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The purpose of this paper is to consider a modified hybrid steepest-descent method by using
a viscosity approximation method with a weakly contractive mapping for finding the common
element of the set of a common fixed point for an infinite family of nonexpansivemappings and the
set of solutions of a system of an equilibrium problem. The sequence is generated from an arbitrary
initial point which converges in norm to the unique solution of the variational inequality under
some suitable conditions in a real Hilbert space. The results presented in this paper generalize and
improve the results of Moudafi (2000), Marino and Xu (2006), Tian (2010), Saeidi (2010), and some
others. Finally, we give an application to minimization problems and a numerical example which
support our main theorem in the last part.

1. Introduction

The convex feasibility problem (CFP) is the problem for finding points in the intersection of a
finite family of closed convex subsets Ci, i = 1, 2, . . . ,N in the framework of Hilbert spaces,
that is, to find a point x̂ such that

x̂ ∈
N
⋂

i=1

Ci. (1.1)
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This problem plays an extremely important role in various fields, especially in applied
mathematics and physical sciences; moreover, it has a great impact role on the real-world
applications (see [1, 2]). The well-known applications are the theory of optimization [3, 4],
image reconstruction by the projection method [5], signal processing problems [6], and
model for the problem in sensor networks [7], as some powerful examples.

We focus on the important subclass of convex feasibility problems, in which finitely
many sets are given. Each set can be specified in various forms, such as the fixed point set
of a nonexpansive mapping, the set of solutions of the variational inequality, and the set
of solutions to an equilibrium problem. In a framework of Hilbert spaces, there are some
applications of convex feasibility problems in various disciplines such as image restoration,
computer tomograph, and radiation therapy treatment planning [8].

Throughout this paper, we assume that H is a real Hilbert space with inner product
〈·, ·〉 and norm ‖ · ‖, and let C be a nonempty closed convex subset of H. Let � = {Fj}j∈Γ be
bifunctions from C × C to R, where R is the set of real numbers, and Γ is an arbitrary index
set. The system of equilibrium problems is to find x ∈ C such that

Fj

(

x, y
) ≥ 0, ∀y ∈ C, j ∈ Γ. (1.2)

If Γ is a singleton, then problem (1.2), reduced to the equilibrium problems, is to find x ∈ C such
that

F
(

x, y
) ≥ 0, ∀y ∈ C. (1.3)

The set of solution of (1.3) is denoted by EP(F). The above formulation (1.3) was shown
in [7] to cover monotone inclusion problems, saddle point problems, variational inequality
problems, minimization problems, optimization problems, vector equilibrium problems, and
Nash equilibria in noncooperative games. In other words, the EP(F) is a unifying model for
several problems arising in physics, engineering, science, optimization, economics, and so
forth; Combettes and Hirstoaga [9] introduced an iterative scheme for finding a common
element in the solution set of problem (1.3) in a Hilbert space.

The equilibrium problems include fixed point problems, optimization problems,
variational inequalities problems, Nash equilibrium problems, noncooperative games, and
economics and the equilibrium problems; as special cases see, for example, [7, 10–14]. Some
methods have been proposed to solve the equilibrium problem; see, for instance, [15–22].

Let B : C → H be a mapping. The variational inequality problem, denoted by VI(C,B),
is to find x ∈ C such that

〈

Bx, y − x
〉 ≥ 0, ∀y ∈ C. (1.4)

Existence and uniqueness of solutions are the most important problems of VI(C,B). The
variational inequality problem has been extensively studied in the literature, see, for example,
[23, 24] and the references therein. It is known that if B is a strong monotone and Lipschitzian
mapping on C, then VI(C,B) has a unique solution. Variational inequalities are among the
most interesting and important mathematical problems and have been studied intensively
in the past years since they have wide applications in the optimization and control,
economics and transportation equilibrium, and engineering science. For these reasons, many
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existence results and iterative algorithms for various variational inclusions have been studied
extensively by many authors. For details, see [2, 7, 23–25] and references therein.

On the other hand, iterative methods for nonexpansive mappings have recently been
applied to solve convex minimization problems. Convex minimization problems have a great
impact and influence in the development of almost all branches of pure and applied sciences.

A mapping T : C → C is called nonexpansive if ‖Tx − Ty‖ ≤ ‖x − y‖, for all x, y ∈ C.
We use F(T) to denote the set of fixed points of T , that is, F(T) = {x ∈ C : Tx = x}. Recall that
a self-mapping f : C → C is a contractive mapping on C if there exists a constant α ∈ [0, 1)
such that ‖f(x) − f(y)‖ ≤ α‖x − y‖, for all x, y ∈ C. A mapping B : H → H is said to be a
k-Lipschitzian if there exists a constant k > 0 such that ‖Bx −By‖ ≤ k‖x − y‖, for all x, y ∈ C.
The concept of quasi-nonexpansive was introduced by Diaz and Metcalf [26]. The mapping
T is said to be quasi-nonexpansive if ‖Tx − p‖ ≤ ‖x − p‖, for all x ∈ C and p ∈ F(T).

In 2000, Moudafi [27] introduced the viscosity approximation method for a
nonexpansive mapping T : C → C. Let f be a contraction on H, starting with an arbitrary
initial x0 ∈ H, defining a sequence {xn} recursively by

xn+1 = αnf(xn) + (1 − αn)Txn, ∀n ≥ 0, (1.5)

where αn is a sequence in (0, 1). Xu [28] proved that under certain appropriate conditions on
{αn}, the sequence {xn} generated by (1.5) converges strongly to the unique solution x∗ ∈ C
of the variational inequality

〈(

I − f
)

x∗, x − x∗〉 ≥ 0, ∀x ∈ F(T). (1.6)

In 2006, Marino and Xu [29] introduced the following iterative scheme:

xn+1 = αnγf(xn) + (I − αnA)Txn, ∀n ≥ 0. (1.7)

It was proved that if the sequence {αn} of parameters satisfies appropriate conditions, then
the sequence {xn} generated by (1.7) converges strongly to the unique solution of the
variational inequality

〈(

A − γf
)

x∗, x − x∗〉 ≥ 0, ∀x ∈ F(T), (1.8)

which is the optimality condition for the minimization problem

min
x∈F(T)

1
2
〈Ax, x〉 − h(x), (1.9)

where h is a potential function for γf (i.e., h′(x) = γf(x), for x ∈ H). Assume A is strongly
positive bounded linear operator. It can be referred that there is a constant γ > 0 which
satisfies the following property:

〈Ax, x〉 ≥ γ‖x‖2, ∀x ∈ H. (1.10)
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In 2007, Suzuki [30] extended Moudafi’s viscosity approximations with MeirKeeler
contractions and presented very simple proofs of Xu’s theorems by concidering Moudafi’s
approximations.

On the other hand, Yamada [31] introduced the following hybrid iterative scheme for
finding the variational inequality:

xn+1 = Txn − μλnB(Txn), ∀n ≥ 0, (1.11)

where B is k-Lipschitzian and η-stronglymonotone operator with k > 0, η > 0, 0 < μ < 2η/k2,
then he proved that if {λn} satisfies some appropriate conditions, then {xn} generated by
(1.11) converges strongly to the unique solution of variational inequality

〈Bx∗, x − x∗〉 ≥ 0, x ∈ F(T). (1.12)

In 2010, Tian [32] combined (1.7) and (1.11) and considered the following general
iterative method:

xn+1 = αnγf(xn) +
(

I − μαnB
)

Txn, ∀n ≥ 0. (1.13)

If the sequence {αn} of parameters satisfies appropriate conditions, then the sequence {xn}
generated by (1.13) converges strongly to the unique solution x∗ ∈ C of the variational
inequality

〈(

γf − μB
)

x∗, x − x∗〉 ≤ 0, ∀x ∈ F(T). (1.14)

Later, Saeidi [33] introduced the following modified hybrid steepest-descent iterative
algorithm for finding a common element of the set of solutions of a system of equilibrium
problems for a family F = {Fj : C × C → R, j = 1, 2, . . . ,M} and the set of common fixed
points for a family of infinitely nonexpansive mappings S = {Si : C → C}, with respect to
W-mappings (see (2.14)). The proposed scheme was defined by

yn = WnJ
FM
rM,n · · · JF2

r2,nJ
F1
r1,nxn,

xn+1 = βxn +
(

1 − β
)

(I − λnB)yn, ∀n ∈ N,
(1.15)

where B is a relaxed (γ, r)-cocoercive, k-Lipschitzian mapping such that r > γk2. Then,
under weaker hypotheses on coefficients, he proved the strong convergence of the proposed
iterative algorithm to the unique solution of the variational inequality. Zhang et al. [34]
introduced a modified iterative algorithm by using a viscosity approximation method with a
weakly contractive mapping with respect toW-mappings (see (2.14)). They defined

xn+1 = αnΦxn + (1 − αn)WnJ
FM
rM,n . . . J

F2
r2,nJ

F1
r1,nxn, ∀n ∈ N, (1.16)

where Φ is a π-weakly contractive self-mapping on C, and {αn} is a sequence in (0, 1). They
proved that under certain appropriate conditions imposed on {αn}, the proposed iterative
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algorithm converges strongly to the common element of the set of common fixed points of
an infinite family of nonexpansive mappings and the set of a finite family of equilibrium
problems.

