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We study the existence of mild solutions of a class of neutral delay integrodifferential equations
with fractional order and nonlocal conditions in a Banach space X. An existence result on the mild
solution is obtained by using the theory of the measures of noncompactness and the theory of
condensing maps. Two examples are given to illustrate the existence theorem.

1. Introduction

Differential and integrodifferential equations of the fractional order are playing an
increasingly important role in engineering, physics, and other fields of science, such as the
fractal theory and the diffusion in porous media, electrolysis chemical, fractional biological
neurons, condensate physics, statistical mechanics, so they attract the attention of many
researchers (see, e.g., [1-12] and the references therein).

Moreover, the Cauchy problem for various delay equations in Banach spaces has been
receiving more and more attention during the past decades (see, e.g., [3,4, 6, 7,9, 13, 14]).

This paper is concerned with an existence result for nonlocal neutral delay fractional
integrodifferential equations in a separable Banach space X:

Dq(x(t) - h(tl xt)) = A(X(t) - h(tl xt)) + J‘t K(tr S)f(slx(s)l xs)dsl te [0/ T]r
0 1.1)
x(t) = g(x) (t) + ¢'(t)/ te [—T, 0]/

where T > 0,0 < g < 1,0 < r < oo. The fractional derivative is understood here in the
Caputo sense. A is the infinitesimal generator of an analytic semigroup S(-) of uniformly
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bounded linear operators on X, that is, there exists M > 1 such that ||S(t)|| < M. Here h :
[0,T] x C([-1,0],X) — X, f : [0,T] x X xC([-1,0],X) — X, K:D — R(D = {(t,s) €
[0,T] x[0,T] : t > s}),g: C([-1,0],X) — C([-1,0],X), ¢ € C([-r,0],X), where C([a,b], X)
denotes the space of all continuous functions from [a, b] to X.

For any continuous function x defined on the interval [-r,T] and any t € [0,T], we
denote by x; the element of C([-r, 0], X) defined by x:(6) = x(t + 6) for 6 € [-r,0].

The nonlocal condition can be applied in physics with better effect than that of the
classical initial condition. There have been many significant developments in the study of
nonlocal Cauchy problems (see, e.g., [10, 15-19] and references cited there in). To the authors’
knowledge, few papers can be found in the literature for the solvability of the fractional order
delay integrodifferential equations of neutral type with nonlocal conditions.

In this paper, motivated by above works, we study the neutral delay fractional
integrodifferential equations with nonlocal condition (1.1) in a separable Banach space X
and obtain the existence theorem based on a special measure of noncompactness without the
assumptions that the nonlinearity f satisfies a Lipschitz type condition and the semigroup
{S(t)} 5 generated by A is compact. Two examples are given to show the applications of the
abstract result.

2. Preliminaries

Throughout this paper, we denote by X a separable Banach space with norm || - ||, by L(X)
the Banach space of all linear and bounded operators on X, and by C([a, b], X) the space of
all X-valued continuous functions on [a, b] with the supremum norm as follows:

1%l 1ap) = [1Xllcrap x) = suplilx(®Il : t € [a,b]},  for any x € C([a,b], X).  (2.1)

Moreover, we abbreviate ||u/|11(jo 11r+) With [[u|1, for any u € L([0,T],R").
We will need the following facts from the theory of measures of noncompactness and
condensing maps (see, e.g., [20, 21]).

Definition 2.1. Let E be a Banach space and (<4, >) a partially ordered set. A function § :
P(E) — 4 is called a measure of noncompactness (MNC) in E if

P(co(Q)) = p(Q) for every Q € P(E), (2.2)

where P(E) denotes the class of all nonempty subsets of E.
A MNC pis called:
(i) monotone, if Qy, Q; € P(E),Q C Q implies f(LQ) < f(L1);

(ii) nonsingular, if f({a} U Q) = f(Q) for every a € E, Q € P(E);
(iii) invariant with respect to union with compact sets, if ({D} U Q) = p(Q) for every
relatively compact set D C E, Q € P(E).

If &4 is a cone in a normed space, we say that the MNC f is
(iv) algebraically semiadditive, if f(Qg + 1) < B(£L29) + B(£21) for each o, Q1 € P(E);
(v) regular, if f(Q2) = 0 is equivalent to the relative compactness of ©;
)

(vi) real, if &4 is [0, +o0) with the natural order.

