction

In this paper we consider the equation

L[x] :=
(
r(t)Φ

(
x′))′ + c(t)Φ(x) = 0, (1.1)

where Φ(x) = |x|p−2x, p > 1, r ∈ C((t0,∞),R+), c ∈ C((t0,∞),R) for some t0. Under a solution
of this equation, we understand every continuously differentiable function x such that rΦ(x′)
is differentiable and (1.1) holds on (t0,∞). This equation is called half-linear, since a constant
multiple of any solution is also a solution of (1.1).

If p = 2, then (1.1) reduces to the linear equation

(
r(t)x′)′ + c(t)x = 0. (1.2)

For detailed discussion related to general theory as well as applications, we refer to [1].
According to [1], the classical linear Sturmian comparison theory extends to (1.1) and hence,
if a solution has infinitely many zeros in a neighborhood of infinity, then the same is true for
every solution. In this case, we say that (1.1) is oscillatory. In the opposite case, we say that
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(1.1) is nonoscillatory, as the following definition shows. Note that due to homogeneity of the
set of all solutions, we can restrict ourselves to solutions which are positive in a neighborhood
of infinity.

Definition 1 (nonoscillatory equation). Equation (1.1) is said to be nonoscillatory if there exist
number T ≥ t0 and solution x of (1.1) which satisfies x(t) > 0 for every t ≥ T .

Došlý and Řeznı́čková [2] viewed (1.1) as a perturbation of another nonoscillatory
half-linear differential equation

L̃[x] :=
(
r(t)Φ

(
x′))′ + c̃(t)Φ(x) = 0 (1.3)

and proved the following result. Note that q denotes the conjugate number to p in Theorem
A and in the whole paper, that is, (1/p) + (1/q) = 1 holds.

Theorem A (see [2, Theorem 2]). Let h ∈ C1 be a positive function such that h′(t) > 0 for large t,
say t > T ,

∫∞
r−1(t)h−2(t)(h′(t))2−pdt < ∞, and denote

F1(t) =
∫∞

t

ds

r(s)h2(s)(h′(s))p−2
. (1.4)

Suppose that

lim
t→∞

F1(t)r(t)h(t)Φ
(
h′(t)

)
= ∞, (1.5)

lim
t→∞

F2
1(t)r(t)h

3(t)
(
h′(t)

)p−2
L̃[h](t) = 0. (1.6)

If

lim sup
t→∞

F1(t)
∫ t

T

(c(s) − c̃(s))hp(s)ds <
1
2q

,

lim inf
t→∞

F1(t)
∫ t

T

(c(s) − c̃(s))hp(s) ds > − 3
2q

(1.7)

for some T ∈ R sufficiently large, then (1.1) is nonoscillatory.

Theorem A is sharp in the sense that a convenient choice of the function h allows
to prove explicit sharp nonoscillation criteria. As a particular example, choosing h(t) =
t(p−1)/pln2/pt and c̃(t) = ((p − 1)/p)pt−p, Došlý and Řeznı́čková derived the following result
for the perturbed Euler differential equation

(
Φ
(
x′))′ +

((
p − 1
p

)p

t−p + δ(t)
)
Φ(x) = 0. (1.8)
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Theorem B (see [2, Corollary 1]). If

lim sup
t→∞

1
ln t

∫ t

δ(s)sp−1ln2sds <
1
2

(
p − 1
p

)p−1
,

lim inf
t→∞

1
ln t

∫ t

δ(s)sp−1ln2sds > −3
2

(
p − 1
p

)p−1
,

(1.9)

then (1.8) is nonoscillatory.

The constants in this criterion are optimal in some sense. Really,

lim inf
t→∞

1
ln t

∫ t

δ(s)sp−1ln2sds >
1
2

(
p − 1
p

)p−1
(1.10)

guarantees oscillation of (1.8) (see [2, Theorem 1]).
A variant of Theorem A without convergent integral of r−1h−2(h′)2−p is the following.

Theorem C (see [3, Theorem 2]). Let h ∈ C1 be a positive function such that h′(t) > 0 for large t,
say t > T ,

F2(t) =
∫ t

T

ds

r(s)h2(s)(h′(s))p−2
. (1.11)

Suppose that (1.5) and (1.6) with F1 replaced by F2 hold. If the integral
∫∞(c(s) − c̃(s))hp(s)ds is

convergent, and

lim sup
t→∞

F2(t)
∫∞

t

(c(s) − c̃(s))hp(s)ds <
1
2q

,

lim inf
t→∞

F2(t)
∫∞

t

(c(s) − c̃(s))hp(s)ds > − 3
2q

,

(1.12)

then (1.1) is nonoscillatory.