In this paper, motivated and inspired by the previously mentioned above results, we
consider a modified hybrid steepest-descent method by using a viscosity approximation
method with a weakly contractive mapping for finding the common element of the set
of common fixed points for an infinite family of nonexpansive mappings with weakly
contractive mappings and the set of solutions of a system of equilibrium problems. The
sequence generated from an arbitrary initial point x0 ∈ H which will converge in norm
to the unique solution of the variational inequality under some suitable conditions in a
real Hilbert space. Furthermore, we give an application to minimization problems and a
numerical example which support our main theorem in the last part.

2. Preliminaries

Let H be a real Hilbert space and C be a nonempty closed convex subset of H. We denote
weak convergence and strong convergence by notations ⇀ and → , respectively. Recall that
when the metric (nearest point) projection PC from H onto C assigns to each x ∈ H, the
unique point in PCx ∈ C satisfies the property

‖x − PCx‖ = min
y∈C

∥

∥x − y
∥

∥. (2.1)

The following characterizes the projection PC.
An important problem is how to find a solution of VI(C,B). It is known that

u ∈ VI(C,B) ⇐⇒ u = PC(u − λBu), (2.2)

where λ > 0 is an arbitrarily fixed constant, and PC is the projection of H onto C.
We recall some lemmas which will be needed in the rest of this paper.

Lemma 2.1. For a given z ∈ H, u ∈ C,

u = PCz ⇐⇒ 〈u − z, v − u〉 ≥ 0, ∀v ∈ C. (2.3)

It is well known that PC is a firmly nonexpansive mapping of H onto C and satisfies

∥

∥PCx − PCy
∥

∥

2 ≤ 〈

PCx − PCy, x − y
〉

, ∀x, y ∈ H. (2.4)

Moreover, PCx is characterized by the following properties: PCx ∈ C and for all x ∈ H,y ∈ C,

〈

x − PCx, y − PCx
〉 ≤ 0. (2.5)
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Definition 2.2. A mapping Φ : C → H with domain D(Φ) and range R(Φ) in H, Alber and
Guerre-Delabriere [35] defined a π-weakly contractive mapping by the following:

∥

∥Φx −Φy
∥

∥ ≤ ∥

∥x − y
∥

∥ − π
(∥

∥x − y
∥

∥

)

, ∀x, y ∈ D(Φ), (2.6)

for some π : [0,+∞) → [0,+∞) which is a continuous and strictly increasing function such
that π is positive on (0,+∞) and π(0) = 0. If π(t) ≡ (1 − k)t, then Φ is said to be contractive
mapping with the contractive coefficient k. If π(t) = 0, then Φ is said to be nonexpansive. If
π(t) = 0 and y = Φy, then Φwith a fixed point y is said to be qusi-nonexpansive.

Definition 2.3. A mapping B : C → H is said to be an η-strongly monotone if there exists a
constant η > 0 with the following property:

〈

Bx − By, x − y
〉 ≥ η

∥

∥x − y
∥

∥

2
, ∀x, y ∈ C. (2.7)

Definition 2.4. A mapping B : C → H is said to be relaxed (γ, r)-cocoercive if there exist two
constants γ > 0 and r > 0 which satisfies the following property:

〈

Bx − By, x − y
〉 ≥ −γ∥∥Bx − By

∥

∥

2 + r
∥

∥x − y
∥

∥

2
, ∀x, y ∈ C. (2.8)

Lemma 2.5 (see [28]). Assume that {an} is a sequence of nonnegative real numbers such that

an+1 ≤ (1 − ln)an + σn, n ≥ 0, (2.9)

where {ln} is a sequence in (0, 1), and {σn} is a sequence in R such that

(1)
∑∞

n=1 ln = ∞,

(2) lim supn→∞σn/ln ≤ 0 or
∑∞

n=1 |σn| < ∞.

Then limn→∞an = 0.

Lemma 2.6 (see [36]). Let C be a closed convex subset of a real Hilbert space H and let T : C → C
be a nonexpansive mapping. Then I − T is demiclosed at zero, that is, xn ⇀ x, xn − Txn → 0 implies
x = Tx.

Lemma 2.7 (see [37]). Let C be a closed convex subset of H. Let {xn} be a bounded sequence in H.
Assume that

(1) the weak ω-limit set ωw(xn) ⊂ C,

(2) for each z ∈ C, limn→∞‖xn − z‖ exists.

Then {xn} is weakly convergent to a point in C.
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Lemma 2.8 (see [38]). Each Hilbert space H satisfies Opial’s condition, that is, for any sequence
{xn} ⊂ H with xn ⇀ x, the inequality,

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

∥

∥xn − y
∥

∥, (2.10)

holds for each y ∈ H with y /=x.

Lemma 2.9 (see [39]). Each Hilbert space H satisfies the Kadec-Klee property, that is, for any
sequence {xn} with xn ⇀ x and together with ‖xn‖ → ‖x‖ implies ‖xn − x‖ → 0.

For solving the equilibrium problem, let us give the following assumptions for a
bifunction F of C × C into R which were imposed in [9, 40]:

(A1) F(x, x) = 0 for all x ∈ C;

(A2) F is monotone, that is, F(x, y) + F(y, x) ≤ 0 for all x, y ∈ C;

(A3) for each x, y, z ∈ C, limt↓0F(tz + (1 − t)x, y) ≤ F(x, y);

(A4) for each x ∈ C, y �→ F(x, y) is convex and lower semicontinuous.

Lemma 2.10 (see [9, 40]). Let C be a nonempty closed convex subset ofH, and let F be a bifunction
of C × C into R satisfying (A1)–(A4). If r > 0 and x ∈ H, then there exists z ∈ C such that

F
(

z, y
)

+
1
r

〈

y − z, z − x
〉 ≥ 0. (2.11)

Lemma 2.11 (see [9]). Let C be a nonempty closed convex subset of H, and let F be a bifunction of
C × C into R satisfying (A1)–(A4). For r > 0 and x ∈ H, define a mapping JFr : H → C as follows:

JFr (x) =
{

z ∈ C : F
(

z, y
)

+
1
r

〈

y − z, z − x
〉 ≥ 0, ∀y ∈ C

}

, (2.12)

for all x ∈ H. Then, the following conclusions hold that

(1) JFr is single-valued;

(2) JFr is firmly nonexpansive, that is, for any x, y ∈ H,

∥

∥

∥JFr (x) − JFr
(

y
)

∥

∥

∥

2 ≤
〈

JFr (x) − JFr
(

y
)

, x − y
〉

; (2.13)

(3) F(JFr ) = EP(F);

(4) EP(F) is closed and convex.
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A family of nonexpansive mappings has been considered by many authors (see [41–
52] and references therein). Recently, Shang et al. [47] improved the results of Kim and Xu
[53] from a single mapping to a finite family of mappings in the framework of Hilbert spaces.

Now, we consider the mapping Wn defined, as in Shimoji and Takahashi [48], by

Un,n+1 := I,

Un,n := γnSnUn,n+1 +
(

1 − γn
)

I,

Un,n−1 := γn−1Sn−1Un,n +
(

1 − γn−1
)

I,

...

Un,k := γkSkUn,k+1 +
(

1 − γk
)

I,

Un,k−1 := γk−1Sk−1Un,k +
(

1 − γk−1
)

I,

...

Un,2 := γ2S2Un,3 +
(

1 − γ2
)

I,

Wn := Un,1 = γ1S1Un,2 +
(

1 − γ1
)

I,

(2.14)

where γn, γn−1, . . . , γ1 are real numbers such that 0 ≤ γn ≤ 1 and S1, S2, . . . are an infinite family
of mappings of H into itself. Nonexpansivity of each Si ensures the nonexpansivity of Wn.

