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By introducing the concept of L-limited sets and then L-limited Banach spaces, we obtain some
characterizations of it with respect to some well-known geometric properties of Banach spaces,
such as Grothendieck property, Gelfand-Phillips property, and reciprocal Dunford-Pettis property.
Some complementability of operators on such Banach spaces are also investigated.

1. Introduction and Preliminaries

A subset A of a Banach space X is called limited (resp., Dunford-Pettis (DP)), if every weak∗

null (resp., weak null) sequence (x∗
n) in X

∗ converges uniformly on A, that is,

lim
n→∞

sup
a∈A

|〈a, x∗
n〉| = 0. (1.1)

Also if A ⊆ X∗ and every weak null sequence (xn) in X converges uniformly on A, we say
that A is an L-set.

We know that every relatively compact subset ofX is limited and clearly every limited
set is DP and every DP subset of a dual Banach space is an L-set, but the converse of these
assertions, in general, are false. If every limited subset of a Banach space X is relatively
compact, then X has the Gelfand-Phillips property (GP). For example, the classical Banach
spaces c0 and �1 have the GP property and every reflexive space, every Schur space (i.e., weak
and norm convergence of sequences in X coincide), and dual of spaces containing no copy of
�1 have the same property.

Recall that a Banach space X is said to have the DP property if every weakly compact
operator T : X → Y is completely continuous (i.e., T maps weakly null sequences into norm
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null sequences) and X is said to have the reciprocal Dunford-Pettis property (RDP) if every
completely continuous operator on X is weakly compact.

So the Banach space X has the DP property if and only if every relatively weakly com-
pact subset ofX is DP and it has the RDP property if and only if every L-set inX∗ is relatively
weakly compact.

A stronger version of DP property was introduced by Borwein et al. in [1]. In fact,
a Banach space X has the DP∗ property if every relatively weakly compact subset of X is
limited. But if X is a Grothendieck space (i.e., weak and weak∗ convergence of sequences
in X∗ coincide), then these properties are the same on X. The reader can find some useful
and additional properties of limited and DP sets and Banach spaces with the GP, DP, or RDP
property in [2–6].

We recall from [7] that a bounded linear operator T : X → Y is limited completely
continuous (lcc) if it carries limited and weakly null sequences in X to norm null ones in Y .
We denote the class of all limited completely continuous operators from X to Y by Lcc(X,Y ).
It is clear that every completely continuous operator is lcc and we showed in [7] that every
weakly compact operator is limited completely continuous.

Here, by introducing a new class of subsets of Banach spaces that are called L-limited
sets, we obtain some characterizations of Banach spaces that every L-limited set is relatively
weakly compact and then we investigate the relation between these spaces with the GP, DP,
RDP and Grothendieck properties.

The notations and terminologies are standard. We use the symbols X, Y , and Z for
arbitrary Banach spaces. We denoted the closed unit ball ofX by BX , absolutely closed convex
hull of a subset A of X by aco(A), the dual of X by X∗, and T ∗ refers to the adjoint of the
operator T . Also we use 〈x, x∗〉 for the duality between x ∈ X and x∗ ∈ X∗. We denote
the class of all bounded linear, weakly compact, and completely continuous operators from
X to Y by L(X,Y ), W(X,Y ), and Cc(X,Y ) respectively. We refer the reader for undefined
terminologies to the classical references [8, 9].

2. L-Limited Sets

Definition 2.1. A subset A of dual space X∗ is called an L-limited set, if every weak null and
limited sequence (xn) in X converges uniformly on A.

It is clear that every L-set in X∗ is L-limited and every subset of an L-limited set is the
same. Also, it is evident that every L-limited set is weak∗ bounded and so is bounded. The
following theorem gives additional properties of these sets.

Theorem 2.2. (a) Absolutely closed convex hull of an L-limited set is L-limited.
(b) Relatively weakly compact subsets of dual Banach spaces are L-limited.
(c) Every weak∗ null sequence in dual Banach space is an L-limited set.

Proof. Let A ⊆ X∗ be an L-limited set, and the sequence (xn) in X is weak null and limited.
Since

sup{|〈xn, x∗〉| : x∗ ∈ aco(A)} = sup{|〈xn, x∗〉| : x∗ ∈ A}, (2.1)
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the proof of (a) is clear. For the proof of (b) suppose A ⊂ X∗ is relatively weakly compact
but it is not an L-limited set. Then there exists a weakly null and limited sequence (xn) in X,
a sequence (an) inA and an ε > 0 such that |〈xn, an〉| > ε for all integer n. SinceA is relatively
weakly compact, there exists a subsequence (ank) of (an) that converges weakly to an element
a ∈ X∗. Since

|〈xnk , ank〉| ≤ |〈xnk , ank − a〉| + |〈xnk , a〉| −→ 0, (2.2)

we have a contradiction.
Finally, for (c), suppose (x∗

n) is a weak∗ null sequence in X∗. Define the operator T :
X → c0 by T(x) = (〈x, x∗

n〉). Since c0 has the GP property by [7], T is lcc. So for each weakly
null and limited sequence (xm) in X, we have

sup
n

|〈xm, x∗
n〉| = ‖T(xm)‖ −→ 0, (2.3)

asm → ∞. Hence (x∗
n) is an L-limited set.