If we take c̃(t) = ((p − 1)/p)pt−p + (1/2)((p − 1)/p)p−1t−pln−2t and h(t) = t(p−1)/pln1/pt,
then Theorem C can be applied to the perturbed Riemann-Weber equation

(
Φ
(
x′)) +

((
p − 1
p

)p

t−p +
1
2

(
p − 1
p

)p−1
t−pln−2t + δ(t)

)

Φ(x) = 0 (1.13)

and we obtain the following statement.
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Theorem D (see [3, Corollary 2]). If
∫∞
t δ(s)sp−1 ln sds converges and

lim sup
t→∞

ln(ln t)
∫∞

t

δ(s)sp−1 ln sds <
1
2

(
p − 1
p

)p−1
,

lim inf
t→∞

ln(ln t)
∫∞

t

δ(s)sp−1 ln sds > −3
2

(
p − 1
p

)p−1
,

(1.14)

then (1.13) is nonoscillatory.

The aim of this paper is to improve Theorems A, B, C, and D and show that the
constants in the inequalities involving lim sup and lim inf can be replaced by a certain one-
parametric expression. Roughly speaking, these theorems claim that the nonoscillation is
preserved if the perturbation which is measured by the expressions

F1(t)
∫ t

T

(c(s) − c̃(s))hp(s)ds, F2(t)
∫∞

t

(c(s) − c̃(s))hp(s)ds (1.15)

is bounded in a strip between 1/2q and −3/2q for large t. We show that there is a possibility
to shift this strip down. In other words, we show that if the inequality involving limes
inferior is not satisfied, it can be relaxed provided the condition involving limes superior is
strengthened properly. Together with these results, we prove also similar results of a different
type, where (1.1) is viewed as a standalone equation and not as a perturbation of another
equation (Theorems 3.1 and 3.2).

2. Preliminary Results

The main tool used in the paper is the method based on the Riccati equation

R[w] := w′ + c(t) +
(
p − 1

)
r1−q(t)|w|q = 0 (2.1)

which can be obtained from (1.1) by substitution w = rΦ(x′/x). Our results are obtained
from the following necessary and sufficient condition for nonoscillation of (1.1)which can be
found, for example, in [1, Theorem2.2.1].

Lemma 2.1. Equation (1.1) is nonoscillatory if and only if there exists a differentiable function w
which satisfies the Riccati type inequality

R[w](t) ≤ 0 (2.2)

for large t.

Our results heavily depend on the following relationship between the Riccati type
differential operator R[·] and the so-called modified Riccati operator (the operator on the
right-hand side of (2.3)).
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Lemma 2.2 ([4, Lemma 2.2]). Let h and w be differentiable functions and v = hpw − G, G =
rhΦ(h′), then one has the identity

hpR[w] = v′ + hL[h] +
(
p − 1

)
r1−qh−qH(t, v), (2.3)

whereH(t, v) = |v +G|q − qΦ−1(G)v − |G|q.

3. Main Results

In contrast to Theorems A and C in the first pair of theorems, we do not consider (1.1) as
a perturbation of a nonoscillatory equation, but we consider this equation as a standalone
problem.

Theorem 3.1. Let h be a function such that h(t) > 0 and h′(t)/= 0, both for large t. Suppose that the
following conditions hold:

∫∞ dt

r(t)h2(t)|h′(t)|p−2
< ∞,

lim
t→∞

r(t)h(t)
∣∣Φ

(
h′(t)

)∣∣
∫∞

t

ds

r(s)h2(s)|h′(s)|p−2
= ∞.

(3.1)

If

lim sup
t→∞

∫∞

t

ds

r(s)h2(s)|h′(s)|p−2
∫ t

h(s)L[h](s)ds <
1
q

(
−α +

√
2α

)
,

lim inf
t→∞

∫∞

t

ds

r(s)h2(s)|h′(s)|p−2
∫ t

h(s)L[h](s)ds >
1
q

(
−α −

√
2α

)
(3.2)

for some α > 0, then (1.1) is nonoscillatory.

