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We discuss the dynamical behaviors of impulsive stochastic reaction-diffusion neural networks
(ISRDNNs) with mixed time delays. By using a well-known L-operator differential inequality
with mixed time delays and combining with the Lyapunov-Krasovkii functional approach, as
well as linear matrix inequality (LMI) technique, some novel sufficient conditions are derived
to ensure the existence, uniqueness, and global exponential stability of the periodic solutions for
ISRDNNs with mixed time delays in the mean square sense. The obtained sufficient conditions
depend on the reaction-diffusion terms. The results of this paper are new and improve some of
the previously known results. The proposed model is quite general since many factors such as
noise perturbations, impulsive phenomena, and mixed time delays are considered. Finally, two
numerical examples are provided to verify the usefulness of the obtained results.

1. Introduction

In recent years, neural networks (NNs)with time delays have received considerable attention
due to their extensive applications in solving some optimization problems, associative
memory, classification of patterns, and other areas. In implementation of NNs, however, time
delays are unavoidably encountered. It has been found that the existence of time delays may
lead to instability and oscillation in a neural network. Therefore, the analysis of the dynamical
behaviors such as stability, periodic oscillation, and chaotic behavior are necessary work for
practical design of delayed NNs [1–12]. Zheng and Chen [1] studied the exponential stability
for delayed periodic dynamical systems. In [2], the global exponential stability and periodic-
ity of a class of recurrent NNs with time delays are addressed by using Lyapunov functional
method and inequality techniques. In the factual operations, however, the diffusion phenom-
ena could not be ignored in NNs when electrons are moving in asymmetric electromagnetic



2 Abstract and Applied Analysis

fields. So we must consider that the activations vary in space as well as in time. The NNs
with diffusion terms can commonly be expressed by partial differential equations [13–33].
The authors in [13, 19, 20] have dealt with obtaining sufficient conditions for the global expo-
nential stability and periodicity of delayed reaction-diffusion neural networks (RDNNs).

As is well known, besides delays and diffusion effects, impulsive phenomena can
be found in a wide variety of evolutionary process, particularly in some biological systems
such as biological NNs and bursting rhythm models in pathology, as well as optimal control
models in economics, frequency-modulated signal processing systems, and flying object
motions, in which many sudden and sharp changes occur instantaneously, in the form of
impulse. For example, in implementation of electronic networks, the state of the networks
is subject to instantaneous perturbations and experiences abrupt change at certain instants,
which may be caused by switching phenomenon, frequency change, or other sudden noise,
that is, it exhibits impulsive effects. As artificial electronic system, neural networks are often
subject to impulsive perturbations that in turn affect dynamical behaviors of the systems
[17, 18, 25–27]. In [17, 26, 27], the global exponential stability for the equilibrium point of
impulsive RDNNs with delays was investigated.

However, the models studied in the above mentioned papers have been largely
restricted to deterministic RDNNs. In the real world, a real system is usually affected by
external perturbations which in many cases are of great uncertainty and hence may be treated
as random. As pointed out by Haykin [34] that in real nervous systems synaptic transmission
is a noisy process brought on by random fluctuations from the release of neurotransmitters
and other probabilistic causes. Hence, it is of significant importance to study stochastic effects
for the neural networks. In recent years, the dynamic behavior of stochastic NNs, especially
the stability of stochastic NNs, has become a hot study topic. Very recently, several kinds
of NNs with delays and stochastic effects have been investigated [22, 28–30]. Lv et al. [22]
and Xu et al. [29] have obtained some criteria to guarantee the almost sure exponential
stability and mean square exponential stability of an equilibrium solution for RDNNs with
continuously distributed delays and stochastic influence, respectively. It is noticed that the
authors do not take impulsive phenomena and diffusion effects into account on the dynamic
behaviors of RDNNs.

It is well known that not only diffusion effects and delays cannot be avoided but also
the existence of impulsive and stochastic effects is extensive in the NNs. Moreover, the inter-
connectionweights bij , ˜bij , bij , self-inhibition ai and inputs Ji in theNNsmay be variable with
time, often periodically. Therefore, it is necessary to consider impulsive and stochastic effects
to the stability of RDNNs with mixed time delays and their periodic limits. Unfortunately, to
the best of our knowledge, the existence and global exponential stability of periodic solutions
have been seldom considered for ISRDNNs with variable coefficients and mixed time delays.
Due to the simultaneous presence of impulsive stochastic effects, reaction-diffusion phe-
nomena, periodicity, variable coefficients, and mixed time delays, the dynamical behaviors
become much more complex and therefore pose significant difficulties in the analysis.

Based on the above discussions, in this paper, we aim to challenge the analysis problem
on dynamical behaviors of ISRDNNs with mixed time delays. By applying a well-known L-
operator differential inequality with mixed time delays and combining with the Lyapunov-
Krasovkii functional approach, as well as linear matrix inequality (LMI) technique, we have
derived some easy-to-test sufficient conditions for the existence and exponential stability
of the periodic solutions for ISRDNNs with variable coefficients and mixed time delays.
The obtained criteria depend on the reaction-diffusion terms. The results of this paper are
new and they complement previously known results. Furthermore, we do not need the
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differentiability of the time-varying delays. Two examples are employed to demonstrate the
effectiveness of the obtained results that are less restrictive than recently known criteria.

Notation. Throughout this paper, the following notations will be used. R
n and R

n×n

denote the n-dimensional Euclidean real space equipped with the norm | · | and the set of
all n × n real matrices, respectively. Trace(·) denotes the trace of the corresponding matrix
and I denotes the identity matrix with appropriate dimensions. For square matricesA and B,
the notationA > (≥, <,≤)B denotesA−B is positive-definite (positive-semidefinite, negative,
negative-semidefinite)matrix. L denotes thewell-known L-operator given by the Ito formula.
Let w(t) = (w1(t), . . . , wn(t))

T is an n-dimensional standard Brownian motion defined on
a complete probability space (Ω, F, {Ft}t≥0, P) with a natural filtration {Ft}t≥0 generated by
{w(s) : 0 ≤ s ≤ t}. E(·) stands for the mathematical expectation operator. Z+ is the set of
nonnegative integral numbers.