Lemma 2.12 (see [48]). Let H be a real Hilbert space H. Let S1, S2, . . . be nonexpansive mappings
fromH into itself such that

⋂∞
n=1 F(Sn)/= ∅ and {γ1, γ2, . . .} are real numbers such that 0 < γn ≤ b < 1,

for all n ≥ 1. Then, for every x ∈ H and k ∈ N, the limit limn→∞ Un,kx exists.

Using Lemma 2.12, one can define the mapping W from H into itself as follows:

lim
n→∞

Wnx = lim
n→∞

Un,1x, ∀x ∈ H. (2.15)

Such W is called theW-mapping generated by S1, S2, . . . and γ1, γ2, . . ..

Lemma 2.13 (see [48]). Let H be a real Hilbert space H. Let S1, S2, . . . be nonexpansive mappings
fromH into itself such that

⋂∞
n=1 F(Sn)/= ∅ and {γ1, γ2, . . .} are real numbers such that 0 < γn ≤ b < 1,

for all n ≥ 1. Then, F(W) =
⋂∞

n=1 F(Sn).

3. Main Results

In this section, we will introduce an iterative scheme by using a modified hybrid steepest-
descent method for finding the common element of the set of common fixed points for an
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infinite family of nonexpansive mappings with weakly contractive mappings and the set of
solutions of a system of equilibrium problems in a real Hilbert space.

Theorem 3.1. Let C be a nonempty closed convex subset of a real Hilbert spaceH, such that C ±C ⊂
C. Let S = {Si : C → C} be a family of infinitely nonexpansive mappings, and let F = {Fj :
j = 1, 2, 3, . . . ,M} be a finite family of bifunctions C × C to R satisfying (A1)–(A4). Assume that
Θ := (

⋂∞
i=1 F(Si)) ∩ (

⋂M
j=1 EP(Fj))/= ∅. Let B be a k-Lipschitzian and η-strongly monotone mapping

on C with k > 0, η > 0. Let Φ be a π-weakly contractive self-mapping on C with α ∈ [0, 1). Denote
the collection of all weakly contractiveΦ onC by C. Let 0 < μ < 2η/k2 and 0 < γ < μ(η−μk2/2) = τ .
Let the mappingWn be defined by (2.14) and {rj,n}Mj=1 be a sequence in (0,∞). If {xn} is the sequence
generated by x1 ∈ C and

wn = WnJ
FM
rM,n · · · JF2

r2,nJ
F1
r1,nxn,

xn+1 = αnγΦ(xn) +
(

I − αnμB
)

wn, ∀n ∈ N,
(3.1)

where {αn} is a sequence in (0, 1) and satisfies the following conditions:

(C1) limn→∞αn = 0 and
∑∞

n=1 αn = ∞;

(C2) limn→∞|αn+1 − αn| = 0;

(C3) limn→∞|γn+1 − γn| = 0;

(C4) lim infn→∞rj,n > 0, for all j ∈ {1, 2, . . . ,M}.

Then, the sequence {xn} converges strongly to x∗ = PΘ(I − μB + γΦ)x∗ which is the unique solution
of the variational inequality

〈(

μB − γΦ
)

x∗, x∗ − x
〉 ≤ 0, ∀x ∈ Θ, (3.2)

which is the optimality condition for the minimization problem

min
x∈F(T)

1
2
〈Bx, x〉 − h(x), (3.3)

where h is a potential function for γΦ (i.e., h′(x) = γΦ(x), for x ∈ H).

Proof. We will divide the proof of Theorem 3.1 into several steps.

Step 1. We will show that {xn} is bounded. Let p ∈ Θ. By taking �k
n = JFk

rk,nJ
Fk−1
rk−1,nJ

Fk−2
rk−2,n · · · JF2

r2,nJ
F1
r1,n

for k ∈ {1, 2, 3, . . . ,M} and �0
n = I, for all n ∈ N. Since JFk

rk,n is nonexpansive for each k =
1, 2, 3, . . . ,M, then, we have

∥

∥

∥�M
n xn − p

∥

∥

∥ =
∥

∥

∥�M
n xn − �M

n p
∥

∥

∥ ≤ ∥

∥xn − p
∥

∥. (3.4)
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From Lemmas 2.11 and 2.12, it follows that

∥

∥xn+1 − p
∥

∥ =
∥

∥αnγΦ(xn) +
(

I − αnμB
)

wn − p
∥

∥

=
∥

∥

∥αnγΦ(xn) +
(

I − αnμB
)

Wn�M
n xn − p

∥

∥

∥

=
∥

∥

∥αn

(

γΦ(xn) − μBWn�M
n

(

p
)

)

+
(

I − αnμB
)

Wn�M
n xn −

(

I − αnμB
)

Wn�M
n p

∥

∥

∥

≤ αn

∥

∥γΦ(xn) − γΦ
(

p
)∥

∥ + αn

∥

∥

∥γΦ
(

p
) − μBWn�M

n

(

p
)

∥

∥

∥

+
∥

∥

∥

(

I − αnμB
)

Wn�M
n xn −

(

I − αnμB
)

Wn�M
n p

∥

∥

∥

≤ αnγ
{∥

∥xn − p
∥

∥ − π
(∥

∥xn − p
∥

∥

)}

+ αn

∥

∥γΦ
(

p
) − μB

(

p
)∥

∥ + (1 − αnτ)
∥

∥xn − p
∥

∥

≤ (

1 − αn

(

τ − γ
))∥

∥xn − p
∥

∥ + αn

(

τ − γ
)

∥

∥γΦ
(

p
) − μB

(

p
)∥

∥

τ − γ

≤ max

{

∥

∥xn − p
∥

∥,

∥

∥γΦ
(

p
) − μB

(

p
)∥

∥

τ − γ

}

.

(3.5)

By mathematical induction, it becomes

∥

∥xn − p
∥

∥ ≤ max

{

∥

∥x1 − p
∥

∥,

∥

∥γΦ
(

p
)

+ μB
(

p
)∥

∥

τ − γ

}

, ∀n ≥ 1, (3.6)

and we obtain that {xn} is bounded. So are {Wn�M
n (xn)} and {Φ(xn)}.

Step 2. We claim that

lim
n→∞

∥

∥

∥�k
nxn − �k

n+1xn

∥

∥

∥ = 0, (3.7)

for every k ∈ {1, 2, 3, . . . ,M}. From Step 2 of the proof in [54, Theorem 3.1], we have for
k ∈ {1, 2, 3, . . . ,M},

lim
n→∞

∥

∥

∥J
Fk
rk,n+1xn − JFk

rk,nxn

∥

∥

∥ = 0. (3.8)
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Note that for every k ∈ {1, 2, 3, . . . ,M}, we obtain

�k
n = JFk

rk,nJ
Fk−1
rk−1,nJ

Fk−2
rk−2,n · · · JF2

r2,nJ
F1
r1,n = JFk

rk,n�k−1
n . (3.9)

So, we have

∥

∥

∥�k
nxn − �k

n+1xn

∥

∥

∥ =
∥

∥

∥J
Fk
rk,n�k−1

n xn − JFk
rk,n+1�k−1

n+1xn

∥

∥

∥

≤
∥

∥

∥J
Fk
rk,n�k−1

n xn − JFk
rk,n+1�k−1

n xn

∥

∥

∥ +
∥

∥

∥J
Fk
rk,n+1�k−1

n xn − JFk
rk,n+1�k−1

n+1xn

∥

∥

∥

≤
∥

∥

∥J
Fk
rk,n�k−1

n xn − JFk
rk,n+1�k−1

n xn

∥

∥

∥ +
∥

∥

∥�k−1
n xn − �k−1

n+1xn

∥

∥

∥

≤
∥

∥

∥J
Fk
rk,n�k−1

n xn − JFk
rk,n+1�k−1

n xn

∥

∥

∥ +
∥

∥

∥J
Fk−1
rk−1,n�k−2

n xn − JFk−1
rk−1,n+1�k−2

n xn

∥

∥

∥

+
∥

∥

∥�k−2
n xn − �k−2

n+1xn

∥

∥

∥

≤
∥

∥

∥J
Fk
rk,n�k−1

n xn − JFkrk,n+1�k−1
n xn

∥

∥

∥ +
∥

∥

∥J
Fk−1
rk−1,n�k−2

n xn − JFk−1
rk−1,n+1�k−2

n xn

∥

∥

∥

+ · · · +
∥

∥

∥JF2
r2,n�1

nxn − JF2
r2,n+1�1

nxn

∥

∥

∥ +
∥

∥

∥JF1
r1,nxn − JF1

r1,n+1xn

∥

∥

∥.

(3.10)

Now, apply (3.8) to (3.10), we conclude (3.7).