Proof. Denote G := rhΦ(h′), R := rh2|h′|p−2 and

v(t) = −α
q

(∫∞

t

R−1(s)ds
)−1

−
∫ t

h(s)L[h](s)ds. (3.3)

We have

(
p − 1

)
r1−q(t)h−q(t)H(t, v(t))

=
(
p − 1

)
r1−q(t)h−q(t)

[
|v(t) +G(t)|q − qΦ−1(G(t))v(t) − |G(t)|q

]

=
(
p − 1

)
r(t)

∣∣h′(t)
∣∣p
[∣∣∣∣1 +

v(t)
G(t)

∣∣∣∣

q

− q
v(t)
G(t)

− 1
]
.

(3.4)
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Consider the function F(x) = |1 + x|q − qx − 1. This function satisfies F(0) = 0 = F ′(0)
and F ′′(0) = q(q − 1). Hence, by the Taylor formula, the function F(x) can be approximated
by (q(q − 1)/2)x2 in a neighborhood of x = 0.

Conditions of the theorem imply that

v(t)
G(t)

=
−(α/q) − ∫∞

t R−1(s)ds
∫ t
h(s)L[h](s)ds

G(t)
∫∞
t R−1(s)ds

−→ 0 as t −→ ∞, (3.5)

hence, for every ε > 0, there exists T ∈ R such that

F

(
v(t)
G(t)

)
≤ q

(
q − 1

)

2

(
1 + ε

q√
α

)
v2(t)
G2(t)

(3.6)

holds for t > T . At the same time ε can be taken so small (will be specified later how) and T
so large that for t > T we have

ε − α

q
−
√
2α
q

<

∫∞

t

R−1(s)ds
∫ t

h(s)L[h](s)ds < −α
q
+
√
2α
q

− ε. (3.7)

Consequently,

(
p − 1

)
r1−q(t)h−q(t)H(t, v(t)) ≤ q

2

(
1 + ε

q√
α

)
r(t)

∣∣h′(t)
∣∣p v

2(t)
G2(t)

=
q

2

(
1 + ε

q√
α

)
((

α/q
)
+
∫∞
t R−1(s)ds

∫ t
h(s)L[h](s)ds

)2

R(t)
(∫∞

t R−1(s)ds
)2

<

(
q/2

)(
1 + ε

(
q/

√
α
))((√

2α/q
)
− ε

)2

R(t)
(∫∞

t R−1(s)ds
)2 .

(3.8)

Let w = h−p(v +G). By Lemma 2.2, we have

hp(t)R[w(t)] < −α
q

(∫∞

t

R−1(s)ds
)−2

R−1(t) +

(
q/2

)(
1 + ε

(
q/

√
α
))((√

2α/q
)
− ε

)2

R(t)
(∫∞

t R−1(s)ds
)2

=

(
q/2

)(
1 + ε

(
q/

√
α
))((√

2α/q
)
− ε

)2 − (
α/q

)

R(t)
(∫∞

t R−1(s)ds
)2 .

(3.9)
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Consider the function in the numerator of the last fraction

f(ε) =
q

2

(
1 + ε

q√
α

)(√
2α
q

− ε

)2

− α

q
. (3.10)

We have f(0) = 0 and by a direct computation

f ′(ε) =
q

2
q√
α

(√
2α
q

− ε

)2

− q

(
1 + ε

q√
α

)(√
2α
q

− ε

)

, (3.11)

and hence f ′(0) = (1 − √
2)
√
α < 0. This means that ε can be taken so small that

f(ε) <
1 − √

2
2

ε
√
α. (3.12)

Combining (3.9) and (3.12) we have

hp(t)R[w(t)] <

((
1 − √

2
)
/2

)
ε
√
α

R(t)
(∫∞

t R−1(s)ds
)2 < 0 (3.13)

for t > T and (1.1) is nonoscillatory by Lemma 2.1.

Theorem 3.2. Let h be a function such that h(t) > 0 and h′(t)/= 0, both for large t. Suppose that
∫∞

h(t)L[h](t)dt is convergent,

lim
t→∞

r(t)h(t)|Φ(h′(t))|
∫ t ds

r(s)h2(s)|h′(s)|p−2
= ∞.