PC[(−∞, 0] × Ω,Rn] = {ψ : (−∞, 0] × Ω → R
n | ψ(s+, x) = ψ(s, x) for s ∈ (−∞, 0],

ψ(s−, x) exists for s ∈ (−∞, 0], ψ(s−, x) = ψ(s, x) for all but at most countable points s ∈
(−∞, 0]}, where ψ(t−, x) and ψ(t+, x) denote the left-hand limit and the right-hand limit of
ψ(t, x) at time t, respectively. Especially, let PC = PC[(−∞, 0]×Ω,Rn]. For ψ ∈ PC, we always
assume that ψ is bounded and introduce the norm ‖ψ‖ = sup−∞≤s≤0(

∑n
i=1 ψ

2
i (s))

1/2.
Let PC

b
F0
[(−∞, 0] × Ω,Rn] denote the family of all bounded F0-measurable, PC[(−∞,

0] × Ω,Rn]-valued random variables ψ, such that ‖ψ‖τ = sup−∞≤s≤0E|ψ(s)|2 < ∞. Especially,
let PC

b
F0

= PC
b
F0
[(−∞, 0] × Ω,Rn]. Let u = (u1, . . . , un)

T ∈ R
n and L2(Ω) is the space of scalar

value Lebesgue measurable functions on Ω which is a Banach space for the L2-norm:

‖u‖2 =
(∫

Ω
|u(x)|2dx

)1/2

, u ∈ L2(Ω), (1.1)

where | · | is Euclid norm of a vector u ∈ R
n.

2. Model Description and Preliminaries

Consider the following ISRDNNs with mixed time delays system:

dui(t, x) =
m
∑

l=1

∂

∂xl

(

Dil
∂ui(t, x)
∂xl

)

dt

+

⎡

⎣−ai(t)ui(t, x) +
n
∑

j=1

bij(t)fj
(

uj(t, x)
)

+
n
∑

j=1

˜bij(t) ˜fj
(

uj(t − τ(t), x)
)

+
n
∑

j=1

bij(t)
∫ t

−∞
kij(t − s)fj

(

uj(s, x)
)

ds + Ji(t)

⎤

⎦dt

+
n
∑

j=1

σij

(

t, x, u(t, x), u(t − τ(t), x)
)

dwj(t), t ≥ 0, t /= tk, x ∈ Ω, k ∈ Z+,

ui(t, x) = ui
(

t−, x
) − θikui

(

t−, x
)

, t = tk, x ∈ Ω, k ∈ Z+,

(2.1)

where i ∈ N = {1, 2, . . . , n}, n ≥ 2, corresponds to the number of units in an NN; the time
sequence tk is called impulsive moment and satisfies 0 < t0 < t1 < · · · < tk < tk+1 < · · · ,
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limk→∞tk+1 = ∞; θik are some real constants; x = (x1, . . . , xm)
T ∈ Ω, Ω is a compact set with

smooth boundary ∂Ω and mesΩ > 0 in space R
m, where mesΩ is the measure of the set

Ω; ui(t, x) represents the state of the ith neuron at time t and in space x; bij(t), ˜bij(t), and bij(t)
denote the strength of the jth neuron on the ith neuron, respectively; fj , ˜fj , and fj denote the
activation functions of the jth neuron at time t and in space x; Ji denotes the external inputs
on the ith neurons; ai(t) is the rate with which the ith unit will reset its potential to the resting
state in isolation when disconnected from the network and external inputs at time t and in
space x; τ(t) represents the transmission delay with 0 ≤ τ(t) ≤ τ , τ is a constant; smooth
functionsDil > 0 (i = 1, 2, . . . , n, l = 1, 2, . . . , m) stand for the transmission diffusion operators
along the ith neuron; the delay kernel kij(·) is the real value nonnegative continuous function
defined on (0,+∞); ui(t−, x) and ui(t+, x) denote the left-hand limit and the right-hand limit
of ui(t, x) at time t, respectively. We assume ui(tk, x) = ui(t+k, x).

σij(t, x, u(t, x), u(t − τ(t), x)) (i, j = 1, 2, . . . , n) denotes the weight function of random
perturbation.

The boundary conditions and initial conditions are given by

ui(t, x) = 0, (t, x) ∈ [0,+∞) × ∂Ω,
ui(t0 + s, x) = ψi(s, x), (s, x) ∈ (−∞, 0] ×Ω,

(2.2)

where ψ = (ψ1, . . . , ψn)
T ∈ PC

b
F0
.

In fact, some famous NNs models became a special case of system (2.1). For example,
when σij = 0, i, j ∈ N, the special case of system (2.1) is the model which has been
investigated [25, 27, 32]. When θik = 0, i = 1, 2, . . . , n, k ∈ Z+, then system (2.1) becomes
stochastic RDNNs with mixed delays, which has been considered in [22, 29]. If θik = 0 and
σij = 0, i, j ∈ N, k ∈ Z+, system (2.1) reduces to the deterministic system with mixed time
delays:

dui(t)
dt

=
m
∑

l=1

∂

∂xl

(

Dil
∂ui(t)
∂xl

)

− ai(t)ui(t) +
n
∑

j=1

bij(t)fj
(

uj(t, x)
)

+
n
∑

j=1

˜bij(t) ˜fj
(

uj(t − τ(t), x)
)

+
n
∑

j=1

bij(t)
∫ t

−∞
kij(t − s)fj

(

uj(s, x)
)

ds + Ji,

(2.3)

the dynamical behaviors of the special case for model (2.3) have been discussed by many
authors [19, 20]. Therefore, the model (2.1) is new and more general than those discussed in
the previous literature.

Throughout this paper, we assume that the following conditions are made.