Step 3. We may assume that Bn = (I − αnμB). Let {wn} be a bounded sequence in C. Then, we
show that limn→∞‖Bn+1wn−Bnwn‖ = 0. Indeed, since {wn} is bounded and B is a Lipschitzian
mapping, now, from condition (C2), we have

‖Bn+1wn − Bnwn‖ =
∥

∥

(

I − αn+1μB
)

wn −
(

I − αnμB
)

wn

∥

∥

=
∥

∥αn+1μBwn − αnμBwn

∥

∥

= μ|αn+1 − αn|‖Bwn‖
≤ M1|αn+1 − αn|,

(3.11)

where M1 is an approximate constant such that M1 ≥ max{supn≥1‖Bwn‖}. Hence ‖Bn+1wn −
Bnwn‖ → 0 as n → ∞.
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Step 4. We show that limn→∞‖Wn+1wn −Wnwn‖ = 0. By the definition of Wn, it follows that

‖Wn+1wn −Wnwn‖ =
∥

∥γn+1,NSNUn+1,N−1wn +
(

1 − γn+1,N
)

Un+1,N−1wn

− γn,NSNUn,N−1wn −
(

1 − γn,N
)

Un,N−1wn

∥

∥

≤ ∥

∥γn+1,NSNUn+1,N−1wn − γn+1,NSNUn,N−1wn

∥

∥

+
∥

∥γn+1,NSNUn,N−1wn − γn,NSNUn,N−1wn

∥

∥

+
∥

∥Un+1,N−1wn − γn+1,NUn+1,N−1wn −Un,N−1wn + γn,NUn,N−1wn

∥

∥

≤ γn+1,N‖SNUn+1,N−1wn − SNUn,N−1wn‖ +
∣

∣γn+1,N − γn,N
∣

∣‖SNUn,N−1wn‖

+ ‖Un+1,N−1wn −Un,N−1wn‖ +
∥

∥γn+1,NUn+1,N−1wn − γn,NUn,N−1wn

∥

∥

≤ γn+1,N‖Un+1,N−1wn −Un,N−1wn‖ +
∣

∣γn+1,N − γn,N
∣

∣‖SNUn,N−1wn‖

+ ‖Un+1,N−1wn −Un,N−1wn‖ +
∥

∥γn+1,NUn+1,N−1wn − γn,NUn+1,N−1wn

∥

∥

+
∥

∥γn,NUn+1,N−1wn − γn,NUn,N−1wn

∥

∥

≤ γn+1,N‖Un+1,N−1wn −Un,N−1wn‖ +
∣

∣γn+1,N − γn,N
∣

∣‖SNUn,N−1wn‖

+ ‖Un+1,N−1wn −Un,N−1wn‖ +
∣

∣γn+1,N − γn,N
∣

∣‖Un+1,N−1wn‖

+ γn,N‖Un+1,N−1wn −Un,N−1wn‖

≤ ∣

∣γn+1,N + 1 + γn,N
∣

∣‖Un+1,N−1wn −Un,N−1wn‖ + 2M2
∣

∣γn+1,N − γn,N
∣

∣,

(3.12)

where M2 is an approximate constant such that M2 ≥ max{supn≥1{‖SiUn,i−1wn‖},
supn≥0{‖Un+1,i−1wn‖} | i = 1, 2, . . .}. Since 0 < γn,i ≤ 1 for all n ≥ 1 and i = 1, 2, . . . ,N, we
compute

‖Un+1,N−1wn −Un,N−1wn‖
=

∥

∥γn+1,N−1SN−1Un+1,N−2wn +
(

1 − γn+1,N−1
)

Un+1,N−2wn

− γn,N−1SN−1Un,N−2wn −
(

1 − γn,N−1
)

Un,N−2wn

∥

∥

≤ ∥

∥γn+1,N−1SN−1Un+1,N−2wn − γn,N−1SN−1Un,N−2wn

∥

∥

+
∥

∥Un+1,N−2wn − γn+1,N−1Un+1,N−2wn −Un,N−2wn + γn,N−1Un,N−2wn

∥

∥

≤ ∥

∥γn+1,N−1SN−1Un+1,N−2wn − γn+1,N−1SN−1Un,N−2wn

∥

∥

+
∥

∥γn+1,N−1SN−1Un,N−2wn − γn,N−1SN−1Un,N−2wn

∥

∥

+ ‖Un+1,N−2wn −Un,N−2wn‖ +
∥

∥γn+1,N−1Un+1,N−2wn − γn,N−1Un,N−2wn

∥

∥
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≤ γn+1,N−1‖SN−1Un+1,N−2wn − SN−1Un,N−2wn‖

+
∣

∣γn+1,N−1 − γn,N−1
∣

∣‖SN−1Un,N−2wn‖ + ‖Un+1,N−2wn −Un,N−2wn‖

+
∥

∥γn+1,N−1Un+1,N−2wn − γn+1,N−1Un,N−2wn

∥

∥

+
∥

∥γn+1,N−1Un,N−2wn − γn,N−1Un,N−2wn

∥

∥

≤ γn+1,N−1‖Un+1,N−2wn −Un,N−2wn‖

+
∣

∣γn+1,N−1 − γn,N−1
∣

∣‖SN−1Un,N−2wn‖ + ‖Un+1,N−2wn −Un,N−2wn‖

+ γn+1,N−1‖Un+1,N−2wn −Un,N−2wn‖ +
∣

∣γn+1,N−1 − γn,N−1
∣

∣‖Un,N−2wn‖

≤ ∣

∣γn+1,N−1 + 1 + γn+1,N−1
∣

∣‖Un+1,N−2wn −Un,N−2wn‖

+ 2M3
∣

∣γn+1,N−1 − γn,N−1
∣

∣,

(3.13)

where M3 is an approximate constant such that M3 ≥ max{supn≥1{‖SiUn,i−1wn‖},
supn≥0{‖Un+1,i−1wn‖} | i = 2, 3, . . .}. It follows that

‖Un+1,N−1wn −Un,N−1wn‖ ≤ 2M3
∣

∣γn+1,N−1 − γn,N−1
∣

∣ + 2M3
∣

∣γn+1,N−2 − γn,N−2
∣

∣

+ ‖Un+1,N−3wn −Un,N−3wn‖

≤ 2M3

N−1
∑

i=2

∣

∣γn+1,i − γn,i
∣

∣ + ‖Un+1,1wn −Un,1wn‖

= 2M3

N−1
∑

i=2

∣

∣γn+1,i − γn,i
∣

∣

+
∥

∥γn+1,1S1wn +
(

1 − γn+1,1
)

wn − γn,1S1wn −
(

1 − γn,1
)

wn

∥

∥

≤ 2M3

N−1
∑

i=1

∣

∣γn+1,i − γn,i
∣

∣.

(3.14)

Substituting (3.14) into (3.12), it yields that

‖Wn+1wn −Wnwn‖ ≤ 2M2
∣

∣γn+1,N − γn,N
∣

∣ + 2γn+1,NM3

N−1
∑

i=1

∣

∣γn+1,i − γn,i
∣

∣

≤ 2M
N
∑

i=1

∣

∣γn+1,i − γn,i
∣

∣,

(3.15)

where M is an approximate constant such that M ≥ max{M2,M3}. By condition (C3), we
obtain that ‖Wn+1wn −Wnwn‖ → 0 as n → ∞.
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Step 5. We will show that

lim
n→∞

‖xn+1 − xn‖ = 0. (3.16)

We observe that

‖xn+1 − xn‖ =
∥

∥αnγΦ(xn) +
(

I − αnμB
)

wn − αn−1γΦ(xn−1) −
(

I − αn−1μB
)

wn−1
∥

∥

≤ ∥

∥αnγ(Φ(xn) −Φ(xn−1)) +
(

I − αnμB
)

wn −
(

I − αnμB
)

wn−1
∥

∥

+
∥

∥γ(αn − αn−1)Φ(xn−1) + μ(αn − αn−1)Bwn−1
∥

∥

≤ αnγ{‖xn − xn−1‖ − π(‖xn − xn+1‖)} + (1 − αnτ)‖wn −wn−1‖ + 2M4|αn − αn−1|

≤ αnγ‖xn − xn−1‖ + (1 − αnτ)‖wn −wn−1‖ + 2M4|αn − αn−1|,
(3.17)

where M4 is an approximate constant such that M4 ≥ max{supn≥2{‖Φ(xn−1)‖},
supn≥2{‖Bwn−1‖}}. We compute

‖wn −wn−1‖ =
∥

∥

∥Wn�M
n xn −Wn−1�M

n−1xn−1
∥

∥

∥

≤
∥

∥

∥Wn�M
n xn −Wn�M

n xn−1
∥

∥

∥ +
∥

∥

∥Wn�M
n xn−1 −Wn�M

n−1xn−1
∥

∥

∥

+
∥

∥

∥Wn�M
n−1xn−1 −Wn−1�M

n−1xn−1
∥

∥

∥

≤ ‖xn − xn−1‖ +
∥

∥

∥�M
n xn−1 − �M

n−1xn−1
∥

∥

∥

+
∥

∥

∥Wn�M
n−1xn−1 −Wn−1�M

n−1xn−1
∥

∥

∥.