As an example of the MNC possessing all these properties, we may consider the
Hausdorff MNC

x(Q) =inf{e > 0: Q has a finite e-net}. (2.3)
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Now, let G : [0, h] — P(E) be a multifunction. It is called:

(i) integrable, if it admits a Bochner integrable selection g : [0, h] — E, g(t) € G(t) for
a.e. t€[0,h];

(i) integrably bounded, if there exists a function & € L!([0, k], E) such that
G| :=sup{||g|| : g € G(t)} <B(t), ae.te][0,h]. (2.4)

We present the following assertion about y-estimates for a multivalued integral [21,
Theorem 4.2.3].

Proposition 2.2. For an integrable, integrably bounded multifunction G : [0, h] — P(X), where X
is a separable Banach space, let

x(G(t)) <4q(t), forae.te[0,h], (2.5)

where q € LL([0, h]). Then, ([} G(s)ds) < [, q(s)ds for all t € [0, h].
Let E be a Banach space, and f# a monotone nonsingular MNC in E.

Definition 2.3. A continuous map § : Y € E — E is called condensing with respect to a MNC
p (or p-condensing) if, for every bounded set Q C Y which is not relatively compact, we have

P(F(€2)) 2 p(€2). (2.6)

The following fixed point principle (see, e.g., [20, 21]) will be used later.

Theorem 2.4. Let 9 be a bounded convex closed subset of E and § : M — M a f-condensing map.
Then, Fix§ = {x : x = §(x)} is nonempty.

Theorem 2.5. Let V C E be a bounded open neighborhood of zero and § : V. — E a p-condensing
map satisfying the boundary condition

x#AF(x) (2.7)

forall x € 0V and 0 < A < 1. Then, Fix § is a nonempty compact set.
We state a generalization of Gronwall’s lemma for singular kernels [22, Lemma 7.1.1].

Lemma 2.6. Let v,w : [0,T] — [0,+00) be continuous functions. If w(-) is nondecreasing and
there are constants a > 0 and 0 < a < 1 such that

t
o(t) <w(t) + af (t-s)v(s)ds, (2.8)
0
then there exists a constant k = k(a) such that

v(t) <w(t) + ka ft (t—s)“w(s)ds, foreachte [0,T]. (2.9)
0
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Based on the work in [1, 2, 23], we set
Q) - [ (@S,
R(t)=q f: ot“”lgq(o)S(tqa)do,
and ¢, is a probability density function defined on (0, o0) such that

1
§q(0') — 50.—1—(1/q)w.q<o.—1/q> >0,

where

wq(o) Z( 1)n 1 oI 1r(nq+1)

Remark 2.7 (see [23]). It is not difficult to verify that for v € [0,1],

I'l+o)

fo 0"b(0)do = .[0 o my(0)do = I(1+qov)

Then, we can see
[R(®)|| < Cqmt?™, t>0,
where C; v = gM/T (1 + g).

We define the mild solution for problem (1.1) as follows.

Definition 2.8. A function x € C([-r,T], X) satisfying the equation

<) = 4 QOEE©) +$(0) ~ (0, ¢ + g(x))) + h(t, x)

is called a mild solution of problem (1.1).

sin(nrq), o€ (0,0).

(g(x)(t) + p(t), te[-r0],

+J‘t ISR(t -5)K(s, 7)f(1,x(T),x;)d7 ds, te[0,T],
0/ o

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)
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3. Main Result

We will require the following assumptions.

(H1) f:[0,T] x X x C([-7,0],X) — X satisfies f(-,v,w) : [0,T] — X is measurable for
all (v,w) € X x C([-r,0],X) and f(¢t,-,-) : X x C([-7,0], X) — X is continuous for
a.e.t € [0,T], and there exist two functions y;(-) € L'([0,T],R*) (i = 1,2) such that

£t 0,w0)|| < p®O)lloll + p2 Bl .01, (3.1)

for almostall t € [0, T].