(A1) Suppose that ai(t) > 0, bij(t), ˜bij(t), bij(t), τ(t) ≥ 0 and Ji(t) are all continuously
periodic functions defined on [0,+∞)with common period ω > 0. Moreover,

âi = min
t∈[0,ω]

{ai(t)}, ̂bij = max
t∈[0,ω]

{∣

∣bij(t)
∣

∣

}

,
̂

˜bij = max
t∈[0,ω]

{∣

∣

∣

˜bij(t)
∣

∣

∣

}

,
̂

bij = max
t∈[0,ω]

{∣

∣

∣bij(t)
∣

∣

∣

}

,

i, j ∈N.

(2.4)
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(A2) There exist positive diagonal matrices Lf = diag(Lf1 , . . . , L
f
n), L

˜f = diag(L
˜f

1 , . . . , L
˜f
n),

Lf = diag(Lf1 , . . . , L
f
n), such that for all η1, η2 ∈ R

∣

∣fj
(

η1
) − fj

(

η2
)∣

∣ ≤ Lfj
∣

∣η1 − η2
∣

∣,

∣

∣

∣

˜fj
(

η1
) − ˜fj

(

η2
)

∣

∣

∣ ≤ L ˜f

j

∣

∣η1 − η2
∣

∣,

∣

∣

∣fj
(

η1
) − fj

(

η2
)

∣

∣

∣ ≤ Lfj
∣

∣η1 − η2
∣

∣, j = 1, 2, . . . , n.

(2.5)

(A3) The delay kernel kij(·) : [0,+∞) → [0,+∞), (i, j ∈ N) are real-valued nonnegative
continuous functions that satisfy the following conditions:

(i)
∫+∞
0 kij(s)ds = 1,

(ii) kij(s) ≤ κ(s) for all s ∈ [0,+∞), in which κ(s) : [0,+∞) → R+ is continuous
and integral and satisfies

∫+∞
0 κ(s)eηsds < +∞, where the constant η denotes

some positive number.

(A4) For ω > 0, there exists q ∈ Z+ such that tk +ω = tk+q and θik +ω = θi(k+q), k ∈ Z+, i ∈
N.

(A5) There exist nonnegative constants δi and γi such that

(

σi
(

t, x, ξ′i, ς
′
i

) − σi(t, x, ξi, ςi)
)(

σi
(

t, x, ξ′i, ς
′
i

) − σi(t, x, ξi, ςi)
)T ≤ δi

∣

∣ξ′i − ξi
∣

∣

2 + γi
∣

∣ς′i − ςi
∣

∣

2
, (2.6)

for all ξi, ςi, ξ′i, ς
′
i ∈ R, σi(t, x, ξ, ς) = (σi1(t, x, ξ, ς), . . . , σin(t, x, ξ, ς)) is the ith row

vector of σ(t, x, ξ, ς), i ∈N.

For convenience, ui(t, x), ψi(s, x) are denoted as ui(t)or ui, ψi(s) or ψi, respectively, if
no confusion should occur.

Definition 2.1. An equilibrium point u∗ = (u∗1, u
∗
2, . . . , u

∗
n) of system (2.1)-(2.2) is said to be

globally exponentially stable in the mean square sense if there exist positive constants ε and
M ≥ 1 such that

E‖u(t, x) − u∗‖2 ≤M
∥

∥ψ − u∗∥∥τe−ε(t−t0), t ≥ t0 ≥ 0. (2.7)

Definition 2.2. The system (2.1)-(2.2) is said to be globally exponentially periodic in the mean
square sense if (i) there exist one ω-periodic solutions; (ii) all other solutions of the system
converge exponentially to it in the mean square sense as t → +∞.

Lemma 2.3 (see [24]). LetΩ be a cube |xi| < dl (l = 1, . . . , m) and let h(x) be a real-valued function
belonging to C1(Ω) which vanish on the boundary ∂Ω of Ω, that is, h(x)|∂Ω = 0. Then

∫

Ω
h2(x)dx ≤ d2

l

∫

Ω

∣

∣

∣

∣

∂h

∂xi

∣

∣

∣

∣

dx. (2.8)
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Remark 2.4. The boundary conditions of the investigated RDNNs in [22, 24, 26–28, 35] are
all the Neumann boundary conditions. The obtained global exponential stability criteria are
independent of diffusion term. In other words, these criteria are same whether the diffusion
terms exist or not. However, it is also common to consider the diffusion effects in biological
systems (such as immigration [36]). In this paper, we investigate dynamical behaviors
of ISRDNNs with Dirichlet boundary conditions and mixed delays. The obtained criteria
depend on the reaction-diffusion terms. The Lemma 2.3 plays a key role in the reported
criteria which are dependent of diffusion terms.

Lemma 2.5 (see [4]). Let p, q, r, and βk, (k ∈ Z+) be nonnegative constants, and function V (x) ∈
PC

2(Rn,R+), LV associated with system (2.1), satisfy the following inequalities:

LV (x(t)) ≤ −pV (x(t)) + q sup
t−τ≤s≤t

V (x(s)) + r
∫+∞

0
κ(s)V (x(t − s))ds, t /= tk, t ≥ 0,

V (x(tk)) ≤ βkV
(

x
(

t−k
))

, k ∈ Z+,

(2.9)

where κ(s) is the same as (A3). Assume that

(i) p > q + r
∫+∞
0 κ(s)ds;

(ii) there exist constantsM > 0, α > 0 such that

n
∏

k=1

max
{

1, βk
} ≤Meαtn , n ∈ Z+. (2.10)

Then

EV (x(t)) ≤MEV0e
−(λ−α)t, t ≥ t0, (2.11)

where EV0 = sup−∞<s≤0EV (x(s)), λ ∈ (0, η) satisfies λ < p − qeλτ − r ∫+∞0 κ(s)eλsds.

Remark 2.6. The above result (2.11) on the impulsive delay differential inequality is an exten-
sion of continuous case in [37] and will play an important role in the following qualitative
analysis of ISRDNNs with mixed time delays.

Lemma 2.7 (see [38]). Let a, b ∈ R
n and X be an n × n positive definite matrix, then

2aTb ≤ aTXa + bTX−1b. (2.12)

3. Main Results

This section deals with obtaining sufficient conditions that guarantee the existence and global
exponential stability of periodic solution for the system (2.1)-(2.2).

