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Using the generalized variational principle and the Riccati technique, new oscillation criteria
are established for the forced second-order nonlinear differential equation, which improves and
generalizes some of the new results in literature.

1. Introduction

In this paper, we consider the oscillatory behavior of the nonlinear nonhomogeneous
differential equation of the form

(
p(t)Ψ

(
y(t)
)∣∣y′(t)

∣∣α−1y′(t)
)′

+ q(t)f
(
y(t)
)
= e(t), t ≥ t0, (1.1)

where α is a positive constant, p, q, e ∈ C([t0,∞),�) with p(t) > 0, Ψ ∈ C(�, (0,∞)), f ∈
C(�,�) satisfying uf(u) > 0 for u/= 0.

As usual, by a solution of (1.1) we mean a function y ∈ C1[Ty,∞), Ty ≥ t0, where
Ty ≥ t0 depends on the particular solution, which has the property p(t)Ψ(y(t))|y′(t)|α−1y′(t) ∈
C1[Ty,∞) and satisfies (1.1). A nontrivial solution of (1.1) is called oscillatory if it has
arbitrarily large zeros; otherwise, it is said to be nonoscillatory. Equation (1.1) is said to be
oscillatory if all its solutions are oscillatory.

Recently, many research works have been done on the oscillatory and asymptotic
behavior of solutions of the nonlinear nonhomogeneous differential equation of the form
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(1.1) or its special cases (see [1–7] and references cited therein). Using the variational method,
oscillation criteria are obtained by Wong [1] for the forced linear differential equation, by Li
and Cheng [2] for the forced half-linear differential equation, by Zheng and Meng [3] for
the forced quasilinear differential equation, by Çakmak and Tiryaki [4] as well as Zheng
and Cheng [5] for the forced nonlinear differential equation (some deficiencies in [2, 4] are
pointed out by Zheng andMeng [3]), and Erbe et al. [7], aswell as Saker [8, 9] for the dynamic
equation on time scales.

Meanwhile, in [6], Komkov gave a generalized Leighton’s variational principle, which
can also be used to obtain the oscillation criterion.

Theorem 1.1. Suppose that there exist a C1 function u(t) defined on [s1, t1] and a function G(u)
such that G(u(t)) is not constant on [s1, t1], G(u(s1)) = G(u(t1)) = 0, g(u) = G′(u) is continuous,

∫ t1

s1

[
q(t)G(u(t)) − p(t)

(
u′(t)

)2]
dt > 0, (1.2)

and (g(u(t)))2 ≤ 4G(u(t)) for t ∈ [s1, t1]. Then each solution of the equation

(
p(t)y′(t)

)′ + q(t)y(t) = 0 (1.3)

vanishes at least once on [s1, t1].

The purpose of our paper is to use the generalized variational principle to study the
oscillation for (1.1). These oscillation criteria are closely related to the generalized variational
formulae (1.2), which improve the results mentioned above. Examples will also be given to
illustrate the effectiveness of our main results.

Before going into the main results, let us state three sets of conditions commonly used
in the literature which we rely on:

(S1) 0 < Ψ(u) ≤ M,
∣∣f ′(u)

∣∣ ≥ K
∣∣f(u)∣∣(β−1)/β > 0, for u/= 0, (1.4)

(S2)

∣∣f ′(u)
∣∣

[
Ψ(u)|f(u)|β−1]1/β

≥ γ > 0, for u/= 0, (1.5)

(S3) 0 < Ψ(u) ≤ M,

∣∣f(u)∣∣
|u|β

≥ δ > 0, for u/= 0. (1.6)

Here, M,K > 0, 0 < α ≤ β, and γ, δ > 0 are constants. It is clear that assumption (S1)
implies (S2), but not conversely. For example, the function f(u) = u3, Ψ(u) = u2 and β = 1
do not satisfy (S1), but (S2) holds. In (S1) and (S2), we need f to be differentiable. Clearly,
this condition is not required in (S3). These differences force us to study (1.1) under the
assumptions (S1), (S2), and (S3) in separate manners.

2. The Case Where β = α

Firstly, we give an inequality, which is a transformation of Young’s inequality.



Abstract and Applied Analysis 3

Lemma 2.1 (see [10]). Suppose that X and Y are nonnegative. Then

λXYλ−1 −Xλ ≤ (λ − 1)Yλ, λ > 1, (2.1)

where the equality holds if and only if X = Y .