(3.18)

By Step 2 and Step 4, we have immediately concluded from (3.17) that

‖xn+1 − xn‖ ≤ αnγ‖xn − xn−1‖ + (1 − αnτ)‖wn −wn−1‖ + 2M4|αn − αn−1|
≤ αnγ‖xn − xn−1‖ + (1 − αnτ)‖xn − xn−1‖ + 2M4|αn − αn−1|
≤ (

1 − αn

(

τ − γ
))‖xn − xn−1‖ + 2M4|αn − αn−1|.

(3.19)

By Lemma 2.5, we have limn→∞‖xn+1 − xn‖ = 0.

Step 6. We will show that

lim
n→∞

∥

∥

∥�k
nxn − �k+1

n xn

∥

∥

∥ = 0, ∀k = 1, 2, . . . ,M − 1. (3.20)
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For any p ∈ Θ and for all k = 1, 2, . . . ,M − 1, note that JFk+1
rk+1,n is firmly nonexpansive. Then by

Lemma 2.11, we get

∥

∥

∥�k+1
n xn − p

∥

∥

∥

2
=

∥

∥

∥J
Fk+1
rk+1,n�k

nxn − JFk+1
rk+1,np

∥

∥

∥

2

≤
〈

JFk+1
rk+1,n�k

nxn − JFk+1
rk+1,np,�k

nxn − p
〉

=
〈

�k+1
n xn − p,�k

nxn − p
〉

=
1
2

(

∥

∥

∥�k+1
n xn − p

∥

∥

∥

2
+
∥

∥

∥�k
nxn − p

∥

∥

∥

2 −
∥

∥

∥�k+1
n xn − �k

nxn

∥

∥

∥

2
)

,

(3.21)

and, hence,

∥

∥

∥�k+1
n xn − p

∥

∥

∥

2 ≤
∥

∥

∥�k
nxn − p

∥

∥

∥

2 −
∥

∥

∥�k+1
n xn − �k

nxn

∥

∥

∥

2

≤ ∥

∥xn − p
∥

∥

2 −
∥

∥

∥�k+1
n xn − �k

nxn

∥

∥

∥

2
.

(3.22)

By (3.22), we compute

∥

∥xn+1 − p
∥

∥

2 =
∥

∥αnγΦ(xn) +
(

I − αnμB
)

wn − p
∥

∥

2

=
∥

∥

∥αnγΦ(xn) +
(

I − αnμB
)

Wn�M
n xn − p

∥

∥

∥

2

=
∥

∥

∥αn

(

γΦ(xn) − μBp
)

+
(

I − αnμB
)

Wn�M
n xn −

(

I − αnμB
)

p
∥

∥

∥

2

= α2
n

∥

∥γΦ(xn) − μBp
∥

∥

2 +
∥

∥

∥

(

I − αnμB
)

Wn�M
n xn −

(

I − αnμB
)

Wn�M
n p

∥

∥

∥

2

+ 2αn

〈

γΦ(xn) − μBp,
(

I − αnμB
)

Wn�M
n xn −

(

I − αnμB
)

Wn�M
n p

〉

≤ α2
n

∥

∥γΦ(xn) − μBp
∥

∥

2 + (1 − αnτ)2
∥

∥

∥�M
n xn − �M

n p
∥

∥

∥

2

+ 2αn

〈

γΦ(xn) − μBp,Wn�M
n xn −Wn�M

n p
〉

+ 2α2
nμ

〈

γΦ(xn) − μBp, BWn�M
n xn − BWn�M

n p
〉

≤ α2
n

∥

∥γΦ(xn) − μBp
∥

∥

2 + (1 − αnτ)2
∥

∥

∥�M
n xn − p

∥

∥

∥

2

+ 2αn

〈

γΦ(xn) − γΦ
(

p
)

,Wn�M
n xn −Wn�M

n p
〉

+ 2αn

〈

γΦ
(

p
) − μB

(

p
)

,Wn�M
n xn −Wn�M

n p
〉

+ 2α2
nμ

∥

∥γΦ(xn) − μBp
∥

∥

∥

∥

∥BWn�M
n xn − BWn�M

n p
∥

∥

∥
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≤ α2
n

∥

∥γΦ(xn) − μBp
∥

∥

2 + (1 − αnτ)2
∥

∥

∥�M
n xn − p

∥

∥

∥

2

+ 2αnγ
{∥

∥xn − p
∥

∥ − π
(∥

∥xn − p
∥

∥

)}∥

∥xn − p
∥

∥

+ 2αn

〈

γΦ
(

p
) − μB

(

p
)

,Wn�M
n xn −Wn�M

n p
〉

+ 2α2
nμ

∥

∥γΦ(xn) − μBp
∥

∥

∥

∥

∥BWn�M
n xn − BWn�M

n p
∥

∥

∥

≤ α2
n

∥

∥γΦ(xn) − μBp
∥

∥

2 +
(

1 − 2αnτ + α2
nτ

2 + 2αnγ
)∥

∥

∥�M
n xn − p

∥

∥

∥

2

+ 2αn

〈

γΦ
(

p
) − μB

(

p
)

,Wn�M
n xn −Wn�M

n p
〉

+ 2α2
nμ

∥

∥γΦ(xn) − μBp
∥

∥

∥

∥

∥BWn�M
n xn − BWn�M

n p
∥

∥

∥

≤ (

1 − 2αn

(

τ − γ
))

∥

∥

∥�k+1
n xn − p

∥

∥

∥

2

+ αn

(

αnτ
2
∥

∥

∥�M
n xn − p

∥

∥

∥

2
+ αn

∥

∥γΦ(xn) − μBp
∥

∥

2

+ 2
〈

γΦ
(

p
) − μB

(

p
)

,Wn�M
n xn −Wn�M

n p
〉

+ 2αnμ
∥

∥γΦ(xn) − μBp
∥

∥

∥

∥

∥BWn�M
n xn − BWn�M

n p
∥

∥

∥

)

≤ (

1 − 2αn

(

τ − γ
))

(

∥

∥xn − p
∥

∥

2 −
∥

∥

∥�k
nxn − �k+1

n xn

∥

∥

∥

2
)

+ αn

(

αnτ
2∥
∥xn − p

∥

∥

2 + αn

∥

∥γΦ(xn) − μBp
∥

∥

2

+ 2
〈

γΦ
(

p
) − μB

(

p
)

,Wn�M
n xn −Wn�M

n p
〉

+ 2αnμ
∥

∥γΦ(xn) − μBp
∥

∥

∥

∥

∥BWn�M
n xn − BWn�M

n p
∥

∥

∥

)

.

(3.23)

So, we obtain

(

1 − 2αn

(

τ − γ
))

∥

∥

∥�k
nxn − �k+1

n xn

∥

∥

∥

2 ≤ (

1 − 2αn

(

τ − γ
))∥

∥xn − p
∥

∥

2 − ∥

∥xn+1 − p
∥

∥

2

+ αn

(

αnτ
2∥
∥xn − p

∥

∥

2 + αn

∥

∥γΦ(xn) − μBp
∥

∥

2

+ 2
〈

γΦ
(

p
) − μB

(

p
)

,Wn�M
n xn −Wn�M

n p
〉

+ 2αnμ
∥

∥γΦ(xn)−μBp
∥

∥

∥

∥

∥BWn�M
n xn−BWn�M

n p
∥

∥

∥

)
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≤ ‖xn − xn+1‖
(∥

∥xn − p
∥

∥ +
∥

∥xn+1 − p
∥

∥

)

+ αn

(

αnτ
2∥
∥xn − p

∥

∥

2 + αn

∥

∥γΦ(xn) − μBp
∥

∥

2

+2
〈

γΦ
(

p
) − μB

(

p
)

,Wn�M
n xn −Wn�M

n p
〉

+ 2αnμ
∥

∥γΦ(xn)−μBp
∥

∥

∥

∥

∥BWn�M
n xn−BWn�M

n p
∥

∥

∥

)

.