Theorem 3.1. In addition to (A1)–(A5) and further assume that

(A6) p > q + r
∫+∞
0 κ(s)ds,
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(A7) there exist constantsM ≥ 1, λ ∈ (0, η) and α ∈ [0, λ) such that
n

∏

k=1

max
{

1, βk
} ≤Meαtn , n ∈ Z+,

λ < p − qeλτ − r
∫+∞

0
κ(s)eλsds,

(3.1)

where

p = 2
m
∑

l=1

mini∈N(Di)
d2
l

+ 2min
i∈N

(âi)

−
⎡

⎣max
i∈N

⎛

⎝

n
∑

j=1

∣

∣

∣

̂bij
∣

∣

∣L
f

j

⎞

⎠ +
n
∑

i=1

max
j∈N

(∣

∣

∣

̂bij
∣

∣

∣L
f

j

)

+max
i∈N

⎛

⎝

n
∑

j=1

∣

∣

∣

∣

̂

bij

∣

∣

∣

∣

L
f

j

⎞

⎠+max
i∈N

⎛

⎝

n
∑

j=1

∣

∣

∣

∣

̂

bij

∣

∣

∣

∣

L
f

j

⎞

⎠ +max
i∈N

{δi}
⎤

⎦,

q =

[

n
∑

i=1

max
j∈N

(∣

∣

∣

̂bij
∣

∣

∣L
f

j

)

+max
i∈N

{

γi
}

]

,

r =
n
∑

i=1

max
j∈N

(∣

∣

∣

∣

̂

bij

∣

∣

∣

∣

L
f

j

)

, βk = max
i∈N

{

(1 − θik)2
}

,

Di = min
1≤l≤m

{Dil},

(3.2)

then system (2.1)-(2.2) is globally exponentially periodic in the mean square sense.

Proof. For any ψ = (ψ1, . . . , ψn)
T , ϕ = (ϕ1, . . . , ϕn)

T ∈ PC
b
F0
, let u(t) = (u1(t), . . . , un(t))

Tand
u(t) = (u1(t), . . . , un(t))

T be the solutions of system (2.1)-(2.2) starting from ψ and ϕ, respec-
tively.

Let zi(t) = ui(t) − ui(t), from (2.1), we get

dzi(t) =
m
∑

l=1

∂

∂xl

(

Dil
∂zi(t)
∂xl

)

dt +

⎡

⎣−ai(t)zi(t) +
n
∑

j=1

bij(t)
(

fj
(

uj(t)
) − fj

(

uj(t)
))

+
n
∑

j=1

˜bij(t)
(

˜fj
(

uj(t − τ(t))
) − ˜fj

(

uj(t − τ(t))
))

+
n
∑

j=1

bij(t)
∫ t

−∞
kij(t − s)

(

fj
(

uj(s)
) − fj

(

uj(s)
))

ds

⎤

⎦dt

+
n
∑

j=1

[

σij(t, x, ui(t), ui(t − τ(t))) − σij
(

t, x, ui(t), ui(t − τ(t))
)]

dwj(t).

(3.3)

Construct the Lyapunov functional V (t) =
∫

Ω

∑n
i=1 z

2
i (t)dx, i ∈N,
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for t = tk, from (2.1) and (A4), we have

V (tk) =
∫

Ω

n
∑

i=1

z2i (tk)dx =
∫

Ω

n
∑

i=1

[

ui(tk) − ui(tk)
]2
dx

=
∫

Ω

n
∑

i=1

[

ui(tk +ω) − ui(tk)
]2
dx =

∫

Ω

n
∑

i=1

(1 − θik)2
[

ui
(

t−k+q
)

− ui
(

t−k
)

]2
dx

≤ max
i∈N

(1 − θik)2
∫

Ω

n
∑

i=1

[

ui
(

t−k +ω
) − ui

(

t−k
)]2

dx = max
i∈N

(1 − θik)2V
(

t−k
)

,

(3.4)

when t ∈ (tk−1, tk], the infinitesimal operator of LV (t) along with system (3.3) is

LV (t) =
∫

Ω
2

n
∑

i=1

zi(t)

×
⎧

⎨

⎩

m
∑

l=1

∂

∂xl

(

Dil
∂zi(t)
∂xl

)

− ai(t)zi(t)

+
n
∑

j=1

bij(t)
[

fj
(

uj(t)
)−fj

(

uj(t)
)]

+
n
∑

j=1

˜bij(t)
(

˜fj
(

uj(t−τ(t))
) − ˜fj

(

uj(t−τ(t))
))

+
n
∑

j=1

bij(t)
∫ t

−∞
kij(t − s)

[

fj
(

uj(s)
) − fj

(

uj(s)
)]

ds

⎫

⎬

⎭

dx

+
∫

Ω

n
∑

i=1

[

σi(t, x, ui(t), ui(t − τ(t))) − σi
(

t, x, ui(t), ui(t − τ(t))
)]

× [

σi(t, x, ui(t), ui(t − τ(t))) − σi
(

t, x, ui(t), ui(t − τ(t))
)]T

dx.

(3.5)

Combining Cauchy inequality with (A2) yields
∫

Ω
zi(t)

∫ t

−∞
Kij(t − s)

[

fj
(

uj(t)
) − fj

(

uj(t)
)]

dsdx

≤
∫

Ω
|zi(t)|

∫+∞

0
Kij(s)L

f

j

∣

∣zj(t − s)
∣

∣dsdx =
∫+∞

0
Kij(s)L

f

j

∫

Ω
|zi(t)|

∣

∣zj(t − s)
∣

∣dx ds

≤ Lfj ‖zi(t)‖2
∫+∞

0
Kij(s)L

f

j

∥

∥zj(t−s)
∥

∥

2ds ≤
1
2
L
f

j

[

‖zi(t)‖22 +
(∫+∞

0
Kij(s)

∥

∥zj(t−s)
∥

∥

2ds

)2]

=
1
2
L
f

j ‖zi(t)‖22 +
1
2
L
f

j

(∫+∞

0

(

Kij(s)
)1/2(

Kij(s)
)1/2∥

∥zj(t − s)
∥

∥

2ds

)2

≤ 1
2
L
f

j ‖zi(t)‖22 +
1
2
L
f

j

(∫+∞

0
Kij(s)

∥

∥zj(t − s)
∥

∥

2
2ds

)

.