(3.14)

If

lim sup
t→∞

∫ t ds

r(s)h2(s)|h′(s)|p−2
∫∞

t

h(s)L[h](s)ds <
1
q

(
−α +

√
2α

)
,

lim inf
t→∞

∫ t ds

r(s)h2(s)|h′(s)|p−2
∫∞

t

h(s)L[h](s)ds >
1
q

(
−α −

√
2α

)
(3.15)

for some α > 0, then (1.1) is nonoscillatory.

Proof. With R := rh2|h′|p−2 we take

v(t) =
α

q

(∫ t

R−1(s)ds

)−1
+
∫∞

t

h(s)L[h](s)ds (3.16)

and the proof is the same as the proof of Theorem 3.1.
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The following theorems are variants of Theorems 3.1 and 3.2. In these theorems we
view (1.1) as a perturbation of another (nonoscillatory) equation (1.3).

Theorem 3.3. Let h be a function such that h(t) > 0 and h′(t)/= 0, both for large t. Suppose that (3.1)
and

lim sup
t→∞

r(t)h3(t)
∣
∣h′∣∣p−2(t)L̃[h(t)]

(∫∞

t

ds

r(s)h2(s)|h′(s)|p−2
)2

= 0 (3.17)

hold. If

lim sup
t→∞

∫∞

t

ds

r(s)h2(s)|h′(s)|p−2
∫ t

(c(s) − c̃(s))hp(s)ds <
1
q

(
−α +

√
2α

)
,

lim inf
t→∞

∫∞

t

ds

r(s)h2(s)|h′(s)|p−2
∫ t

(c(s) − c̃(s))hp(s)ds >
1
q

(
−α −

√
2α

)
(3.18)

for some α > 0, then (1.1) is nonoscillatory.

Proof. Denote G := rhΦ(h′), R := rh2|h′|p−2 as in Theorem 3.1. Further

v(t) = −α
q

(∫∞

t

R−1(s)ds
)−1

−
∫ t

(c(s) − c̃(s))hp(s)ds. (3.19)

Similarly as in the proof of Theorem 3.1 we get (3.4),

v(t)
G(t)

=
−(α/q) − ∫∞

t R−1(s)ds
∫ t(c(s) − c̃(s))hp(s)ds

G(t)
∫∞
t R−1(s)ds

−→ 0 as t −→ ∞, (3.20)

and for sufficiently small ε > 0, there exists T ∈ R such that

(
p − 1

)
r1−q(t)h−q(t)H(t, v(t)) <

(
q/2

)(
1 + ε

(
q/

√
α
))((√

2α/q
)
− ε

)2

R(t)
(∫∞

t R−1(s)ds
)2

(3.21)

holds for t > T . Using this estimate and Lemma 2.2, we see that the function w = h−p(v + G)
satisfies

hp(t)R[w(t)] < h(t)L̃[h(t)] +

(
q/2

)(
1 + ε

(
q/

√
α
))((√

2α/q
)
− ε

)2 − (
α/q

)

R(t)
(∫∞

t R−1(s)ds
)2

(3.22)

for t > T . From (3.17) it follows that

h(t)L̃[h(t)]R(t)
(∫∞

t

R−1(s)ds
)2

<

√
2 − 1
2

ε
√
α (3.23)
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for large t. Using this and (3.12)we get

hp(t)R[w(t)] < h(t)L̃[h(t)] +

((
1 − √

2
)
/2

)
ε
√
α

R(t)
(∫∞

t R−1(s)ds
)2

=
1

R(t)
(∫∞

t R−1(s)ds
)2

[
1 − √

2
2

ε
√
α + h(t)L̃[h(t)]R(t)

(∫∞
R−1(t)dt

)2
]

<
1

R(t)
(∫∞

t R−1(s)ds
)2

[
1 − √

2
2

ε
√
α +

√
2 − 1
2

ε
√
α

]

= 0

(3.24)

for large t. Hence (1.1) is nonoscillatory by Lemma 2.1.

Corollary 3.4. If there exists α > 0 such that

lim sup
t→∞

1
ln t

∫ t

δ(s)sp−1ln2sds <

(
p − 1
p

)p−1(
−α +

√
2α

)
,

lim inf
t→∞

1
ln t

∫ t

δ(s)sp−1ln2sds >

(
p − 1
p

)p−1(
−α −

√
2α

)
,

(3.25)

then (1.8) is nonoscillatory.