(H2) There exists a function n € L'([0,T],R*) such that for any bounded sets D; C X,
D, c C([-r,0],X),

X(f(r,D1,Dy)) < n(7) <X(D1) + sup]x(Dz(G))>, ae.Te[0,T]. (3.2)

Oe[-r,0

(H3) (i) There exists a continuous function L, : [-7,0] — R* such that
s ® - W) DI < LsO]|x®) ~y®|, ¢ & [-r0]. (3.3)

(ii) The function g(x)(-) : [-r,0] — C([-r,0],X) is equicontinuous and uniformly
bounded, that is, there exists a constant N > 0 such that

||g(x)||[_r,0] <N VxeC([-r0],X). (3.4)

(H4) (i) There exists a constant Ly, > 0 such that

(1, 9) = h(t2, )| < Lu(1ts =2l + o = Gll ), 1182 € [0,T], 9, € C(1-r, 01, X).
(3.5)

(ii) For every bounded set Q C C([-7,0],X) and ¢t € [0,T], there exists a constant
0 < w < 1 such that

X(h(t,Q)) < w sup y(€(s)). (3.6)

se[-r,0]

(H5) For each t € [0, T], K(t,-) is measurable on [0,t] and K(t) = ess sup{|K(t,s)|, 0 <
s < t} is bounded on [0,T]. The map t — K; is continuous from [0,T] to
L*([0,T],R), here, K¢(s) = K(t, s).

(H6) There exists M* € (0,1) such that

MKT1

+ —F(q ) (3.7)

0 max (2|l| i, [lpall o+ ezl } < M7

~

where Ly = ML;(l + w) + max{Ly, w}, Ly =supi_, g Lg(t), K = SUP;e(o.1] K(t).
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Theorem 3.1. Assume that (H1)-(H6) are satisfied. Then, the mild solutions set of problem (1.1) is a
nonempty compact subset of the space C([-r,T], X).

Proof. Define the operator A : C([-r,T],X) — C([-r,T], X) in the following way:

g(x)(t) +¢(1), te[-r,0],
(Ax)(t) = 4 QD(EE)(0) +$(0) = h(0, ¢ + g(x))) + h(t, x1) (38)
+ft st(t -5)K(s,7)f(r,x(1), x;)dT ds, te[0,T].
oo

It is clear that the operator A is well defined, and the fixed point of A is the mild solution of
problem (1.1).

The operator A can be written in the form A = Zf;l A, where the operators A;, i =
1,2, 3 are defined as follows:

{g(x)(t) + (), te[-r,0],
(Arx)(f) =
Q) (g(x)(0) + $(0)), te[0,T],

0, te[-r0],
(A2x)(t) = { (3.9)
—Q(t)h(0,¢ + g(x)) + h(t,x;), te]0,T], ’

0, te[-r0],

(Asx)(t) = { (s
f f R(t-s)K (s, 7)f(t,x(7),x;)drds, te][0,T].
0o

Obviously, under the assumptions of g and h, A; and A, are continuous, respectively. For
t € [0,T], we can prove that Az is continuous.

Indeed, let {x*},.y be a sequence such that x* — x in C([-r,T],X) as k — oo. Since
f satisfies (H1), for almost every t € [0,T], we get

f<t, xk(t),xf) — f(t,x(t),x1), as k —> co. (3.10)

Noting that x* — x in C([-r,T],X), we can see that there exists ¢ > 0 such that
[lck — x| (1] < € for k sufficiently large. Therefore, we have

7t 0, 2F) = st 20, 22

<O+ o]t mOIO1+ Ol

< (0|50 - 2| + pr O I (@) |+ pea(t) |k - x| IO
OO+ (Ol oy (3.11)
= (O - xO) + 20 OO+ pa®)|[xF =+ 24020 Il
< (t)e + 2pa(E)|Ixll oy + p2(b)e + 2ua ()Xl -1
< (pa(t) + pa(1))e + 2(ua (1) + p2 (1)) 1€l 1y-
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It follows from the Lebesgue’s Dominated Convergence Theorem that
| (4s) 6 - (a0
t ps
< [ [ IRG-9K@ D) [f(r x4 @) prmx(e) 0 et

<KCym j; fo (t-s)T" H f(T, xk(r),x’;> — f(r,x(1), x;)||dr ds

— 0, ask— oo.