(3.6)
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According to Green’s formula [37] and the Dirichlet boundary condition, we get

∫

Ω

m
∑

l=1

zi(t)
∂

∂xl

(

Dil
∂zi(t)
∂xl

)

dx = −
m
∑

l=1

∫

Ω
Dil

(

∂zi(t)
∂xl

)2

dx. (3.7)

Moreover, from Lemma 2.3, we have

−
m
∑

l=1

∫

Ω
Dil

(

∂zi(t)
∂xl

)2

dx ≤ −
∫

Ω

m
∑

l=1

Dil

d2
l

(zi(t))2dx ≤ −
∫

Ω

m
∑

l=1

mini∈N(Di)
d2
l

(zi(t))2dx. (3.8)

From (A1)–(A3), (A5) and (3.5)–(3.8), we have

LV (t) ≤ − 2
m
∑

l=1

n
∑

i=1

(

Dil

d2
l

‖zi(t)‖22
)

+ 2
n
∑

i=1

⎧

⎨

⎩

−âi‖zi(t)‖22 +
n
∑

j=1

(∣

∣

∣

̂bij
∣

∣

∣L
f

j ‖zi(t)‖2
∥

∥zj(t)
∥

∥

2

)

+
1
2

n
∑

j=1

∣

∣

∣

∣

̂

bij

∣

∣

∣

∣

L
f

j

×
(

‖zi(t)‖22 +
(∫+∞

0
Kij(s)

∥

∥zj(t − s)
∥

∥

2
2ds

))

+
n
∑

j=1

(∣

∣

∣

∣

̂

˜bij

∣

∣

∣

∣

L
˜f

j ‖zi(t)‖2
∥

∥zj(t − τ(t))
∥

∥

2

)

⎫

⎬

⎭

+
n
∑

i=1

(

δi‖zi(t)‖22 + γi‖zi(t − τ(t))‖22
)

≤ −
m
∑

l=1

n
∑

i=1

(

2Dil

d2
l

‖zi(t)‖22
)

+
n
∑

i=1

⎧

⎨

⎩

−2âi‖zi(t)‖22 +
n
∑

j=1

∣

∣

∣

̂bij
∣

∣

∣L
f

j

(

‖zi(t)‖22 +
∥

∥zj(t)
∥

∥

2
2

)

+
n
∑

j=1

∣

∣

∣

∣

̂

bij

∣

∣

∣

∣

L
f

j

(

‖zi(t)‖22 +
(∫+∞

0
Kij(s)

∥

∥zj(t − s)
∥

∥

2
2ds

))

+
n
∑

j=1

[∣

∣

∣

∣

̂

˜bij

∣

∣

∣

∣

L
˜f

j

(

‖zi(t)‖22 +
∥

∥zj(t − τ(t))
∥

∥

2
2

)

]

⎫

⎬

⎭

+
n
∑

i=1

(

δi‖zi(t)‖22 + γi‖zi(t − τ(t))‖22
)
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≤
⎧

⎨

⎩

− 2
m
∑

l=1

mini∈N(Di)
d2
l

− 2min
i∈N

(âi)

+

⎡

⎣max
i∈N

⎛

⎝

n
∑

j=1

∣

∣

∣

̂bij
∣

∣

∣L
f

j

⎞

⎠ +
n
∑

i=1

max
j∈N

(∣

∣

∣

̂bij
∣

∣

∣L
f

j

)

+max
i∈N

⎛

⎝

n
∑

j=1

∣

∣

∣

∣

̂

˜bij

∣

∣

∣

∣

L
˜f

j

⎞

⎠

+max
i∈N

⎛

⎝

n
∑

j=1

∣

∣

∣

∣

̂

bij

∣

∣

∣

∣

L
f

j

⎞

⎠+max
i∈N

{δi}
⎤

⎦

⎫

⎬

⎭

n
∑

i=1

‖zi(t)‖22 +
[

n
∑

i=1

max
j∈N

(∣

∣

∣

∣

̂

˜bij

∣

∣

∣

∣

L
˜f

j

)

+max
i∈N

{

γi
}

]

×
n
∑

i=1

‖zi(t − τ(t))‖22 +
n
∑

i=1

max
j∈N

(∣

∣

∣

∣

̂

bij

∣

∣

∣

∣

L
f

j

)∫+∞

0
κ(s)

n
∑

i=1

‖zi(t − s)‖22ds. (3.9)

From (3.4), (3.9), (A6), (A7) and Lemma 2.5, we know

EV (t) ≤MEV0e
−(α−β)t, t ≥ t0, (3.10)

which means that

∫

Ω

n
∑

i=1

E
[

ui(t) − ui(t)
]2
dx ≤M∥

∥ϕ − ψ∥∥2
τe

−(α−β)t, t ≥ t0. (3.11)

By the integral property of measurable functions, we can derive

∫

Ω

n
∑

i=1

[ui(t +ω) − ui(t)]2dx ≤M∥

∥ϕ − ψ∥∥2
e−(α−β)t, t ≥ t0 a.e. (3.12)

In the light of (
∑n

i=1 |zi|)2 ≤ n
∑n

i=1 |zi|2, for any zi ∈ R
+, we obtain

∫

Ω

n
∑

i=1

|ui(t +ω) − ui(t)|dx ≤
√
nM

∥

∥ϕ − ψ∥∥e−0.5(α−β)t, t ≥ t0 a.e. (3.13)

Noticing that

ui(t + kω) = ui(t) +
k
∑

r=1

[ui(t + rω) − ui(t + (r − 1)ω)], i ∈N. (3.14)
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For any given t ≥ t0, by (3.12), we can see that