Now, we will give our main results.

Theorem 2.2. Assume (S2) holds. Suppose further that for any T ≥ t0, there exist T ≤ s1 < t1 ≤ s2 <
t2 such that

e(t)

⎧
⎨
⎩
≤ 0, t ∈ [s1, t1],

≥ 0, t ∈ [s2, t2].
(2.2)

Let u ∈ C1[si, ti], and nonnegative functions G1, G2 satisfying Gi(u(si)) = Gi(u(ti)) = 0, gi(u) =
G′

i(u) are continuous and (gi(u(t)))α+1 ≤ (α + 1)α+1Gα
i (u(t)) for t ∈ [si, ti], i = 1, 2. If there exists a

positive function ρ ∈ C1([t0,∞),�) such that

Q
ρ

i (u) : =
∫ ti

si

ρ(t)

⎡
⎣q(t)Gi(u(t)) −

(
α

γ

)α

p(t)

(∣∣u′(t)
∣∣ + G

1/(α+1)
i (u(t))

∣∣ρ′(t)∣∣
(α + 1)ρ(t)

)α+1⎤
⎦dt > 0,

(2.3)

for i = 1, 2. Then (1.1) is oscillatory.

Proof. Suppose to the contrary that there is a nonoscillatory solution y(t) of (1.1). First, we
consider the case when y(t) > 0 eventually. Assume that y(t) > 0 on [T0,∞) for some T0 ≥ t0.
Set

w(t) =
ρ(t)p(t)Ψ

(
y(t)
)∣∣y′(t)

∣∣α−1y′(t)

f
(
y(t)
) , t ≥ T0. (2.4)

Then differentiating (2.4) and making use of (1.1), it follows that for all t ≥ T0,

w′(t) = −ρ(t)q(t) + ρ(t)e(t)
f
(
y(t)
) + ρ′(t)

ρ(t)
w(t) − |w(t)|(α+1)/αf ′(y(t))

[
p(t)ρ(t)Ψ

(
y(t)
)∣∣f(y(t))∣∣α−1

]1/α . (2.5)

By assumptions, we can choose s1, t1 ≥ T0 with s1 < t1 so that e(t) ≤ 0 on the interval I1 =
[s1, t1]. For t ∈ I1 and in view of (1.5) and (2.5),w(t) satisfies the inequality

ρ(t)q(t) ≤ −w′(t) +
ρ′(t)
ρ(t)

w(t) − γ
|w(t)|(α+1)/α
p1/α(t)ρ1/α(t)

. (2.6)
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Multiplying G1(u(t)) through (2.6) and integrating (2.6) from s1 to t1, using the fact that
G1(u(s1)) = G1(u(t1)) = 0, we obtain

∫ t1

s1

G1(u(t))ρ(t)q(t)dt ≤
∫ t1

s1

G1(u(t))

[
−w′(t) +

ρ′(t)
ρ(t)

w(t) − γ |w(t)|(α+1)/α
p1/α(t)ρ1/α(t)

]
dt

= −G1(u(t))w(t)|t1s1 +
∫ t1

s1

[Gi(u(t))]′w(t)dt

+
∫ t1

s1

G1(u(t))
ρ′(t)
ρ(t)

w(t)dt −
∫ t1

s1

G1(u(t))
γ |w(t)|(α+1)/α
p1/α(t)ρ1/α(t)

dt

≤
∫ t1

s1

[∣∣g1(u(t))
∣∣∣∣u′(t)

∣∣ +G1(u(t))

∣∣ρ′(t)∣∣
ρ(t)

]
|w(t)|dt

− γ

∫ t1

s1

G1(u(t))
|w(t)|(α+1)/α
p1/α(t)ρ1/α(t)

dt

≤ (α + 1)
∫ t1

s1

[∣∣∣Gα/(α+1)
1 (u(t))

∣∣∣
∣∣u′(t)

∣∣ +G1(u(t))

∣∣ρ′(t)∣∣
(α + 1)ρ(t)

]
|w(t)|dt

− γ

∫ t1

s1

G1(u(t))
|w(t)|(α+1)/α
p1/α(t)ρ1/α(t)

dt.