(3.24)

Using condition (C1) and (3.16), we obtain

lim
n→∞

∥

∥

∥�k
nxn − �k+1

n xn

∥

∥

∥ = 0, ∀k = 1, 2, . . . ,M − 1. (3.25)

Step 7. Next, we show that

lim
n→∞

∥

∥

∥xn −Wn�M
n xn

∥

∥

∥ = 0. (3.26)

Since

∥

∥

∥xn −Wn�M
n xn

∥

∥

∥ ≤ ‖xn − xn+1‖ +
∥

∥

∥xn+1 −Wn�M
n xn

∥

∥

∥

= ‖xn − xn+1‖ + αn

∥

∥

∥γf(xn) − μBWn�M
n xn

∥

∥

∥

≤ ‖xn − xn+1‖ + αn

∥

∥γf(xn) − μBxn

∥

∥,

(3.27)

by condition (C1) and (3.16), we get ‖xn −Wn�M
n xn‖ → 0 as n → ∞.

Step 8. We show that z ∈ Θ. The weak w-limit set of {xn}, ww(xn) is a subset of Θ. Let z ∈
ww(xn), and let {xnm} be a subsequence of {xn} which converges weakly to z. By Step 6,
without loss of generality, we may assume that

�k
nm
xnm ⇀ z, ∀k ∈ {1, 2, . . . ,M − 1}. (3.28)

We need to show that z ∈ Θ. At first, note that by (A2) and given y ∈ C and k ∈ {1, 2, . . . ,M−
1}, we have

1
rk+1,n

〈

y − �k+1
n xn,�k+1

n xn − �k
nxn

〉

≥ Fk+1

(

y,�k+1
n xn

)

. (3.29)

Thus,

〈

y − �k+1
nm

xnm,
�k+1

nm
xnm − �k

nm
xnm

rk+1,nm

〉

≥ Fk+1

(

y,�k+1
nm

xnm

)

. (3.30)
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By (A4), F(y, ·) is a lower semicontinuous and convex, thus, weakly semicontinuous. By
condition (C3) and (3.20), imply that

�k+1
nm

xnm − �k
nm
xnm

rk+1,nm

−→ 0, (3.31)

in norm. Therefore, letting m → ∞ in (3.30) yields

Fk+1
(

y, z
) ≤ lim

m→∞
Fk+1

(

y,�k+1
nm

xnm

)

≤ 0, (3.32)

for all y ∈ H and k ∈ {1, 2, . . . ,M − 1}. Replacing y with yt = ty + (1 − t)z with t ∈ (0, 1) and
using (A1) and (A4), we obtain

0 = Fk+1
(

yt, yt

) ≤ tFk+1
(

yt, y
)

+ (1 − t)Fk+1
(

yt, z
) ≤ tFk+1

(

yt, y
)

. (3.33)

Hence, Fk+1(ty + (1 − t)z, y) ≥ 0, for all t ∈ (0, 1) and y ∈ H. Letting t → 0+ and using (A3),
we conclude Fk+1(z, y) ≥ 0, for all y ∈ H and k ∈ {1, 2, . . . ,M}. Therefore,

z ∈
M
⋂

j=1

EP
(

Fj

)

= EP(F). (3.34)

Next, we show that z ∈ ⋂∞
i=1 EP(Si). By Lemma 2.12, we have for all z ∈ C,

Wnmz −→ Wz, (3.35)

and F(W) =
⋂∞

i=1 F(Si). Assume that z /∈ F(W), then z/=Wz. Therefore, from Opial’s
property of Hilbert space, (3.26), (3.34), and (3.35), we have

lim inf
m→∞

‖xnm − z‖ < lim inf
m→∞

‖xnm −Wz‖

≤ lim inf
m→∞

{∥

∥

∥xnm −Wnm�M
nm
xnm

∥

∥

∥ +
∥

∥

∥Wnm�M
nm
xnm −Wnmz

∥

∥

∥ + ‖Wnmz −Wz‖
}

≤ lim inf
m→∞

{‖xnm − z‖ + ‖Wnmz −Wz‖}

≤ lim inf
m→∞

‖xnm − z‖.
(3.36)

This is a contradiction. Therefore, z must belong to F(W) =
⋂∞

i=1 F(Si).

Step 9. We show that lim supn→∞〈(μB − γΦ)x∗, x∗ − xn〉 ≤ 0, where x∗ = PΘ(I − μB + γΦ)x∗.
By Banach’s contraction mapping principle, it guarantees that PΘ(I − μB + γΦ) has a unique
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fixed point x∗ which is the unique solution of (3.2). Let {xnk} be a subsequence of {xn} such
that

lim
k→∞

〈(

μB − γΦ
)

x∗, x∗ − xnk

〉

= lim sup
n→∞

〈(

μB − γΦ
)

x∗, x∗ − xn

〉

. (3.37)

Without loss of generality, we can assume that {xnk} converges weakly to some z ∈ C. It
follows that from Lemma 2.6 and limn→∞‖xn+1 − xn‖ = 0 that z ∈ Θ. Hence by (3.2), we
obtain

lim sup
n→∞

〈(

μB − γΦ
)

x∗, x∗ − xn

〉

=
〈(

μB − γΦ
)

x∗, x∗ − z
〉 ≤ 0. (3.38)

Step 10. Finally, we show that xn → x∗. As a matter of fact, we have

‖xn+1 − x∗‖2 = ∥

∥αnγΦ(xn) +
(

I − αnμB
)

wn − x∗∥
∥

2

=
∥

∥

∥αnγΦ(xn) +
(

I − αnμB
)

Wn�M
n xn − x∗

∥

∥

∥

2

=
∥

∥

∥αn

(

γΦ(xn) − μBx∗) +
(

I − αnμB
)

Wn�M
n xn −

(

I − αnμB
)

x∗
∥

∥

∥

2

= α2
n

∥

∥γΦ(xn) − μBx∗∥
∥

2 +
∥

∥

∥

(

I − αnμB
)

Wn�M
n xn −

(

I − αnμB
)

Wn�M
n x∗

∥

∥

∥

2

+ 2αn

〈

γΦ(xn) − μBx∗,
(

I − αnμB
)

Wn�M
n xn −

(

I − αnμB
)

Wn�M
n x∗

〉

≤ α2
n

∥

∥γΦ(xn) − μBx∗∥
∥

2 + (1 − αnτ)2‖xn − x∗‖2

+ 2αn

〈

γΦ(xn) − μBx∗,Wn�M
n xn −Wn�M

n x∗
〉

− 2α2
nμ

〈

γΦ(xn) − μBx∗, BWn�M
n xn − BWn�M

n x∗
〉

≤ α2
n

∥

∥γΦ(xn) − μBx∗∥
∥

2 + (1 − αnτ)2‖xn − x∗‖2

+ 2αn

〈

γΦ(xn) − γΦ(x∗),Wn�M
n xn −Wn�M

n x∗
〉

+ 2αn

〈

γΦ(x∗) − μB(x∗),Wn�M
n xn −Wn�M

n x∗
〉

− 2α2
nμ

∥

∥γΦ(xn) − μBx∗∥
∥

∥

∥

∥BWn�M
n xn − BWn�M

n x∗
∥

∥

∥

≤ α2
n

∥

∥γΦ(xn) − μBx∗∥
∥

2 + (1 − αnτ)2‖xn − x∗‖2
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+ 2αnγ{‖xn − x∗‖ − π(‖xn − x∗‖)}‖xn − x∗‖

+ 2αn

〈

γΦ(x∗) − μB(x∗),Wn�M
n xn −Wn�M

n x∗
〉

+ 2α2
nμ

∥

∥γΦ(xn) − μBx∗∥
∥

∥

∥

∥BWn�M
n xn − BWn�M

n x∗
∥

∥

∥

≤ α2
n

∥

∥γΦ(xn) − μBx∗∥
∥

2 +
(

1 − 2αnτ + α2
nτ

2 + 2αnγ
)

‖xn − x∗‖2

+ 2αn

〈

γΦ(x∗) − μB(x∗),Wn�M
n xn −Wn�M

n x∗
〉

+ 2α2
nμ

∥

∥γΦ(xn) − μBx∗∥
∥

∥

∥

∥BWn�M
n xn − BWn�M

n x∗
∥

∥

∥

≤ (

1 − 2αn

(

τ − γ
))‖xn − x∗‖2

+ αn

(

αnτ
2‖xn − x∗‖2 + αn

∥

∥γΦ(xn) − μBx∗∥
∥

2

+ 2
〈

γΦ(x∗) − μB(x∗),Wn�M
n xn −Wn�M

n x∗
〉

+ 2αnμ
∥

∥γΦ(xn) − μBx∗∥
∥

∥

∥

∥BWn�M
n xn − BWn�M

n x∗
∥

∥

∥

)

,

(3.39)

where

ln = 2αn

(

τ − γ
)

,

δn =
1

2
(

τ − γ
)

(

αnτ
2‖xn − x∗‖2 + αn

∥

∥γΦ(xn) − μBx∗∥
∥

2

+ 2
〈

γΦ(x∗) − μB(x∗),Wn�M
n xn −Wn�M

n x∗
〉

+ 2αnμ
∥

∥γΦ(xn) − μBx∗∥
∥

∥

∥

∥BWn�M
n xn − BWn�M

n x∗
∥

∥

∥

)

.