∫

Ω

∞
∑

r=1

[ui(t + rω) − ui(t + (r − 1)ω)]dx

=
∫

Ω
lim
k→∞

k
∑

r=1

[(ui(t + rω) − ui(t + (r − 1)ω))]dx ≤
√
nM

∥

∥ϕ − ψ∥∥ lim
k→∞

k
∑

r=1

e−0.5(α−β)(t+(r−1)ω)

≤
√
nM

∥

∥ϕ − ψ∥∥e−0.5(α−β)t lim
k→∞

k
∑

r=1

e−0.5(α−β)(r−1)ω,

(3.15)

therefore, limk→∞ui(t + kω) exists a.e.
Let û(t) = (û1(t), . . . , ûn(t))

T be the solution of system (2.1)-(2.2) starting from φ, by
ûi(t) = limk→∞ui(t + kω), then û(t) is well defined and is a periodic function with period ω.
Supposing that v̂(t) = (v̂1(t), . . . , v̂n(t))

T is another ω-periodic solution of system (2.1)-(2.2)
starting from φ∗, by similar method used before, it is easy to prove

∫

Ω

n
∑

i=1

[ûi(t) − v̂i(t)]2dx =
∫

Ω

n
∑

i=1

[ûi(t + kω) − v̂i(t + kω)]2dx

≤M∥

∥φ − φ∗∥
∥

2
e−(α−β)(t+kω), t ≥ t0, a.e.

(3.16)

Therefore, we can conclude that the system (2.1)-(2.2) is globally exponentially periodic in
the mean square sense. This completes the proof of Theorem 3.1.

Next, omitting condition (A4) and using LMI technique, another sufficient condition
ensuring the global exponential stability of periodic solution for the system (2.1)-(2.2) in the
mean square sense is derived.

Theorem 3.2. Suppose that (A1)–(A3) and (A5) hold. If there exists a positive definite diagonal
matrix P , positive definite matrices Ξ1, Ξ2, nonnegative constants p, q, r, and βk, (k ∈ Z+), such
that

(i) p > q + r
∫+∞
0 κ(s)ds,

(ii) there exist constantsM ≥ 1, λ ∈ (0, η) and α ∈ [0, λ) such that

n
∏

k=1

max
{

1, βk
} ≤Meαtn , n ∈ Z+, (3.17)

and λ < p − qeλτ − r ∫+∞0 κ(s)eλsds,
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(iii)

− PD∗ −D∗TP − PA −ATP + PBLf + LfBTP + R1 + P ˜BL
˜fΞ1L

˜f
˜BTP

+
∫+∞

0
κ(s)dsPBLfΞ2L

fB
T
P + pP < 0, Ξ−1

1 + R2 − qP < 0, Ξ−1
2 − rP < 0, CT

kPCk − βkP < 0,

(3.18)

then the system (2.1)-(2.2) is global exponential periodic in the mean square sense. Where

A = diag(a1, . . . , an), B =
(

bij
)

n×n,
˜B =

(

˜bij
)

n×n
, B =

(

bij
)

n×n
,

βk = max
i∈N

{

(1 − θik)2
}

, R1 = diag(δ1, . . . , δn), R2 = diag
(

γ1, . . . , γn
)

,

D∗ = diag

(

m
∑

l=1

D1l

d2
l

, . . . ,
m
∑

l=1

Dnl

d2
l

)

, Ck = diag(1 − θ1k, . . . , 1 − θnk).

(3.19)

Proof. Define the following Lyapunov functional:

V (t) =
∫

Ω
zT (t)Pz(t)dx, (3.20)

when t = tk, we have

V (tk) − βkV
(

t−k
)

=
∫

Ω
zT

(

t−k
)

CT
kPCkz

(

t−k
) − zT(t−k

)

βkPz
(

t−k
)

dx

=
∫

Ω
zT

(

t−k
)

(

CT
kPCk − βkP

)

z
(

t−k
)

dx < 0.

(3.21)

For t ≥ t0, t /= tk, the infinitesimal operator of LV (t) along with (3.16) is

LV (t) =
∫

Ω

(

∂

∂t
zTPz + zTP

∂z

∂t

)

dx +
∫

Ω
trace

(

σTPσ
)

dx

≤ 2
∫

Ω
zTP

(

m
∑

l=1

∂

∂xl

(

Dil
∂z

∂xl

)

−Az(t) + Bg(z(t)) + ˜Bg̃(z(t − τ(t)))

+ B
∫ t

−∞
κ(t − s)Lfz(s)ds

)

dx +
∫

Ω
trace

(

σ̃TPσ̃
)

dx,

(3.22)
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where

g(z(t)) =
(

g1(z1(t)), . . . , gn(zn(t))
)T
, σ̃ =

(

σij
(

t, x, ξ′i, ς
′
i

) − σij(t, x, ξi, ςi)
)

n×n

g̃(z(t)) =
(

g̃1(z1(t − τ(t))), . . . , g̃n(zn(t − τ(t)))
)T
,

g(z(s)) =
(

g1(z1(s)), . . . , gn(zn(s))
)T
, gj

(

zj(t)
)

= fj
(

uj(t)
) − fj

(

uj(t)
)

,

g̃j
(

zj(t − τ(t))
)

= ˜fj
(

uj(t − τ(t))
) − ˜fj

(

uj(t − τ(t))
)

,

gj
(

zj(s)
)

= fj
(

uj(s)
) − fj

(

uj(s)
)

, j = 1, 2, . . . , n.