(2.7)

Let

X =
γα/(α+1)

p1/(α+1)(t)ρ1/(α+1)(t)
G

α/(α+1)
1 (u(t))|w(t)|, λ = 1 +

1
α
,

Y =
ααpα/(α+1)(t)ρα/(α+1)(t)

γα2/(α+1)

[∣∣u′(t)
∣∣ + G

1/(α+1)
1 (u(t))

∣∣ρ′(t)∣∣
(α + 1)ρ(t)

]α
.

(2.8)

By Lemma 2.1 and (2.7), we have

∫ t1

s1

G1(u(t))ρ(t)q(t)dt ≤
∫ t1

s1

(
α

γ

)α

p(t)ρ(t)

(∣∣u′(t)
∣∣ + G

1/(α+1)
1 (u(t))

∣∣ρ′(t)∣∣
(α + 1)ρ(t)

)α+1

dt, (2.9)

which contradicts (2.3) with i = 1.
When y(t) < 0 holds eventually, we assume y(t) < 0 for t ≥ T0 > t0. Defining the

Riccati transformation as (2.4), we get that (2.5) is true. In this case, we choose t2 > s2 ≥ T0
so that e(t) ≥ 0 on the interval I2 = [s2, t2]. For a given t ∈ I2, (1.5) and (2.5) imply (2.6).
Multiplying G2(u(t)) through (2.6) and integrating (2.6) from s2 to t2, using the fact that
G2(u(s2)) = G2(u(t2)) = 0, we obtain a similar contradiction to (2.3)with i = 2. This completes
the proof.
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Corollary 2.3. If ρ(t) ≡ 1 in Theorem 2.2 and (2.3) is replaced by

Qi(u) :=
∫ ti

si

[
q(t)Gi(u(t)) −

(
α

γ

)α

p(t)
∣∣u′(t)

∣∣α+1
]
dt > 0, (2.10)

for i = 1, 2, then (1.1) is oscillatory.

Remark 2.4. The left side of inequality (2.10) is closely related to the generalized variational
formulae (1.2). Particularly, we obtain α = γ for the linear equation; thus, (2.10) reduces
to (1.2) for the linear differential equation. So our Theorem 2.2 and Corollary 2.3 are
generalizations of the paper by Zheng and Cheng [5] and improvement of papers by Li and
Cheng [2] and by Çakmak and Tiryaki [4].

Theorem 2.5. Assume that (S3) holds. Suppose further that for any T ≥ t0, there exist T ≤ s1 <
t1 ≤ s2 < t2 such that (2.2) holds. Let u ∈ C1[si, ti], and nonnegative functions G1, G2 satisfying
Gi(u(si)) = Gi(u(ti)) = 0, gi(u) = G′

i(u) are continuous and (gi(u(t)))
α+1 ≤ (α + 1)α+1Gα

i (u(t)) for
t ∈ [si, ti], i = 1, 2. If there exists a positive function ρ ∈ C1([t0,∞),�) such that

Q
ρ

i (u) :=
∫ ti

si

ρ(t)

⎡
⎣δq(t)Gi(u(t)) −Mp(t)

(∣∣u′(t)
∣∣ + G

1/(α+1)
i (u(t))

∣∣ρ′(t)∣∣
(α + 1)ρ(t)

)α+1⎤
⎦dt > 0,

(2.11)

for i = 1, 2. Then (1.1) is oscillatory.

Proof. Suppose to the contrary that there is a nonoscillatory solution y(t). Firstly, we assume
that y(t) > 0 on [T0,∞) for some T0 ≥ t0. Set

w(t) =
ρ(t)p(t)Ψ

(
y(t)
)∣∣y′(t)

∣∣α−1y′(t)
∣∣y(t)∣∣α−1y(t)

, t ≥ T0. (2.12)

Then differentiating (2.12) and making use of (1.1) and (S3), we see that for all t ≥ T0, we
have

w′(t) =
−q(t)ρ(t)f(y(t))
∣∣y(t)∣∣α−1y(t)

+
ρ(t)e(t)

∣∣y(t)∣∣α−1y(t)
+
ρ′(t)w(t)

ρ(t)
− α

|w(t)|(α+1)/α
[
ρ(t)p(t)Ψ

(
y(t)
)]1/α

≤ −δq(t)ρ(t) + ρ′(t)w(t)
ρ(t)

+
e(t)ρ(t)

∣∣y(t)∣∣α−1y(t)
− α

M1/α

|w(t)|(α+1)/α
ρ1/α(t)p1/α(t)

.