Note that the converse of assertion (b) in general is false. In fact, the following theorem
show that the closed unit ball of �1 is an L-limited set, while the standard unit vectors (en)
in c0, as a weakly null sequence, shows that the closed unit ball of �1 is neither an L-set
nor a relatively weakly compact. The following Theorem 2.4, give a necessary and sufficient
condition for Banach spaces that L-sets and L-limited sets in its dual coincide.

Theorem 2.3. A Banach space X has the GP property if and only if every bounded subset of X∗ is an
L-limited set.

Proof. Since the Banach space X has the GP property if and only if every limited and weakly
null sequence (xn) in X is norm null [10], the proof is clear.

Theorem 2.4. A Banach space X has the DP∗ property if and only if each L -limited set in X∗ is an
L-set.

Proof. Suppose X has the DP∗ property. Since every weakly null sequence in X is limited so
every L-limited set in X∗ is L-set.

Conversely, it is enough to show that, for each Banach space Y , Cc(X,Y ) = Lcc(X,Y )
[7, Theorem 2.8]. If T : X → Y is lcc, it is clear that T ∗(BY ∗) is an L-limited set. So by
hypothesis, it is an L-set and we know that the operator T : X → Y is completely continuous
if and only if T ∗(BY ∗) is an L-set.

The following two corollaries extend Theorem 3.3 and Corollary 3.4 of [1].

Corollary 2.5. For a Banach space X, the following are equivalent.

(a) X has the DP∗ property,

(b) If Y has the Gelfand-Phillips property, then each operator T : X → Y is completely
continuous.
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Proof. (a)⇒ (b). Suppose that Y has the Gelfand-Phillips property. By [7, Theorem 2.2], every
operator T : X → Y is lcc, thus T ∗(BY ∗) is an L-limited set and by Theorem 2.3, it is an L-set.
Hence T is completely continuous.

(b)⇒ (a). IfX does not have the DP∗ property, there exists a weakly null sequence (xn)
in X that is not limited. So there is a weak ∗ null sequence (x∗

n) in X
∗ such that |〈xn, x∗

n〉| > ε,
for all integer n and some positive ε [10]. Now the bounded operator T : X → c0 defined by
T(x) = (〈x, x∗

n〉) is not completely continuous, since (xn) is weakly null and ‖Txn‖ > ε for all
n. This is a contradiction.

Corollary 2.6. A Gelfand-Phillips space has the DP∗ property if and only if it has the Schur property.

Proof. It is clear that the Banach space X has the Schur property if and only if every bounded
subset of X∗ is an L-set. Now, if X is a GP space with the DP∗ property, then by Theorem 2.3,
unit ball X∗ is L-limited and so it is an L-set. The converse of the assertion is also clear.

Definition 2.7. A Banach space X has the L-limited property, if every L-limited set in X∗ is
relatively weakly compact.

Theorem 2.8. For a Banach space X, the following are equivalent:

(a) X has the L-limited property,

(b) for each Banach space Y , Lcc(X,Y ) =W(X,Y ),

(c) Lcc(X, �∞) =W(X, �∞).

Proof. (a) ⇒ (b). Suppose that X has the L-limited property and T : X → Y is lcc. Thus
T ∗(BY ∗) is an L-limited set in X∗. So by hypothesis, it is relatively weakly compact and T is a
weakly compact operator.

(b)⇒ (c). It is clear.
(c) ⇒ (a). If X does not have the L-limited property, there exists an L-limited subset A

of X∗ that is not relatively weakly compact. So there is a sequence (x∗
n) ⊆ A with no weakly

convergent subsequence. Now we show that the operator T : X → �∞ defined by T(x) =
(〈x, x∗

n〉) for all x ∈ X is limited completely continuous but it is not weakly compact. As
(x∗

n) ⊆ A is L-limited set, for every weakly null and limited sequence (xm) in X we have

‖T(xm)‖ = sup
n

|〈xm, x∗
n〉| −→ 0 as m −→ ∞, (2.4)

thus T is a limited completely continuous operator. It is easy to see that T ∗(e∗n) = x∗
n, for all

n ∈ N. Thus T ∗ is not a weakly compact operator and neither is T . This finishes the proof.

The following corollary shows that the Banach spaces c0 and �1 do not have the L-
limited property.