(3.23)

By employing (3.8), (A5) and Lemma 2.7, we have

LV ≤ 2
∫

Ω

(

− zT (t)PD∗z(t) − zT (t)PAz(t) + zT (t)PBLfz(t)

+zT (t)P ˜BL
˜fz(t − τ(t)) + zT (t)PB

∫+∞

0
κ(s)Lfz(t − s)ds

)

dx

+
∫

Ω

(

zT (t)R1z(t) + zT (t − τ(t))R2z(t − τ(t))
)

dx

≤
∫

Ω

[

zT (t)
(

−PD∗ −D∗TP − PA −ATP + PBLf + LfBTP + R1

)

z(t)

+ zT (t)P ˜BL
˜fΞ1L

˜f
˜BTPz(t) + zT (t − τ(t))Ξ−1

1 z(t − τ(t))

+
∫+∞

0
κ(s)zT (t)PBLfΞ2L

fB
T
Pz(t)ds

]

dx

+
∫

Ω

(

zT (t − τ(t))R2z(t − τ(t)) +
∫+∞

0
κ(s)zT (t − s)Ξ−1

2 z(t − s)ds
)

dx

≤
∫

Ω

[

zT (t)
(

− PD∗ −D∗TP − PA −ATP + PBLf

+LfBTP + R1 + P ˜BL
˜fΞ1L

˜f
˜BTP +

∫+∞

0
κ(s)dsPBLfΞ2L

fB
T
P

)

z(t)

+zT (t − τ(t))
(

Ξ−1
1 + R2

)

z(t − τ(t)) +
∫+∞

0
κ(s)zT (t − s)Ξ−1

2 z(t − s)ds
]

dx

≤
∫

Ω

[

zT (t)
(

− PD∗ −D∗TP − PA −ATP + PBLf + LfBTP

+R1 + P ˜BL
˜fΞ1L

˜f
˜BTP +

∫+∞

0
κ(s)dsPBLfΞ2L

fB
T
P + pP

)

z(t)
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+zT (t − τ(t))
(

Ξ−1
1 + R2 − qP

)

z(t − τ(t)) +
∫+∞

0
κ(s)zT (t−s)

(

Ξ−1
2 −rP

)

z(t−s)ds
]

dx

− pV (t) + q sup
−∞≤s≤t

V (s) + r
∫+∞

0
κ(s)V (t − s)ds.

(3.24)

It follows from the condition (iii) and (3.24) that we have

LV (t) ≤ −pV (t) + q sup
−∞≤s≤t

V (t) + r
∫+∞

0
κ(s)V (t − s)ds. (3.25)

By Lemma 2.5, we obtain

λmin(P)E‖z(t)‖22 ≤ EV (t) ≤ λmax(P)
∥

∥ψ − ϕ∥∥2
τe

−(λ−α)t. (3.26)

We know that

E‖z(t)‖2 ≤
√

λmax(P)
λmin(P)

∥

∥ψ − ϕ∥∥τe−((λ−α)t)/2, (3.27)

that is,

E
∥

∥ui(t) − ui(t)
∥

∥

2 ≤
√

λmax(P)
λmin(P)

∥

∥ψ − ϕ∥∥τe−((λ−α)t)/2, ∀t ≥ t0 ≥ 0, (3.28)

where

M =

√

λmax(P)
λmin(P)

≥ 1. (3.29)

Similar to the proof of Theorem 3.1, we know that the system (2.1)-(2.2) is globally
exponentially periodic in the mean square sense. This completes the proof.

Remark 3.3. In [23], the authors have considered the stability problems of RDNNs, however,
they have not considered impulsive stochastic effect and reaction-diffusion terms. To the
best of our knowledge, no LMI-based stability results have been reported for ISRDNNs with
mixed time delays in the literature.

Since an equilibrium point can be viewed as a special periodic solution of RDNNs
with arbitrary period, we can consider ISRDNNs in system (2.1) with parameters ai(t) = ai,
bij(t) = bij , ˜bij(t) = ˜bij , bij(t) = bij , Ji(t) = Ji, τ(t) = τ, σij(t, x, u∗, u∗) = 0, where ai, bij , ˜bij ,
bij , Ji are constants. Then, according to the results obtained so far, if the sufficient conditions
in Theorems 3.1 or 3.2 are satisfied, a unique periodic solution becomes a periodic solution
with arbitrary positive constants as its period. So, the periodic solution reduces to a constant
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solution, that is, an equilibrium point. Moreover, all other solutions globally exponentially
converge to this equilibrium point in the mean square sense as t → +∞. To this end, by
applying Theorems 3.1 or 3.2, we can easily get the following results.

Corollary 3.4. Suppose that (A1)–(A5) hold for ISRDNNs in (2.1)-(2.2) with parameters ai(t) =
ai, bij(t) = bij , ˜bij(t) = ˜bij , bij(t) = bij , Ji(t) = Ji, τ(t) = τ, σij(t, x, u∗, u∗) = 0, where ai, bij ,
˜bij , bij , Ji are constants, if θik ∈ [0, 2], i ∈ N, k ∈ Z+, then there exists a unique equilibrium point
of system (2.1)-(2.2), which is globally exponentially stable in the mean square sense.

Corollary 3.5. Suppose that (A2)-(A3), (A5) for system (2.1)-(2.2) with ai, bij , ˜bij , bij , Ji being
constants and θik ∈ [0, 2], i ∈ N,k ∈ Z+ hold. If there exist a positive definite diagonal matrix
P , positive definite matrices Ξ1, Ξ2, nonnegative constants p, q, r, and βk, (k ∈ Z+), such that
(i) p > q + r

∫+∞
0 κ(s)ds,

(ii) there exist constantsM ≥ 1, λ ∈ (0, η) and α ∈ [0, λ) such that

n
∏

k=1

max
{

1, βk
} ≤Meαtn , n ∈ Z+, (3.30)

and λ < p − qeλτ − r ∫+∞0 κ(s)eλsds,
(iii)

− PD∗ −D∗TP − PA −ATP + PBLf + LfBTP + R1 + P ˜BL
˜fΞ1L

˜f
˜BTP

+
∫+∞

0
κ(s)dsPBLfΞ2L

fB
T
P + pP < 0, Ξ−1

1 + R2 − qP < 0, Ξ−1
2 − rP < 0,

CT
kPCk − βkP < 0,

(3.31)

then the system (2.1)-(2.2) has a unique equilibrium point, which is globally exponentially stable in
the mean square sense.