Therefore, we obtain that

lim ||A3xk - A3x| - 0.

[-r, T]

This shows that A3 is continuous. Therefore, A is continuous.
Consider the set

B, = {x € C([-r,T1,X) : lxll_ym < p -

In view of (H4), for x € B,
Ik (t, x0)|| < [|h(t, x¢) = h(t,0)|| + [[h(t, 0)|
< Lpp + M,

where M = SUP,e(0.7] |lh(t,0)]].

(3.12)

(3.13)

(3.14)

(3.15)

Next, we show that there exists some p > 0 such that AB, C B,. Suppose, on the
contrary, that for each p > 0, there exist x*(-) € B, and some t € [~r, T] such that || (Ax?)(t)| >

p-Now, if t € [-7,0], then

p< ALY = [g(=) () + B)]]
<SN+[9ll, 0
and if t € [0, T], then
p < IAXP) O < [[(AaxP) (D) + [[(A2x?) ()| + [[(Asx?) (B) ]

<[l ()@ + $O) | + [-QWn(0, ¢ + () + h(t,27) |

! fo 4[0 ”R(t_ sIK(s, T)f<T'xp(T)/x¢> 'd‘l‘ ds

< M(N +[[¢@)]]) + ML ([[$ll gy + N ) +pLu+ My (M +1)

t s
+pCqmK fo (t-s)7" J‘O (1 (1) + pa(7))dr ds

TIKMp
<My +pLy+ ——F 1 D)
< My +pLy + r(qul)(llﬂlllL + w2l )

where M, := M(N + ||¢(0)|]) + MLh(||(;b||[_r/ o+ N)+ M;(M +1).

(3.16)

(3.17)
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Denote by L, the right-hand side of (3.17), then we have

p< max{ 1l o + N LP}‘ (3.18)

Dividing both sides of (3.18) by p and taking p — oo, we have

TiKM

1 1 >1 .
o gy Ul + el (.19

This contradicts (H6). Hence, for some positive number, p, AB, C B,,.

Let y be a Hausdorff MNC in X; we consider the measure of noncompactness f in
the space C([-r,T], X) with values in the cone R? of the following way: for every bounded
subset Q ¢ C([-r,T], X),

P(Q) = (¥(Q), mod.(£2)), (3.20)
where
¥(Q) = sup ((Q), G21)
te[-r, T]

and mod.(Q) is the module of equicontinuity of Q given by

mod,(Q) = lim sup max, [[x(t1) — x(t2) |- (3.22)

=0 yeqlti—t2|<

Next, we show that the operator A is p-condensing on every bounded subset of
C( [_r/ T]/ X)
Let Q ¢ C([-r,T], X) be a nonempty, bounded set such that

BIA(Q) 2 B(Q). (3.23)
Firstly, we estimate ¥(Q). For t € [-,0], x, v € Q, we have
l§Ge)(®) =8 () D] < Lellx®) -y B, (3.24)
if we denote y(Q[a, b]) := sup, [, ,; X(Q(t)), then
x(8(Q)[-r,0]) < Lgx(Q[-r,0]). (3.25)
Then,

X(AQ)([-7,00)) = x({¢([-r,0D)} + g(Q)[-r,0]) = x(8(Q)[-7,0]) < Ly x(Q[-,0]), (3.26)
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by (3.23), we can see that

Y (Q[-r,0]) = 0. (3.27)

Furthermore, y((AQ)([-7,0])) =0.
For t € [0,T], one gets

[| (A1) (1) = (Aay) B)]] < IQM ]| g(x)(0) - g(y) (0)]] < ML [|x(0) - y(0) |, (3.28)

thus y((A1Q)([0,T])) < ML;‘P(Q).
Moreover, we see that

X(-QORO.$+ () < M sup x(3(2)(s)) € MLL¥(Q),

se[-r,0

(3.29)
x(h(t, Q) < w sup y(Q(t+6)) < w¥(Q),
-r<0<0
where Q; = {x; : x € Q}. Now, we can see y((A2Q)([0,T])) < w(ML}, + 1)¥(Q).
Forany t € [0, T], we set
t ps
DQ)(t) = {f I R(t - s)K(s, ) f(1,x(7),x;)drds : x € Q} (3.30)
0Jo
We consider the multifunction s € [0,t] — G(s),
G(s) = {R(t —-s) js K(s,7)f(r,x(7),x:)dT : x € Q} (3.31)
0