Proof. Choose h(t) = t(p−1)/pln2/pt and c̃(t) = ((p − 1)/p)pt−p. The fact that (3.1) and (3.17)
hold has been proved in [2, Corollary 1]. Further,

∫∞

t

1

r(s)h2(s)|h′(s)|p−2
ds ≈

(
p

p − 1

)p−2 1
ln t

(3.26)

as shown also in [2] and the statement follows from Theorem 3.3.

Theorem 3.5. Let h be a function such that h(t) > 0 and h′(t)/= 0, both for large t. Suppose that the
following conditions hold:

∫∞
(c(t) − c̃(t))hp(t) dt is convergent,

lim
t→∞

r(t)h(t)
∣∣Φ

(
h′(t)

)∣∣
∫ t ds

r(s)h2(s)|h′(s)|p−2
= ∞,

lim sup
t→∞

r(t)h3(t)
∣∣h′(t)

∣∣p−2L̃[h(t)]

(∫ t ds

r(s)h2(s)|h′(s)|p−2
)2

= 0.

(3.27)
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If

lim sup
t→∞

∫ t ds

r(s)h2(s)|h′(s)|p−2
∫∞

t

(c(s) − c̃(s))hp(s)ds <
1
q

(
−α +

√
2α

)
,

lim inf
t→∞

∫ t ds

r(s)h2(s)|h′(s)|p−2
∫∞

t

(c(s) − c̃(s))hp(s)ds >
1
q

(
−α −

√
2α

)
(3.28)

for some α > 0, then (1.1) is nonoscillatory.

Proof. Denote R := rh2|h′|p−2 as in the proof of Theorem 3.1. We take

v(t) =
α

q

(∫ t

R−1(s)ds

)−1
+
∫∞

t

(c(s) − c̃(s))hp(s)ds, (3.29)

and the proof is the same as the proof of Theorem 3.3.

Corollary 3.6. If
∫∞
t δ(s)sp−1 ln sds converges and there exists α > 0 such that

lim sup
t→∞

ln(ln t)
∫∞

t

δ(s)sp−1 ln sds <

(
p − 1
p

)p−1(
−α +

√
2α

)
,

lim inf
t→∞

ln(ln t)
∫∞

t

δ(s)sp−1 ln sds >

(
p − 1
p

)p−1(
−α −

√
2α

)
,

(3.30)

then (1.13) is nonoscillatory.

Proof. We take c̃(t) = ((p − 1)/p)pt−p+1/2((p − 1)/p)p−1t−pln−2t and h(t) = t(p−1)/pln1/pt. Then,
as shown in the proof of [3, Corollary 2], all assumptions of Theorem 3.5 hold and

∫∞

t

1

r(s)h2(s)|h′(s)|p−2
ds ≈

(
p

p − 1

)p−2
ln(ln t). (3.31)

Hence, the statement follows from Theorem 3.5.

In the following theoremwe employ the technique used in previous results directly for
Riccati operator from (2.1) rather than for modified Riccati operator from (2.3). This method
yields a result which is (as far as we know) new even in the linear case (Theorem 3.7) and
offers also a simple and alternative proof of known results (see Remark 6).

Theorem 3.7. Let the following conditions hold:

∫∞
r1−q(t) dt < ∞ (3.32)
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and for some α > 0

lim sup
t→∞

(∫∞

t

r1−q(s)ds
)p−1 ∫ t

c(s)ds < −α + α1/q,

lim inf
t→∞

(∫∞

t

r1−q(s)ds
)p−1 ∫ t

c(s)ds > −α − α1/q.

(3.33)

Then (1.1) is nonoscillatory.

Proof. From the assumptions of the theorem it follows that there exist ε and T such that 0 <
ε < α1/q and

−α − α1/q + ε <

(∫∞

t

r1−q(s)ds
)p−1 ∫ t

c(s)ds < −α + α1/q − ε (3.34)

for every t > T . Define w(t) = −α(∫∞t r1−q(s)ds)1−p − ∫ t
c(s)ds. Direct computation shows

w′(t) + c(t) +
(
p − 1

)
r1−q(t)|w(t)|q

= −α(p − 1
)
r1−q(t)

(∫∞

t

r1−q(s)ds
)−p

+
(
p − 1

)
r1−q(t)

∣∣∣∣∣
α

(∫∞

t

r1−p(s)ds
)1−p

+
∫ t

c(s)ds

∣∣∣∣∣

q

=
(
p − 1

)
r1−q(t)

(∫∞

t

r1−q(s)ds
)−p(

−α +

∣∣∣∣∣
α +

(∫∞

t

r1−q(s)ds
)p−1 ∫ t

c(s)ds

∣∣∣∣∣

q)

<
(
p − 1

)
r1−q(t)

(∫∞

t

r1−q(s)ds
)−p(

−α +
∣∣∣α1/q − ε

∣∣∣
q)

< 0
(3.35)

for every t > T . The nonoscillation of (1.1) follows from Lemma 2.1.