(2.13)
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By assumptions, we choose s1, t1 ≥ T0 so that e(t) ≤ 0 on the interval I1 = [s1, t1]. For t ∈ I1,
(2.13) implies that w(t) satisfies the inequality

δρ(t)q(t) ≤ −w′(t) +
ρ′(t)w(t)

ρ(t)
− α

M1/α

|w(t)|(α+1)/α
p1/α(t)ρ(t)1/α(t)

. (2.14)

A similar method as to that of Theorem 2.2 implies a contradiction to (2.11) with i = 1.
When y(t) < 0 holds eventually, we assume y(t) < 0 for t ≥ T0 > t0. Defining the Riccati

transformation as (2.12), we get that (2.13) is true. In this case, we choose t2 > s2 ≥ T0 so that
e(t) ≥ 0 on the interval I2 = [s2, t2]. For a given t ∈ I2, we get that (2.14) holds. A similar
method reaches a similar contradiction to (2.11) with i = 2. This completes the proof.

Now we give two examples to illustrate the efficiency of our results.

Example 2.6. Consider the following forced half-linear differential equation:

(
tλ
∣∣y′(t)

∣∣α−1y′(t)
)′

+Ktλ
∣∣y(t)∣∣α−1y(t) = − sin t, (2.15)

for t ≥ 1, where K, λ > 0 are constants and α = 1. We may show that (2.15) is oscillatory for
K > 2e(1 + λ/2)2 using Theorem 2.2. Indeed, since the zeros of the forcing term − sin t are nπ ,
the constant γ in (1.5) is α, that is, γ = α. For any T ≥ 1, we choose n sufficiently large so that
nπ = 2kπ ≥ T and s1 = 2kπ and t1 = (2k + 1)π . Selecting u(t) = sin t ≥ 0, G1(u) = u2 exp(−u)
(we note that (G′

1(u))
2 ≤ 4G1(u) for u ≥ 0), ρ(t) = t−λ, then we have

∫ t1

s1

ρ(t)q(t)G1(u(t))dt =
∫ (2k+1)π

2kπ
t−λKtλ(sin t)2 exp(− sin t)dt

= K

∫π

0
(sin t)2 exp(− sin t)dt

≥ K

e

∫π

0

1 − cos 2t
2

dt =
Kπ

2e
,

∫ t1

s1

ρ(t)
(
α

γ

)α

p(t)

(∣∣u′(t)
∣∣ + G

1/(α+1)
i (u(t))

∣∣ρ′(t)∣∣
(α + 1)ρ(t)

)α+1

dt

=
∫ (2k+1)π

2kπ
t−λ
(α
α

)α
tλ
(
|cos t| + λ sin t exp(− sin t/2)

t

)2

dt

<

∫π

0

(
1 +

λ

2

)2

dt =
(
1 +

λ

2

)2

π.

(2.16)

So we have Q
ρ

1(u) > 0 provided K > 2e(1 + λ/2)2. Similarly, for s2 = (2k + 1)π and t2 =
(2k + 2)π , we select u(t) = sin t ≤ 0, G2(u) = u2 exp(u), and we note that (G′

2(u))
2 ≤ 4G2(u)

for u ≤ 0; we can show that the integral inequality Q
ρ

2(u) > 0 for K > 2e(1 + λ/2)2. So (2.15)
is oscillatory for K > 2e(1 + λ/2)2 by Theorem 2.2.
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Example 2.7. Consider the following forced half-linear differential equation:

[
(2 + cos t)t−λ

∣∣y′(t)
∣∣α−1y′(t)

]′
+Kt−λ exp(sin t)

∣∣y(t)∣∣α−1y(t) = − sin t, (2.17)

for t ≥ 1, where K, λ > 0 are constants and α = 1. We may show that (2.17) is oscillatory
for K > 3(1 + λ)2 using Theorem 2.2. Indeed, since the zeros of the forcing term − sin t are
nπ , the constant γ in (1.5) is α, that is, γ = α. In fact, for any T ≥ 1, we choose n sufficiently
large so that nπ = 2kπ ≥ T and s1 = 2kπ and t1 = (2k + 1)π . Selecting u(t) = sin t ≥ 0,
G1(u) = u2 exp(−u) (we note that (G′