Obviously, G is integrable, and, from (H1), it follows that it is integrably bounded. Moreover,
noting that (H2) and Proposition 2.2, we have the following estimate for a.e. s € [0, {]:

X(G) < Cuatt -5 'K x({ f:ﬂr,xm,x»dr xeal)
= Cym(t-5)""'K- x<f0 f(r,Q(7), QT)dT> (3.32)

<Cym(t- s)"_lK . J: [T](T) <X(Q(T)) + sup y(Q(T+ 6))>]d7‘.

0e[-7,0]
Moreover, the equality (3.27) implies that

sup x(R(o)) =0. (3.33)

-r<0<0
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Therefore, for T € [0,T], we have

sup y(€(0)) < sup y(€(0)) + sup y(€2(0)) = sup y(€2(0)), (3.34)

T-r<0<T -r<0<0 0<o<t 0<o<t

then we can see

X(G(s)) <2C m(t—5)TK - IInllLlosggtx@(e)) <2Com(t =) K- Il - Q- (335

Applying Proposition 2.2, we have

! 2MKT1
X(@@Q)(1) = x<foc<s)ds> Stgeny Ml ¥, (3:36)
that is,
2MKT1
x(AO.TD) < =55 ll (@ (3.37)

Now, we can see

x((AQ)([0, T])) < x((A1Q)([0,T])) + x(A2LR)([0, T])) + x ((As€)([0, T]))

S <MLg(1 + (U) + w + m”?’l”v>q’-(g),
furthermore
2MKT1

which implies, by (H6) and (3.23), ¥(€2) = 0. Next, we will prove mod.(€2) = 0.
Noting (H3)(ii) and the continuity of {S(t)}, in the uniform operator topology for
t > 0, we can see

mod,(A;Q) = 0. (3.40)
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Let6>0,t,t, € [0,T] such that 0 < |t; —t;| < 6 and x € Q, we obtain

(e, x2,) = ks, )| < (It = ta] + 12, = 23]l )

=Ly( |t —ta| + su lx(t1 +60) —x(t + 0 >
h( 1 2 oel p 1 (2 )” (341)

-1,0],|t1—t2|<6

<Ly <|t1 —t|+ sup [lx(s1) —X(Sz)”)-

s1,82€[-1,T],|s1-52|<6

Moreover, noting the continuity of {S(t)};,, in the uniform operator topology for t > 0, then
we have

mod,(AQ) < L mod,(€2). (3.42)

ForO<t <t; <Tand x € Q, we have

l(Azx)(t1) — (Asx)(t2)|| < Iy + I, (3.43)

where

tz S
I = KI J‘ [[R(t: = s) = R(t> = s)]f (1, x(7), x7) ||dT ds,
oY (3.44)

tl S
L=K [ [ IRt =)L 5, x(0), x0) e s
ty 0
For I, we have

I <gK f: j: 0'|| [(t1 —8) 1~ (1, - s)q_l]gq(o)S((tl - 5)70) f; £(1,x(1), x;)dr||do ds

ty poo s
+ qK’[ f oty — s)"_lgq(o) |S((t1 = s)70) = S((t2 — s)70) || f | f (7, x(7), x)||d7 do ds
0 Jo 0

tr
< Cq,MK J‘
0

(=9 = (2= 9| | (@I pam) el o) ds
0

t2 [ee] S
+ qKI J. o(tr—8)7'¢(0)||S((t - 8)70) = S((t - 5)70) || I | f (7, x(7), x)||d7T do ds
0Jo 0

t2 tz [ee]
<K(|lpallp + Nl p) Nl - [Cq,MJ‘ (ti—8)"" = (ta—5)7" |d5 + QJ‘ J‘ oty — )1
0 Jo

0

x £4(0)||S((t1 = 5)70) = S((t2 — s)0) ||do ds].
(3.45)
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Clearly, the first term on the right-hand side of (3.45) tends to O as t, — t;. The second
term on the right-hand side of (3.45) tends to 0 as t, — t; as a consequence of the continuity

of S(t) in the uniform operator topology for ¢ > 0.
In view of the assumption of p;(s) (i = 1,2), we see that

fl S
L= Kj f IRt = )| f (7, x(7), x2) || dr ds
tr /O

f
< kGl + sl o (6=
2

— 0, ast, — H.