4. Illustrative Examples

Example 4.1. Consider the system (2.1) with two neurons on Ω = {(x1, x2)T | 0 < xl < 1, l =
1, 2} ⊂ R

2, the boundary conditions and initial conditions are given by

ui(t, x) = 0, (t, x) ∈ [0,+∞) × ∂Ω,

ui(s, x) = 2 sinπx1x2
2, i = 1, 2, (s, x) ∈ (−∞, 0] ×Ω,

(4.1)

where tk = k, k ∈ Z+, κ(s) = kij(s) = se−s, fj(η) = ˜fj(η) = fj(η) = (1/30)(|η+1|+ |η−1|), n =

m = 2, Lfj = L
˜f

j = L
f

j = 1, dl = εi = 1, j, l = 1, 2. D11 = D12 = 0.5, D21 = 0.3, D22 = 0.7, τ(t) =
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0.02 − 0.01 sin 2πt, τ = ln 2, a1(t) = 10.9 − 4 cos 2πt, a2(t) = 11 − sin 2πt, θik = −1 + k, k ∈
Z+, δi = γi = 1.

σij(t, x, ui(t, x), ui(t − τ(t), x)) =
√
2
2

(tanh(ui(t, x)) + tanh(ui(t − τ(t), x))),

b11(t) = 0.3 + 0.1 sin 2πt, b12(t) = 0.4 + 0.1 sin 2πt, b21(t) = 0.2 + 0.1 cos 2πt,

b22(t) = 0.3 − 0.1 cos 2πt, ˜b11(t) = 0.2 + 0.1 sin 2πt, ˜b12(t) = 0.3 − 0.2 cos 2πt,

˜b21(t) = 0.5 + 0.1 cos 2πt, ˜b22(t) = 0.4 − 0.1 sin 2πt, b11(t) = 0.1 − 0.2 sin 2πt,

b12(t) = 0.25 − 0.1 sin 2πt, b21(t) = 0.2 − 0.1 cos 2πt, b22(t) = 0.1 − 0.1 cos 2πt,

J1(t) = 1 + sin 2πt, J2(t) = 2 + cos 2πt.

(4.2)

Direct computation shows that p = 5.65, q + r
∫+∞
0 κ(s)ds = 4.45. Let λ = 0.2, α = 0,M = 1,

and τ = ln 2 satisfying λ < p − qeλτ − r ∫+∞0 κ(s)eλsds. The simulation results are shown in
Figures 1–6. When x2 = 0.1, the states surfaces of u(t, x1, 0.1) are shown in Figures 1 and
2, while x1 = 0.1, the states surfaces of u(t, 0.1, x2) are shown in Figures 3 and 4, they are
illustrated that the system states in (2.1) and (2.2) converge to periodic solutions. In order to
see it clearly, we also draw the curves of the states when x1 = 0.1, x2 = 0.1 in Figures 5 and 6.
Hence, it follows from both Theorem 3.1 and the simulation study that system (2.1)-(2.2) is
globally exponentially periodic stable in the mean square sense.

Example 4.2. Consider an ISRDNNs in (2.1) with parameters on Ω = {(x1, x2)T | 0 < xl <
1/2, l = 1, 2},

tk = 0.5k, κ(s) = kij(s) = se−s, Dil =
1
8

(

i, j, l = 1, 2
)

, J1(t) = sin t, J2(t) = cos t,

A =
[

2 0
0 2

]

, B =
[

0.5 −0.5
0.5 0.5

]

, B = ˜B =
[

0.25 0.25
0.25 0.25

]

, R1 = R2 = D∗ =
[

1 0
0 1

]

,

fj
(

η
)

= ˜fj
(

η
)

= fj
(

η
)

= sin
η

2
+
η

2
, j = 1, 2, τ(t) = 0.1 − 0.1 sin t.

(4.3)

Clearly, fj(η), ˜fj(η), f j(η), (j = 1, 2) satisfy the (A2) with Lf = L
˜f = Lf = I2, and

τ(t), J1(t), J2(t) are continuously periodic functions with a common positive period 2π .

Taking p = 1, q = 0.2, r = 0.1, λ = 0.1, α = 0, βk = 1, P = 2I2, Ck = 0.5I2, Ξ1 = Ξ2 =
I2. By simple calculation, we can easily check (i), (ii), (iii), and (iv) in Theorem 3.2.

To this end, the conditions of Theorem 3.2 are satisfied, therefore, there exists exactly
one 2π-periodic solution, and all other solutions converge exponentially to it in the mean
square sense as t → +∞.

Remark 4.3. In Examples 4.1 and 4.2, many factors such as noise perturbations, mixed time
delays, and impulsive effects are considered. Therefore, the results reported in [13, 14, 18–20]
do not hold in our examples.
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Figure 1: The surface of u1(t, x1, 0.1) when x2 = 0.1.
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Figure 2: The surface of u2(t, x1, 0.1) when x2 = 0.1.
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Figure 3: The surface of u1(t, 0.1, x2) when x1 = 0.1.
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Figure 4: The surface of u2(t, 0.1, x2) when x1 = 0.1.
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Figure 5: The curve of u1(t, 0.1, 0.1) when x1 = 0.1, x2 = 0.1.

5. Conclusions

In this paper, the dynamical behaviors for ISRDNNs with mixed time delays have been
studied. By using an L-operator differential inequality with impulses and mixed time delays,
as well as linear matrix inequality technique, some novel sufficient conditions are derived
to guarantee the existence, uniqueness, global exponential stability of the periodic solutions,
and the global exponential stability of the equilibrium point in the mean square sense. To
the best of our knowledge, the results presented here have been not appeared in the related
literature. The obtained sufficient conditions depend on the reaction-diffusion terms. The
obtained results generalize and comprise those results with/without reaction-diffusion term,
impulsive operators, or noise disturbances in the previous literature. Finally, two numerical
examples are also provided in the end of the paper to show the effectiveness of our results.
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Figure 6: The curve of u2(t, 0.1, 0.1) when x1 = 0.1, x2 = 0.1.
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