1(u))
2 ≤ 4G1(u) for u ≥ 0), ρ(t) = tλ, then we have

∫ t1

s1

ρ(t)q(t)G1(u(t))dt =
∫ (2k+1)π

2kπ
tλKt−λ(sin t)2 exp(− sin t)dt

= K

∫π

0
(sin t)2 exp(sin t − sin t)dt

≥ K

∫π

0

1 − cos 2t
2

dt =
Kπ

2
,

∫ t1

s1

ρ(t)
(
α

γ

)α

p(t)

(∣∣u′(t)
∣∣ + G

1/(α+1)
i (u(t))

∣∣ρ′(t)∣∣
(α + 1)ρ(t)

)α+1

dt

=
∫ (2k+1)π

2kπ
tλ
1
2

(α
α

)α
(2 + cos t)t−λ

(
|cos t| + λ sin t exp(− sin t/2)

t

)2

dt

<

∫π

0

3
2
(1 + λ)2dt =

3
2
(1 + λ)2π.

(2.18)

So, we haveQρ

1(u) > 0 providedK > 3(1 + λ)2. Similarly, for s2 = (2k+1)π and t2 = (2k+2)π ,
we select u(t) = sin t ≤ 0, G2(u) = u2 exp(u), and we note that (G′

2(u))
2 ≤ 4G2(u) for u ≤ 0; we

can show that the integral inequality Q
ρ

2(u) > 0 for K > 3(1 + λ)2. So, (2.17) is oscillatory for
K > 3(1 + λ)2 by Theorem 2.2.

3. The Case Where β > α

We now handle the case where β > α.

Theorem 3.1. Assume that (S3) holds. Suppose further that for any T ≥ t0, there exist T ≤ s1 <
t1 ≤ s2 < t2 such that (2.2) holds. Let u ∈ C1[si, ti], and the nonnegative functions G1, G2 satisfying
Gi(u(si)) = Gi(u(ti)) = 0, gi(u) = G′

i(u) are continuous and (gi(u(t)))
α+1 ≤ (α + 1)α+1Gα

i (u(t)) for
t ∈ [si, ti], i = 1, 2. If there exists a positive function ρ ∈ C1([t0,∞),�) such that

Q
ρ

i (u) :=
∫ ti

si

ρ(t)

⎡
⎣Qe(t)Gi(u(t)) −Mp(t)

(∣∣u′(t)
∣∣ + G

1/(α+1)
i (u(t))

∣∣ρ′(t)∣∣
(α + 1)ρ(t)

)α+1⎤
⎦dt > 0,

(3.1)
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for i = 1, 2, then (1.1) is oscillatory, where

Qe(t) = α−α/ββ
(
β − α

)(α−β)/β[
δq(t)

]α/β|e(t)|(β−α)/β. (3.2)

Proof. Suppose to the contrary that there is a nontrivial nonoscillatory solution. Firstly, we
assume that y(t) > 0 on [T0,∞) for some T0 ≥ t0. Set

w(t) =
ρ(t)p(t)Ψ

(
y(t)
)∣∣y′(t)

∣∣α−1y′(t)
∣∣y(t)∣∣α−1y(t)

, t ≥ T0. (3.3)

Then differentiating (3.3) and making use of (1.1), it follows that for all t ≥ T0,

w′(t) =
−q(t)ρ(t)f(y(t))
∣∣y(t)∣∣α−1y(t)

+
ρ(t)e(t)

∣∣y(t)∣∣α−1y(t)
+
ρ′(t)w(t)

ρ(t)
− α

|w(t)|(α+1)/α
[
ρ(t)p(t)Ψ

(
y(t)
)]1/α

= −q(t)ρ(t)f
(
y(t)
)

∣∣y(t)∣∣β−1y(t)
∣∣y(t)∣∣β−α + e(t)ρ(t)

∣∣y(t)∣∣α−1y(t)
+
ρ′(t)w(t)

ρ(t)
− α

|w(t)|(α+1)/α
[
p(t)ρ(t)Ψ

(
y(t)
)]1/α

≤ −δq(t)ρ(t)∣∣y(t)∣∣β−α + e(t)ρ(t)
∣∣y(t)∣∣α−1y(t)

+
ρ′(t)w(t)

ρ(t)
− α

M1/α

|w(t)|(α+1)/α
p1/α(t)ρ1/α(t)

.