Thus, the set {(Asx)(-) : x € Q} is equicontinuous, then mod,(A3€) = 0.
Since

3
mod,.(AQ) < Zmodc(AiQ) < Lomod.(Q),
i=1

then mod.(Q) = 0, which yields from (3.23), hence
p(€) = (0,0).

The regularity property of § implies the relative compactness of Q.
Now, it follows from Definition 2.3 that A is i-condensing.
According to Theorem 2.4, problem (1.1) has at least one mild solution.
Next, for 6 € (0,1], we consider the following one-parameter family of maps:

IT:[0,1] x C([-7, T], X) — C([-7,T], X),
(6,x) — I1(6, x) = 6A(x).
We will prove that the fixed point set of the family I1,

FixIT = {x € T1(6, x) for some 6 € (0,1]}

is a priori bounded.
Let x € FixIT, for t € [0, T], we have

[%ell -0 = sup [lx(t+6)]| < sup [lx(7)[| + sup||lx(7)]]

—r<0<0 —r<7<0 0<r<t

<N+l o) + supllx (D]l
0<r<t

(3.46)

(3.47)

(3.48)

(3.49)

(3.50)

(3.51)
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Then,
(B < |Q) (g(x)(0) + pO) || + [|[-Q(1)R(0, d + g(x)) || + | (t, x1) |
+ ft fSIIR(t ~ 5)K(s, ) f (1, x(7), x;)||dr ds
070

< M(N + [|pO)[]) + LaM + D) ([|¢l g + N) + M1 (M +1) + Ly, sup |lx(7)]|

0<7<t

s
0

t
+CymK j (t-5)7" f [#1 (D x(D)] + pa(7) < 1]l o + N + Os<1;<pT||x<6>n>]dr ds

t
< 61+ Lysup x(7)l| + ComK ([l o + |2l fo (t =) sup ||x(7)||ds

0<r<t 0<7<s

¢
=01 + Lysup ||x(T)]| + 62 I (t- s)q_1 sup ||x(7)||ds,
0

0<r<t 0<r<s

(3.52)

where

MKT ],
I'(g+1)

L:=M(N +[[¢O)) + La(M + D ([[$ll gy + N) + Mi(M +1),

2= ConiK (pally + el

0r:=L+ (1Ml oy + N,

(3.53)

We denote x(t) := sup_.,[lx(s)|. Let t € [0,t] such that x(t) = ||x()||. Then, by (3.52), we can
see

©(t) < 01 + Lpk(t) + 6, I t (t—s)T'x(s)ds. (3.54)
0

By Lemma 2.6, there exists a constant k= E(q) such that

- t . ]
(f) < O | k6% S| t-s)"ds < O | K6OT S =4 (3.55)
1-Ly (1—Lh) 0 1-Ly q(l—Lh)
Therefore,
sup [lx(t)[| < sup [|x(t)]| + sup [lx(®)]|
te[-r,T] te[-r,0] te[0,T]
= sup [|g(x)(t) + P(1)|| + sup [lx(B)]| (3.56)
te[-1,0] te[0,T]

SN+ (|9l + 6
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Now, we consider a closed ball

Bg = {x € C([-7,TL,X) : Ixll -1y < R} c C([-r,T], X). (3.57)

We take the radius R > 0 large enough to contain the set FixIT inside itself. Moreover, from
the proof above, A : Bg — C([-r,T], X) is p-condensing and it remains to apply Theorem 2.5.