Corollary 2.9. A Gelfand-Phillips space has the L-limited property if and only if it is reflexive.
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Proof. If a Banach space X has the GP property, then by [7], the identity operator on X is lcc
and so is weakly compact, thanks to the L-limited property of X. Hence X is reflexive.

Theorem 2.10. If a Banach spaceX has the L-limited property, then it has the RDP and Grothendieck
properties.

Proof. At the first, we show that X has the RDP property. For arbitrary Banach space Y , let
T : X → Y be a completely continuous operator. Thus it is limited completely continuous
and so by Theorem 2.8, T is weakly compact. Hence X has the RDP property.

By [11], we know that a Banach space X is Grothendieck if and only if W(X, c0) =
L(X, c0). Since c0 has the GP property, by [7], Lcc(X, c0) = L(X, c0) and by hypothesis on X,
W(X, c0) = Lcc(X, c0). So X is Grothendieck.

We do not know the converse of Theorem 2.10, in general, is true or false. In the
following, we show that in Banach lattices that are Grothendieck and have the DP property,
the converse of this theorem is correct.

Theorem 2.11. If a Banach lattice X has both properties of Grothendieck and DP, then it has the
L-limited property.

Proof. Suppose that T : X → Y is limited completely continuous. We know, that in Gro-
thendieck Banach spaces, DP and DP∗ properties are equivalent. Thus by [7], T is completely
continuous. On the other hand, �1 is not a Grothendieck space and Grothendieck property
is carried by complemented subspaces. Hence the Grothendieck space X does not have any
complemented copy of �1. Since X is a Banach lattice, by [12], it has the RDP property and so
the completely continuous operator T : X → Y is weakly compact. Thus X has the L-limited
property, thanks to Theorem 2.8.

As a corollary, since �∞ is a Banach lattice that has Grothendieck and DP properties,
it has the L-limited property. This shows that the L-limited property on Banach spaces is not
hereditary, since c0 does not have this property. In the following, we show that the L-limited
property is carried by every complemented subspace.

Theorem 2.12. If a Banach space X has the L-limited property, then every complemented subspace of
X has the L-limited property.

Proof. Consider a complemented subspace X0 of X and a projection map P : X → X0.
Suppose T : X0 → �∞ is a limited completely continuous operator, so TP : X → �∞ is
also lcc. Since X has the L-limited property, by Theorem 2.8, TP is weakly compact. Hence T
is weakly compact.

As another corollary, for infinite compact Hausdorff space K, we have the following
corollary for the Banach space C(K) of all continuous functions on K with supremum norm.

Corollary 2.13. C(K) has the L-limited property if and only if it contains no complemented copy of
c0.

Proof. We know that C(K) is a Banach lattice with the DP property. On the other hand, C(K)
is a Grothendieck space if and only if it contains no complemented copy of c0 [13]. So the
direct implication is an application of Theorem 2.12 and the opposite implication is also an
easy conclusion of Theorem 2.11.
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3. Complementation in Lcc Operators

In [11], Bahreini investigated the complementability ofW(X, �∞) and Cc(X, �∞) in L(X, �∞).
She showed that if X is not a reflexive Banach space, then W(X, �∞) is not complemented
in L(X, �∞) and if X is not a Schur space, Cc(X, �∞) is not complemented in L(X, �∞). In the
following, we investigate the complementability of W(X, �∞) and Cc(X, �∞) in Lcc(X, �∞).
We need the following lemma of [14].

Lemma 3.1. LetX be a separable Banach space, and φ : �∞ → L(X, �∞) is a bounded linear operator
with φ(en) = 0 for all n. Then there is an infinite subset M of N such that for each α ∈ �∞(M),
φ(α) = 0, where �∞(M) is the set of all α = (αn) ∈ �∞ with αn = 0 for each n /∈ M.

Theorem 3.2. If X does not have the L-limited property, then W(X, �∞) is not complemented in
Lcc(X, �∞).

Proof. Consider a subset A of X∗ that is L-limited but it is not relatively weakly compact. So
there is a sequence (x∗

n) inA that has no weakly convergent subsequence. Hence S : X → �∞
defined by S(x) = (〈x, x∗

n〉) is an lcc operator but it is not weakly compact. Choose a bounded
sequence (xn) in BX such that S(xn) has no weakly convergent subsequence. Let X0 = [xn],
the closed linear span of the sequence (xn) in X. It follows that X0 is a separable subspace of
X such that S|X0 is not a weakly compact operator. If y∗

n = x∗
n|X0

, we have (y∗
n) ⊆ X∗

0 is bounded
and has no weakly convergent subsequence.