(3.4)

By assumptions, we can choose t1 > s1 ≥ T0 so that e(t) ≤ 0 on the interval I1 = [s1, t1]. For
a given t ∈ I1, set F(x) = δq(t)xβ−α − e(t)/xα, and we have F ′(x∗) = 0, F ′′(x∗) > 0, where
x∗ = [−αe(t)/(β − α)δq(t)]1/β. So, F(x) attains its minimum at x∗ and

F(x) ≥ F(x∗) = Qe(t). (3.5)

So (3.4) and (3.5) imply that w(t) satisfies

ρ(t)Qe(t) ≤ −w′(t) − α

M1/α

|w(t)|(α+1)/α
p1/α(t)ρ1/α(t)

+
ρ′(t)w(t)

ρ(t)
. (3.6)

The remaining argument is the same as in the proof of Theorem 2.2, so we obtain a desired
contradiction to (3.1) with i = 1 when y(t) > 0 eventually.

On the other hand, if y(t) is a negative solution for t ≥ T0 ≥ t0, we define the Riccati
transformation (3.3) to yield (3.4). In this case, we choose t2 > s2 ≥ T0 so that e(t) ≥ 0 on the
interval I2 = [s2, t2]. For a given t ∈ I2, set F(x) = δq(t)xβ−α − e(t)/xα , and we have F(x) ≥
F(x∗) = Qe(t). The remaining proof is similar to that of Theorem 2.2; a desired contradiction
to (3.1) with i = 2 can be obtained. This completes the proof.
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Corollary 3.2. If ρ(t) ≡ 1 in Theorem 3.1 and the hypothesis (3.1) is replaced by

Q̃i(u) :=
∫ ti

si

[
Qe(t)Gi(u(t)) −Mp(t)

∣∣u′(t)
∣∣α+1]dt > 0, (3.7)

for i = 1, 2, then (1.1) is oscillatory.

We remark that Corollary 3.2 is closely related to the generalized variational formulae.
Furthermore, in Theorem 3.1, there is no restriction on the positive constant α, so Theorem 2.5
can be treated as its limiting case when β → α + 0 with the convention that 00 = 1.

Example 3.3. Consider the following forced quasilinear differential equation:

(
γtλ/3y′(t)

)′
+ tλ
∣∣y(t)∣∣2y(t) = −sin3t, t ≥ 1, (3.8)

where γ, λ > 0 are constants. We see that Ψ(u) ≡ 1, which implies that M = 1, and α = 1,
β = 3 in Theorem 3.1. Since α < β, Theorem 2.2 cannot be applied. However, we can obtain
oscillation for (3.8) using Theorem 3.1. For any T ≥ 1, choose n sufficiently large so that
nπ = 2kπ ≥ T and s1 = 2kπ and t1 = (2k+1)π . We choose u(t) = sin t ≥ 0,G1(u) = u2 exp(−u)
(we note that (G′

1(u))
2 ≤ 4G1(u), for u ≥ 0), ρ(t) = tλ. In fact, we can easily verify that

Qe(t) = (3/2) 3
√
2tλ/3sin2t,

∫ t1

s1

Qe(t)q(t)G1(u(t))dt =
∫ (2k+1)π

2kπ
t−λ/3

3
2

3
√
2 sin t4 exp(− sin t)dt

=
3
2

3
√
2
∫π

0
(sin t)4 exp(− sin t)dt

≥ 9 3
√
2

16e
π,

∫ t1

s1

ρ(t)
(
α

γ

)α

Mp(t)

(∣∣u′(t)
∣∣ + G

1/(α+1)
i (u(t))

∣∣ρ′(t)∣∣
(α + 1)ρ(t)

)α+1

dt

=
∫ t1

s1

t−λ/3γtλ/3
(
|cos t| + (λ/3) sin t exp(− sin t/2)

2t

)2

dt

< γ

(
1 +

λ

6

)2

π.

(3.9)

So, we have that (3.1) is true for i = 1 provided 0 < γ < 9 3
√
2/16e(1 + λ/6)2. Similarly, for

s2 = (2k+1)π and t2 = (2k+2)π , we can show that (3.1) is true for i = 2. So (3.8) is oscillatory
for 0 < γ < 9 3

√
2/16e(1 + λ/6)2 by Theorem 3.1.
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