Corollary 3.8. For λ < 0 denote by μ(λ) the positive root of the equation z1/q + z + λ = 0. Denote

A∗ = lim inf
t→∞

(∫∞
t r1−q(s) ds

)p−1 ∫ t
c(s)ds,

A∗ = lim sup
t→∞

(∫∞

t

r1−q(s) ds
)p−1 ∫ t

c(s)ds.
(3.36)
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If (3.32) holds and

A∗ ≤ −2p − 1
p

(
p − 1
p

)p−1
, A∗ <

(
μ(A∗)

)1/q − μ(A∗), (3.37)

then (1.1) is nonoscillatory.

Proof. It follows from the fact that y = μ1/q(x) − μ(x) is for x ≤ −((2p − 1)/p)((p − 1)/p)p−1

explicit formula for the curve given parametrically by x = −α−α1/q, y = −α+α1/q for α ≥ q−p.
This curve is increasing for α > q−p and (3.33) means that the point (A∗, A∗) is below this
curve. The same is ensured by inequalities (3.37).

4. Concluding Remarks and Comments

Remark 1. If we put α = 1/2 in Theorems 3.3 and 3.5, we get Theorems A and C. The constant
−α +

√
2α from the condition with limes superior is maximal with this choice. As far as we

know, Theorems 3.3 and 3.5 are new if α/= 1/2 and Theorems 3.1 and 3.2 are new for every
α > 0. Similarly, if we put α = q−p in Theorem 3.7, then we get [1, Theorem 3.1.5].

Remark 2. If α > 1/2, then both −α ± √
2α are decreasing functions of the variable α and thus

the bounds for F1(t)
∫ t
T (c(s) − c̃(s))hp(s) and F2(t)

∫∞
t (c(s) − c̃(s))hp(s)ds which guarantee

nonoscillation in Theorems 3.3 and 3.5 also decrease. Closer investigation shows that the
bound for limes inferior decreases faster and thus the maximal allowed difference between
limes superior and inferior is allowed to be bigger if both are small. A similar remark applies
also to the results from Theorems 3.1 and 3.2.

Remark 3. The nonoscillation criteria in the previous theorems are written in the form

lim sup
t→∞

f(t) <
1
q

(
−α +

√
2α

)
, lim inf

t→∞
f(t) >

1
q

(
−α −

√
2α

)
, (4.1)

where the definition of f(t) varies for each particular theorem. Note that if inequalities (4.1)
hold for some α which satisfies 0 < α < 1/2, then they hold also for α = 1/2. In view of this
fact it is reasonable to suppose α ≥ 1/2.

Remark 4. Denote

f∗ = lim inf
t→∞

f(t), f∗ = lim sup
t→∞

f(t). (4.2)

It is easy to show that the parametric curve x = (1/q)(−α − √
2α), y = (1/q)(−α +

√
2α), α ≥

1/2, is an increasing function with nonparametric equation y = x − (2/q) + (2/q)
√
1 − 2qx.

Since (4.1) expresses the fact that the point (f∗, f∗) is below this curve, inequalities (4.1) are
satisfied if

f∗ ≤ − 3
2q

, f∗ < f∗ − 2
q
+
2
q

√
1 − 2qf∗. (4.3)
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Remark 5. Let us compare our results with known results on a particular example of
perturbed Euler equation (1.8). Let us denote

g(t) =
(

p

p − 1

)p−1 1
ln t

∫ t

δ(s)sp−1ln2sds,

g∗ = lim inf
t→∞

g(t), g∗ = lim sup
t→∞

g(t),
(4.4)

and rewrite the conditions from Corollary 3.4 into

g∗ > −α −
√
2α, g∗ < −α +

√
2α. (4.5)

It is easy to see that every equation in the form (1.8) can be associated with some point in the
plane g∗ and g∗. On the other hand, for every point in this plane which satisfies g∗ ≥ g∗, we
can construct an equation in the form (1.8) which is associated with this point.