(3.40)

It is easily to see that limn→∞ln = 0,
∑∞

n=1 ln = ∞ and lim supn→∞δn ≤ 0. By Lemma 2.5, we
conclude that xn → x∗; this completes the proof.

Corollary 3.2. Let C be a nonempty closed convex subset of a real Hilbert space H such that
C ± C ⊂ C. Let S = {Si : C → C} a family of infinitely nonexpansive mappings, and let
F = {Fj : j = 1, 2, 3, . . . ,M} be a finite family of bifunctions C × C to R satisfying (A1)–(A4).
Assume that Θ := (

⋂∞
i=1 F(Si)) ∩ (

⋂M
j=1 EP(Fj))/= ∅. Let B be a k-Lipschitzian and η-strongly

monotone mapping on C with k > 0, η > 0. Let Φ be a π-weakly contractive self-mapping
on C with α ∈ [0, 1). Denote by C the collection of all weakly contractive mapping Φ on C.
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Let 0 < μ < 2η/k2 and 0 < γ < μ(η − μk2/2) = τ . Let the mapping Wn be defined by (2.14)
and {rj,n}Mj=1 be a sequence in (0,∞). If {xn} is the sequence generated by x1 ∈ C and

wn = WnJ
FM
rM,n · · · JF2

r2,nJ
F1
r1,nxn,

xn+1 = αnΦ(xn) +
(

I − αnμB
)

wn, ∀n ∈ N,
(3.41)

where {αn} is a sequence in (0, 1)which satisfies the following conditions (C1)–(C4), then the sequence
{xn} converges strongly to x∗ = PΘ(I − μB + Φ)(x∗) which is the unique solution of the variational
inequality

〈(

μB −Φ
)

x∗, x∗ − x
〉 ≤ 0, ∀x ∈ Θ, (3.42)

which is the optimality condition for the minimization problem

min
x∈F(T)

1
2
〈Bx, x〉 − h(x), (3.43)

where h is a potential function for γΦ (i.e., h′(x) = γΦ(x), for x ∈ H).

Proof. Taking γ ≡ 1, in Theorem 3.1, it is easy to obtain the desired conclusion.

Corollary 3.3. Let C be a nonempty closed convex subset of a real Hilbert space H such that C ±
C ⊂ C. Let S = {Si : C → C} a family of infinitely nonexpansive mappings, and let F = {Fj :
j = 1, 2, 3, . . . ,M} be a finite family of bifunctions C × C to R satisfying (A1)–(A4). Assume that
Θ := (

⋂∞
i=1 F(Si)) ∩ (

⋂M
j=1 EP(Fj))/= ∅. Let B be a k-Lipschitzian and η-strongly monotone mapping

on C, and let f be a contraction self-mapping on C with α ∈ [0, 1). Denote by C the collection of all
contraction f on C. Let 0 < μ < 2η/k2 and 0 < γ < μ(η − μk2/2)/α = τ/α. Let the mapping Wn

be defined by (2.14) and {rj,n}Mj=1 be a sequence in (0,∞). If {xn} is the sequence generated by x1 ∈ C
and

wn = WnJ
FM
rM,n · · · JF2

r2,nJ
F1
r1,nxn,

xn+1 = αnγf(xn) +
(

I − αnμB
)

wn, ∀n ∈ N,
(3.44)

where {αn} is a sequence in (0, 1)which satisfies the following conditions (C1)–(C4), then the sequence
{xn} converges strongly to x∗ = PΘ(I − μB + γf)(x∗), which is the unique solution of the variational
inequality

〈(

μB − γf
)

x∗, x∗ − x
〉 ≤ 0, ∀x ∈ Θ, (3.45)

which is the optimality condition for the minimization problem

min
x∈F(T)

1
2
〈Bx, x〉 − h(x), (3.46)

where h is a potential function for γf (i.e., h′(x) = γf(x), for x ∈ H).
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Proof. Taking Φ ≡ f in Theorem 3.1, it is easy to obtain the desired conclusion.

Corollary 3.4. Let C be a nonempty closed convex subset of a real Hilbert spaceH such that C ±C ⊂
C, and let F = {Fj : j = 1, 2, 3, . . . ,M} be a finite family of bifunctions C × C to R satisfying (A1)–
(A4). Assume thatΘ :=

⋂M
j=1 EP(Fj)/= ∅. Let B be a k-Lipschitzian and η-strongly monotone mapping

on C with k > 0, η > 0. LetΦ be a π-weakly contractive self-mapping on C with α ∈ [0, 1). Denote by
C the collection of all weakly contractivemapping on C, and let f ∈ C with α = 1. Let 0 < μ < 2η/k2

and 0 < γ < μ(η−μk2/2) = τ . Let {rj,n}Mj=1 be a sequence in (0,∞). If {xn} is the sequence generated
by x1 ∈ C and

wn = JFM
rM,n · · · JF2

r2,nJ
F1
r1,nxn,

xn+1 = αnγΦ(xn) +
(

I − αnμB
)

wn, ∀n ∈ N,

(3.47)

where {αn} is a sequence in (0, 1) which satisfies the following conditions (C1), (C2), and (C4) in
Theorem 3.1, then the sequence {xn} converges strongly to x∗ = PΘ(I − μB + γΦ)(x∗), which is the
unique solution of the variational inequality

〈(

μB − γΦ
)

x∗, x∗ − x
〉 ≤ 0, ∀x ∈ Θ, (3.48)

which is the optimality condition for the minimization problem

min
x∈F(T)

1
2
〈Bx, x〉 − h(x), (3.49)

where h is a potential function for γΦ (i.e., h′(x) = γΦ(x), for x ∈ H).

Proof. Taking Wn ≡ 0 in Theorem 3.1, it is easy to obtain the desired conclusion.

Corollary 3.5. Let C be a nonempty closed convex subset of a real Hilbert spaceH such that C ±C ⊂
C, and let S = {Si : C → C} a family of infinitely nonexpansive mappings. Assume that Θ :=
⋂∞

i=1 F(Si)/= ∅. Let B be a k-Lipschitzian and η-strongly monotone mapping on C with k > 0, η > 0.
Let Φ be a π-weakly contractive self-mapping on C with α ∈ [0, 1). Denote by C the collection of all
weakly contractive mapping Φ on C. Let 0 < μ < 2η/k2 and 0 < γ < μ(η − μk2/2) = τ . Let the
mapping Wn be defined by (2.14). If {xn} is the sequence generated by x1 ∈ C and

wn = Wnxn,

xn+1 = αnγΦ(xn) +
(

I − αnμB
)

wn, ∀n ∈ N,
(3.50)

where {αn} is a sequence in (0, 1)which satisfies the following conditions (C1)–(C3), then the sequence
{xn} converges strongly to x∗ = PΘ(I −μB + γΦ)(x∗), which is the unique solution of the variational
inequality

〈(

μB − γΦ
)

x∗, x∗ − x
〉 ≤ 0, ∀x ∈ Θ, (3.51)
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which is the optimality condition for the minimization problem

min
x∈F(T)

1
2
〈Bx, x〉 − h(x), (3.52)

where h is a potential function for γΦ (i.e., h′(x) = γΦ(x), for x ∈ H).

Proof. Taking Fj ≡ 0, for each j = 1, 2, . . . ,M in Theorem 3.1, it is easy to obtain the desired
conclusion.