O
4. Applications
Example 4.1. In this section, we consider the following integrodifferential model:
o1 —+ (0 Y1 (6)
an [0~ o)
0 (0 11(6)
“ap [P0~ )
t k . t 0 2/3 i |U(S+9/§)|
+ [, (t = s)s*sinfv(s, &)|ds + [, (t = s) [, 12(8)s*/3 - sin — dods,
0 4.1)
o 11(6) _ (
v(t,0)-e f T+ o009 "
0
-t ! (9) _
vlt,1)-e I Treron 0"
_ e _1o(6,9)l
U(Gzé)—vo(e,g)'kﬁ'm, —rSQSO,

where0 <t <1,¢€[0,1, ke Nr>0u>07y:[-r0 — R yp:[-r0 — R,
vy : [-7,0] x [0,1] — R are continuous functions, and j?r ly1(0)|d6 <1, j?r [Y2(6)]dO < oo.
Set X = L?([0,1],R) and define A by
D(A) = H*(0,1) n Hy(0,1),

4.2
Au=1u". (42)

Then, A generates a compact, analytic semigroup S(-) of uniformly bounded linear operators,
and [S(H)]| < 1.
For ¢ € [0,1] and ¢ € C([-r,0], X), we set

x(£)(§) = v(t,¢),
P(0)(§) =vo(6,§), 6 ¢€[-r0],

0
_ -t Yl(e)
htg) @) =e f_r1+|so<9><g>|d9’

0 0(0)(¢)] (4.3)
0 _. |(—,
g(9(9))(@) 1+ 90)@)

K(t,s)=t-s,

F(tx(8),9) (@) = t* sinlx(t)(¢)| + fo 12(0)P/3 Sm< |‘P(9t>(§)| ) o

Then, (4.1) can be reformulated as the abstract (1.1).
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Moreover, for t € (0,1], we can see

1 0
1560l <O+ Nl [ Ir@]a0

= m®Ollx®N + p Ol 0|l 01

where p1 (1) := 5, o (t) := (1/8) [°, [12(6)|d6.
For any x1,x; € X, ¢, p € C([-1,0], X),

| £ (£ x1(8), ) (&) = f (£, x2(8), §) Q)|
0
< Hlaa ) a0+ 2= [ @)@ - 50))46.
Therefore, for any bounded sets D; ¢ X, D, ¢ C([-r,0], X), we have
0
X(f(t,D1,D2)) <€ x(Dy) + i f |Y2(8)|x(D2(6))d6

(D) + \/%jllelzox([)z(f))) 112(6)| 46

<n(t) <x(D1) + sup x(Dz(G))>, ae.te[0,1],

-r<60<0

where 7() := max{t*, (1/£) [°_[y2(6)|d6).
For ¢, € C([-1,0],X), 0 € [-r,0], we can see

ls(@)© - @O < = kz - llo -7l < kz |l - all-

We denote L, := 1/k?. Moreover,

g (@) @Il < kz = N.
For t1,t, € [0,1], ¢, ¢ € C([-1,0], X), we have

|h(t1, @) = h(t2, @) ||

<t - t2|f
-1

0 1
—h 0 — do
e f Yl()<1+|<.0(9)(§)| 1+|¢(6)<§)|>H

0 0
<tn-al [ n@laes [ n@lleee - geole

T+ [p0)@)]

_ n® H

0 0
<tn-tl [ n@ae [ n@ldo-llp-ll .

= Lh<|f1 —to| + || - ¢||[-r,01>'
where Ly, = f?r ly1(6)|d6.

15

(4.4)

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)
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Moreover, from above inequality, we can see that for any bounded set D c C([-r,0],X)
and t € [0,1],

x(r(t,D)) < IO 10| x(D(©))d6 < J'O |y1(6)]d6 - sup ]X(ﬁ(e)). (4.10)

0e[-1,0

Suppose further that there exists a constant M* € (0, 1) such that

MK X
Lo+ T(q+1) max{2[[nlp, lwall + llpall ) < M7, (4.11)
then (4.1) has a mild solution by Theorem 3.1.
For example, if we put
1@ =1(0) =€, =05 k=7r=1, (4.12)

then Ly, = (¢’ = 1)/(7€7) = 0.143, L}, = 1/49 = 0.020, max{2||nl .1, llpall s + lp2lla ) = 207l =
0579, T(3/2) = 0.886, Lo = ML} (1+w)+Ly = (1/49)(1+(¢” 1)/ (7¢7)) +(e' 1)/ (7€7) = 0.166,
thus, we see

K
Lo+ gy st + el ) <09 <1 @.13)

_MK
[(g+1

Example 4.2. Let Q be a bounded domain with smooth boundary 02 in R™ and let A(¢, D) be
the symmetric second-order differential operator given by