As mentioned before, Došlý and Řeznı́čková [2] proved that (1.8) is oscillatory if g∗ >
1/2 and nonoscillatory if g∗ > −3/2 and g∗ < 1/2. This gives two regions in g∗g∗ plane
with resolved oscillation properties of (1.8): the unbounded region of oscillation has the form
of the angle with vertex [1/2, 1/2], rays g∗ = 1/2 and g∗ = g∗, open up and the bounded
region of nonoscillation has the form of triangle with vertexes [1/2, 1/2], [−3/2, 1/2], and
[−3/2,−3/2]. Corollary 3.4 allows us to extend the region of nonoscillation by the unbounded
region which is between the line g∗ = g∗ and the curve given for α ≥ 1/2 parametrically by
g∗ = −α −√

2α, g∗ = −α +
√
2α or, equivalently, given by g∗ = g∗ − 2 + 2

√
1 − 2g∗ for g∗ ≤ −3/2.

All these regions are shown on Figure 1.
In particular, if δ(t) = k((p − 1)/p)p−1t−pln−2(t), then g∗ = g∗ = k and (1.8) is oscillatory

if k > 1/2 and nonoscillatory if k ≤ 1/2. This observation has been made already by Elbert
and Schneider in [5] and has a close connection with the so-called conditional oscillation, see
[6] for more details related to conditional oscillation.

Remark 6. If the integral
∫∞

c(s)ds is convergent and if we use the method from Theorem 3.7

and Corollary 3.8 with w(t) = α(
∫ t
r1−q(s)ds)

−1
+
∫∞
t c(s)ds, we get the second part of [1,

Theorem 3.3.6], which is originally due for p ≤ 2 to Kandelaki et al. ([7, Theorem 1.6]).

Remark 7. If α = 1/4 and p = 2, then Theorem 3.7 reduces to well-known Hille-Nehari
nonoscillation criteria. In this case the constants from (3.33) reduce to 1/4 and −3/4.

Remark 8. If we use the additional condition

lim inf
t→∞

r(t)h(t)Φ
(
h′(t)

)
> 0, (4.6)

then the conclusion related to that of Theorems 3.2 and 3.5 can be derived from known results.
Really, denote R = rh2|h′|p−2 and C = hL[h], where h is a positive function such that h′ /= 0
and suppose that

∫∞
R−1(t)dt = ∞ and

∫∞
C(t)dt is convergent. Under these conditions, an

alternative version of Theorem 3.2 can be derived using the so-called linearization technique.
This technique is based on comparison of the (non)oscillation of (1.1) with that of a certain
linear equation. The relation between these equations is hidden in identity (2.3) which (after
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g∗
g∗ = g∗

g∗
g∗ = g∗ − 2 + 2 1 − 2g∗

−3/2

1/2−3/2

1/2

Oscillatory by [2, Theorem 1]

Nonoscillatory by [2, Theorem 2]

Nonoscillatory by Corollary 3.4

Figure 1: Regions of oscillation and nonoscillation of perturbed Euler equation.

the quadratization of the last term on the right-hand side) relates the associated Riccati
operators. More precisely, nonoscillation of (1.1) is implied by nonoscillation of the linear
equation

(
R(t)y′) +

q + ε

2
C(t)y = 0, (4.7)

where ε > 0 is arbitrary. Applying the linear version (p = 2) of the criteria discussed
in Remark 6 to the above linear equation, we obtain the conditions for limes inferior and
superior from Theorem 3.2. Similarly if C = (c − c̃)hp, where h is a positive solution of (1.3),
thenwe get the conditions for limes inferior and superior fromTheorem 3.5. Note that if p = 2,
thenR(t) andC(t) are the coefficients of the equationwhich results from (1.2) (the special case
of (1.1) for p = 2) upon the transformation x = hy. We refer to [8–10] for results concerning
the linearization technique and for the half-linear Hille-Nehari type criteria derived using
this technique from the classical criteria mentioned in Remark 7.
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[9] O. Došlý and S. Fišnarová, “Half-linear oscillation criteria: perturbation in term involving derivative,”
Nonlinear Analysis: Theory, Methods & Applications, vol. 73, no. 12, pp. 3756–3766, 2010.
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