Now define T : �∞ → Lcc(X, �∞) by T(α)(x) = (αn〈x, x∗
n〉), where x ∈ X and α =

(αn) ∈ �∞. Then

‖T(α)(x)‖ = sup
n

|αn〈x, x∗
n〉| ≤ ‖α‖ · ‖x∗

n‖ · ‖x‖ <∞. (3.1)

We claim that for each α = (αn) ∈ �∞, T(α) ∈ Lcc(X, �∞).
Fix α = (αn) ∈ �∞ and a weakly null and limited sequence (xm) in X. Since (x∗

n) is an
L-limited set, supn|〈xm, x∗

n〉| → 0. So we have

‖T(α)(xm)‖ = sup
n

|αn〈xm, x∗
n〉| ≤ ‖α‖sup

n
|〈xm, x∗

n〉| −→ 0, (3.2)

as m → ∞. This finishes the proof of the claim and so T is a well-defined operator into
Lcc(X, �∞).

Let R : Lcc(X, �∞) −→ Lcc(X0, �∞) be the restriction map and define

φ : �∞ −→ Lcc(X0, �∞) by φ = RT. (3.3)

Now suppose thatW(X, �∞) is complemented in Lcc(X, �∞) and

P : Lcc(X, �∞) −→W(X, �∞) (3.4)
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is a projection. Define ψ : �∞ → W(X0, �∞) by ψ = RPT . Note that as T(en) is a rank one
operator, we have T(en) ∈W(X, �∞). Hence

ψ(en) = RPT(en) = RT(en) = φ(en) (3.5)

for all n ∈ N. By Lemma 3.1, there is an infinite set M ⊆ N so that ψ(α) = φ(α) for all α ∈
�∞(M). Thus φ(χM) is a weakly compact operator. On the other hand, if (e∗n) is the standard
unit vectors of �1, for each x ∈ X0 and each n ∈ N, we have

〈(
φ
(
χM

))∗(e∗n), x
〉
= 〈x∗

n, x〉. (3.6)

Therefore (φ(χM))∗(e∗n) = x∗
n|X0

= y∗
n for all n ∈ M. Thus (φ(χM))∗ is not a weakly compact

operator and neither is φ(χM). This contradiction ends the proof.

Corollary 3.3. Let X be a Banach space. Then the following are equivalent:

(a) X has the L-limited property,

(b) W(X, �∞) = Lcc(X, �∞),

(c) W(X, �∞) is complemented in Lcc(X, �∞).

We conclude this paper with another complementation theorem. Recall from [11] that
a closed operator ideal O has the property (∗) whenever X is a Banach space and S is not in
O(X, �∞), then there is an infinite subsetM0 ⊆ N such that SM is not inO(X, �∞) for all infinite
subsets M ⊆ M0, where SM : X → �∞ is the operator defined by SM(x) = Σm∈Me∗m(Sx)em,
for all x ∈ X.

Theorem 3.4. If a Banach space X does not have the DP∗ property, then Cc(X, �∞) is not comple-
mented in Lcc(X, �∞).

Proof. By hypothesis, there is a weakly null sequence (xm) in X that is not limited. So there
exists a weak∗ null sequence (x∗

n) in X
∗ such that

lim
m→∞

sup
n

|〈xm, x∗
n〉|/= 0. (3.7)

Nowdefine the operator S : X → �∞ by S(x) = (〈x, x∗
n〉). By Theorem 2.2, (x∗

n) is an L-limited
set, but S is not completely continuous. So for X0 = [xn], S|X0

is not completely continuous.
Since Cc(X0, �∞) has the property (∗) [11, Theorem 4.12], one can chooseM0 ⊆ N so that for
each infinite subset M of M0, SM /∈ Cc(X0, �∞). Define T : �∞ → Lcc(X, �∞) by T(α)(x) =
(αn〈x, x∗

n〉), where x ∈ X and α = (αn) ∈ �∞. As shown in the proof of the preceding theorem,
T is well defined.

Let R : Lcc(X, �∞) → Lcc(X0, �∞) be the restriction map and define

φ : �∞ −→ Lcc(X0, �∞) by φ = RT. (3.8)

Now suppose Cc(X, �∞) is complemented in Lcc(X, �∞) and

P : Lcc(X, �∞) −→ Cc(X, �∞) (3.9)
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is a projection. Define ψ : �∞ → Cc(X0, �∞) by ψ = RPT . Since

ψ(en) = RPT(en) = RT(en) = φ(en), (3.10)

for all n ∈ N, one can use Lemma 3.1 to select an infinite subset M of M0 such that ψ(α) =
φ(α) for all α ∈ �∞(M). Thus φ(α) = RT(α) belongs to Cc(X0, �∞) for each α ∈ �∞(M). But
T(χM)|X0

= SM /∈ Cc(X0, �∞), so we have a contradiction.

Corollary 3.5. Let X be a Banach space. Then the following are equivalent:

(a) X has the DP∗ property,

(b) Cc(X, �∞) = Lcc(X, �∞),

(c) Cc(X, �∞) is complemented in Lcc(X, �∞).
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