L) ou
A@D=-3 (ak,z@)a—él), (4.14)

where ¢ = (&1,...,¢,) € R™

We assume that the coefficients ay;(¢) = aix(¢) are real valued and continuously
differentiable in Q and A(¢, D) is strongly elliptic, that is, there is a constant Cy > 0 such
that

n n

> aki@nin; = Cod g, (4.15)

kI1=1 k=1

for any 1 = (11,...,7,) € R™
Set X = L?(Q) and define A by

D(A) = H*(Q) N Hy(Q),
(4.16)
Au = A(,D)u.
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Then, —A generates an analytic semigroup S(-) of uniformly bounded linear operators, and
IS <1 [24].
We consider the following integrodifferential problem:

aq t t
— I:U(t,g) —e! J a(s —t)sin U(s,g)ds] + A(¢, D) I:v(t,g) - e_tI a(s—t) sinv(s,é)dsjl

atq t-r t-r

= Jo f1(s)v(s,&)ds + fo r b(s, T —s)fa(s,v(t,¢))drds, (t,¢)€[0,1] xQ,
o(t, &) —e jt a(s—t)sinv(s,&)ds=0, (t¢)€][0,1] x0Q,
t-r
_ (¢, 2)
U(Gré) = UO(@,@) + J.Q mdz, -r<O< 0,
(4.17)

wherer >0,a: [-r,0] - R, b:[0,1] x[-1,0] = R, vp: [-1,0] xQ — R, f1:[0,1] — Rare
continuous functions, ¢(¢,z) € L*(Q x Q,R) and f?r |a(0)|de < 1.
For ¢ € Qand ¢ € C([-r,0], X), we set

x(£)(@) = v(t,¢),
$(0)(§) =vo(6,8), 0 ¢€[-r0],

0
h(tg) (@) = e f a(6) sin p(8) (£)d6, .
- 4.18

[ _c2)
SO = [ T

0
[t x(®),9) @) = fr(t)x(t)(§) + f_ b(t, 0) f2(t, 9(6)(¢))d6.

Then (4.17) can be reformulated as the abstract (1.1) (K(t,s) =1).
Furthermore, we assume the following.

(1) The function f, : [0,1] x C([-1,0],X) — R is continuous, and there exist
continuous functions [(t) and Lf(t) such that

122 @) @I <1® ol 00

172t ) = £2(£:§) | < Ls®) ]l - &]|-

(4.19)

(2) The function b(t, 0) is continuous in [0,1] x [-7,0] and

fo Ib(t,0)[d6 = p(t) < co. (4.20)
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(3) The function ¢(¢, z), ¢,z € Q is measurable, and there exists a constant N such that

[ e 214z <.
Q

Thus, for t € [0, 1], we can see
£t x®), )| < prOlx@)I + p2®) |0l 0

where p (t) = |f1(t)], pa(t) = 1{H)p(t).
For any bounded sets D; ¢ X, D, ¢ C([-r,0], X), we have

-r<0<0

X(f(t/DllDZ)) < Tl(t) (X(Dl) + sup X(Dz(e))>, ae. te [0/1]/

where 77(t) := max{|f1(8)], L;(p (1) ).
For ¢, p € C([-1,0],X), 0 € [-r,0], we can see

1/2 B
)@ -s@@l < ([ [ Feadzde) - lo-al=L; -7l
Moreover,
ls@ @Il < [ e 2ldz <.
Q

It is clear that

11t @) = i, §) | < T (1t = tal + o = Gl iy )

where Lj, := max{1, (meas -(Q))1/2} . f?r |a(0)|df, and for any bounded set Dc C([-r,

and t € [0,1],

x(r(tD)) < fo a©)ld0 - sup x(D(®)).

e[-r,0]

Suppose further that there exists a constant M* € (0, 1) such that

1 —_
Lo+ Tq+1) max{2||7|| ., (| [l s+ ([l 2} < M7,

where Ly = ig(l + ff)r |a(6)|d6) + Ly, then (4.17) has a mild solution by Theorem 3.1.

(4.21)

(4.22)

(4.23)

(4.24)

(4.25)

(4.26)

0], X)

(4.27)

(4.28)
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