Corollary 3.6. Let C be a nonempty closed convex subset of a real Hilbert spaceH such that C ±C ⊂
C, and let S : C → C be a nonexpansive mapping with Θ := F(S)/= ∅. Let B be a k-Lipschitzian and
η-strongly monotone mapping on C with k > 0, η > 0. Let Φ be a π-weakly contractive self-mapping
on C with α ∈ [0, 1). Denote by C the collection of all weakly contractive Φ on C. Let 0 < μ < 2η/k2

and 0 < γ < μ(η − μk2/2) = τ . If {xn} is the sequence generated by x1 ∈ C and

xn+1 = αnγΦ(xn) +
(

I − αnμB
)

Sxn, ∀n ∈ N, (3.53)

where {αn} is a sequence in (0, 1)which satisfies the following conditions (C1)–(C3), then the sequence
{xn} converges strongly to x∗ = PΘ(I −μB + γΦ)(x∗), which is the unique solution of the variational
inequality

〈(

μB − γΦ
)

x∗, x∗ − x
〉 ≤ 0, ∀x ∈ Θ, (3.54)

which is the optimality condition for the minimization problem

min
x∈F(T)

1
2
〈Bx, x〉 − h(x), (3.55)

where h is a potential function for γΦ (i.e., h′(x) = γΦ(x), for x ∈ H).

Proof. Taking Fj ≡ 0, for each j = 1, 2, . . . ,M and replacing Wn by nonexpansive mapping S
in Theorem 3.1, it is easy to obtain the desired conclusion.

4. An Example and Numerical Result

In this section, we give a real simple numerical example of Theorem 3.1 as follows.
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Example 4.1. For simplicity, letH = R, C = [0, 1], Sn = I. Fk(x, y) = 0, for all x, y ∈ H, rj,n =
1, j ∈ 1, 2, 3, . . . ,M, B = I, f(x) = x2/(1 + x), αn = 1/n for every n ∈ N and μ = 1. Then
{xn} is the sequence generated by

xn+1 =
x2
n

2n(1 + xn)
+
(

1 − 1
2n

)

xn, (4.1)

and z → 0 as n → ∞, where 0 is the unique solution of the minimization problem

min
x∈C

x2 − x + ln|x + 1| +K, (4.2)

where K is a constant.

Proof. We divide the proof into 4 steps.

Step 1. Using the idea in [55], we can show that

J
Fj

rj,nx = PCx, ∀x ∈ H, j ∈ {1, 2, . . . ,M}, (4.3)

where

PCx =

⎧

⎨

⎩

x

|x| , x ∈ H − C

x, x ∈ C.
(4.4)

Since Fj(x, y) = 0, for all x, y ∈ C, j ∈ {1, 2, . . . ,M}, with the definition of Jr(x), for all x ∈ H
in Lemma 2.13, we have

JFr (x) =
{

z ∈ C : F
(

z, y
)

+
1
r

〈

y − z, z − x
〉 ≥ 0, ∀y ∈ C

}

. (4.5)

By the equivalent property of the nearest projection PC from H to C, we can conclude that if
we take x ∈ C, J

Fj

rj,nx = PCx = Ix. By (3) in Lemma 2.11, we have

M
⋂

j=1

EP
(

Fj

)

= C. (4.6)

Step 2. We show that

Wn = I. (4.7)
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Sn is nonexpansive mapping. By (2.14)we have

W1 = U1,1 = γ1S1U1,2 +
(

1 − γ1
)

I,

W2 = U2,1 = γ1S1U2,2 +
(

1 − γ1
)

I = γ1S1
(

γ2S2U2,3 +
(

1 − γ2
)

I
)

+
(

1 − γ1
)

I

= γ1γ2S1S2 + γ1
(

1 − γ2
)

S1 +
(

1 − γ1
)

I,

W3 = U3,1 = γ1S1U3,2 +
(

1 − γ1
)

I = γ1S1
(

γ2S2U3,3 +
(

1 − γ2
)

I
)

+
(

1 − γ1
)

I

= γ1γ2S1S2U3,3 + γ1
(

1 − γ2
)

S1 +
(

1 − γ1
)

I

= γ1γ2S1S2
(

γ3S3U3,4 +
(

1 − γ3
)

I
)

+ γ1
(

1 − γ2
)

S1 +
(

1 − γ1
)

I

= γ1γ2γ3S1S2S3 + γ1γ2
(

1 − γ3
)

S1S2 + γ1
(

1 − γ2
)

S1 +
(

1 − γ1
)

I,

(4.8)

and we compute (2.14) in the same way as above, so we obtain

Wn = Un,1 = γ1γ2 · · · γnS1S2n + γ1γ2 · · · γn−1
(

1 − γn
)

S1S2n−1

+ γ1γ2 · · · γn−2
(

1 − γn−1
)

S1S2n−2 + · · · + γ1
(

1 − γ2
)

S1 +
(

1 − γ1
)

I.
(4.9)

Since Sn = I, γn = β, n ∈ N, hence,

Wn =
[

βn + βn−1
(

1 − β
)

+ · · · + β
(

1 − β
)

+
(

1 − β
)

]

I = I. (4.10)

Step 3. We prove

xn+1 =
x2
n

n(1 + xn)
+
(

1 − 1
n

)

xn, xn −→ 0 as n −→ ∞, (4.11)

where 0 is the unique solution of the minimization problem

min
x∈C

x2 − x + ln|x + 1| +K. (4.12)

Since we let B = I, γ be a real number, we choose γ = 1. From (4.3), (4.4), and (4.7), we can
obtain a special sequence {xn} of Theorem 3.1 as follows:

xn+1 =
x2
n

n(1 + xn)
+
(

1 − 1
n

)

xn. (4.13)

Since Sn = I, n ∈ N, we have

⋂

n∈N

F(Sn) = H. (4.14)
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Table 1: The sequence values on each different iteration steps.

Iteration step (n) x(1) = 0.15 Iteration step (n) x(1) = 0.15
0 0.1500 7 0.0029
1 0.0196 8 0.0025
2 0.0100 9 0.0022

3 0.0067
...

...
4 0.0050 403 0.0001
5 0.0040 404 0.0001
6 0.0034 405 0.0000

0
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Figure 1: The initial value x(1) = 0.15 and iteration steps n = 500.

Combining with (4.6), we obtain

Θ :=

⎛

⎝

M
⋂

j=1

EP
(

Fj

)

⎞

⎠ ∩
( ∞

⋂

i=1

F(Si)

)

= C = [0, 1]. (4.15)

It is obvious that {xn} → 0, and 0 is the unique solution of the minimization problem

min
x∈C

x2 − x + ln|x + 1| +K, (4.16)

where K is a constant number.

5. Numerical Result

In this step, we give the numerical results (see Table 1) that support our main theorem as
shown by the plotting graph using MATLAB 7.11.0. We choose the initial values as x = 0.15
in Figure 1. From the example, we can see that {xn} converges to 0.
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[3] A. Auslender, Optimization-Méthodes Numériques, Masson, France, Paris, 1976.
[4] Y. Censor and S. Reich, “Iterations of paracontractions and firmly nonexpansive operators with

applications to feasibility and optimization,” Optimization, vol. 37, no. 4, pp. 323–339, 1996.
[5] Y. Censor, “Parallel application of block-iterative methods in medical imaging and radiation therapy,”

Mathematical Programming, vol. 42, no. 2, pp. 307–325, 1988.
[6] P. L. Combettes, “Hard-constrained inconsistent signal feasibility problems,” IEEE Transactions on

Signal Processing, vol. 47, no. 9, pp. 2460–2468, 1999.
[7] E. Blum andW. Oettli, “From optimization and variational inequalities to equilibrium problems,” The

Mathematics Student, vol. 63, no. 1–4, pp. 123–145, 1994.
[8] P. L. Combettes, “The convex feasibility problem in image recovery,” in Advances in Imaging and

Electron Physics, P. Hawkes, Ed., vol. 95, pp. 155–270, Academic Press, New York, NY, USA, 1996.
[9] P. L. Combettes and S. A. Hirstoaga, “Equilibrium programming in Hilbert spaces,” Journal of

Nonlinear and Convex Analysis, vol. 6, no. 1, pp. 117–136, 2005.
[10] O. Chadli, S. Schaible, and J. C. Yao, “Regularized equilibrium problems with application to

noncoercive hemivariational inequalities,” Journal of Optimization Theory and Applications, vol. 121,
no. 3, pp. 571–596, 2004.

[11] O. Chadli, N. C. Wong, and J. C. Yao, “Equilibrium problems with applications to eigenvalue
problems,” Journal of Optimization Theory and Applications, vol. 117, no. 2, pp. 245–266, 2003.

[12] I. V. Konnov, S. Schaible, and J. C. Yao, “Combined relaxation method for mixed equilibrium
problems,” Journal of Optimization Theory and Applications, vol. 126, no. 2, pp. 309–322, 2005.
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