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Abstract. 
Using variational arguments we prove some existence and nonexistence results for positive solutions of a class of elliptic boundary-value problems involving the 
	
		
			

				𝑝
			

		
	
-Laplacian.


1. Introduction
In a recent paper, Rădulescu and Repovš [1] studied the existence and nonexistence of positive solutions of the nonlinear elliptic problem
						
	
 		
 			
				(
				1
				.
				1
				)
			
 		
	

	
		
			
				−
				Δ
				𝑢
				=
				𝜆
				𝑘
				(
				𝑥
				)
				𝑢
			

			

				𝑞
			

			
				±
				ℎ
				(
				𝑥
				)
				𝑢
			

			

				𝑝
			

			
				i
				n
				Ω
				,
				𝑢
				|
			

			
				𝜕
				Ω
			

			
				=
				0
				,
				𝑢
				>
				0
				i
				n
				Ω
				,
			

		
	

					where 
	
		
			

				Ω
			

		
	
 is a smooth bounded domain in 
	
		
			

				ℝ
			

			

				𝑛
			

		
	
, 
	
		
			
				𝜆
				>
				0
			

		
	
 is a parameter, 
	
		
			
				0
				<
				𝑞
				<
				1
				<
				𝑝
			

		
	
, and 
	
		
			

				ℎ
			

		
	
, 
	
		
			

				𝑘
			

		
	
 in 
	
		
			

				𝐿
			

			

				∞
			

			
				(
				Ω
				)
			

		
	
 such that
						
	
 		
 			
				(
				1
				.
				2
				)
			
 		
	

	
		
			
				e
				s
				s
				i
				n
				f
			

			
				𝑥
				∈
				Ω
			

			
				𝑘
				(
				𝑥
				)
				>
				0
				,
				e
				s
				s
				i
				n
				f
			

			
				𝑥
				∈
				Ω
			

			
				ℎ
				(
				𝑥
				)
				>
				0
				.
			

		
	

					They showed using sub-supersolutions arguments and monotonicity methods that the problem (1.1)+ has a minimal solution, provided that 
	
		
			
				𝜆
				>
				0
			

		
	
 is small enough. The next result is concerned with problem (1.1)− and asserts that there is some 
	
		
			

				𝜆
			

			

				∗
			

			
				>
				0
			

		
	
 such that (1.1)− has a nontrivial solution if 
	
		
			
				𝜆
				>
				𝜆
			

			

				∗
			

		
	
 and no solution exists provided that 
	
		
			
				𝜆
				<
				𝜆
			

			

				∗
			

		
	
.
In the present paper we consider that the corresponding quasilinear problem
						
	
 		
 			
				(
				1
				.
				3
				)
			
 		
	

	
		
			
				−
				Δ
			

			

				𝑝
			

			
				𝑢
				=
				𝜆
				𝑘
				(
				𝑥
				)
				𝑢
			

			

				𝑞
			

			
				±
				ℎ
				(
				𝑥
				)
				𝑢
			

			

				𝑟
			

			
				i
				n
				Ω
				,
				𝑢
				|
			

			
				𝜕
				Ω
			

			
				=
				0
				,
				𝑢
				>
				0
				i
				n
				Ω
				,
			

		
	

					where 
	
		
			

				Δ
			

			

				𝑝
			

			
				𝑢
				=
				d
				i
				v
				(
				|
				∇
				𝑢
				|
			

			
				𝑝
				−
				2
			

			
				∇
				𝑢
				)
			

		
	
, denotes the 
	
		
			

				𝑝
			

		
	
-Laplacian operator, 
	
		
			
				1
				<
				𝑝
				<
				∞
			

		
	
, 
	
		
			
				𝜆
				>
				0
			

		
	
, 
	
		
			
				0
				≤
				𝑞
				<
				𝑝
				−
				1
				<
				𝑟
				<
				𝑝
			

			

				∗
			

			
				−
				1
			

		
	
, with 
	
		
			

				𝑝
			

			

				∗
			

			
				=
				𝑁
				𝑝
				/
				(
				𝑁
				−
				𝑝
				)
			

		
	
 if 
	
		
			
				𝑝
				<
				𝑁
			

		
	
, and 
	
		
			

				𝑝
			

			

				∗
			

			
				=
				+
				∞
			

		
	
 otherwise, and 
	
		
			

				ℎ
			

		
	
, 
	
		
			

				𝑘
			

		
	
 in 
	
		
			

				𝐿
			

			

				∞
			

			
				(
				Ω
				)
			

		
	
 such that
						
	
 		
 			
				(
				1
				.
				4
				)
			
 		
	

	
		
			
				e
				s
				s
				i
				n
				f
			

			
				𝑥
				∈
				Ω
			

			
				𝑘
				(
				𝑥
				)
				>
				0
				,
				e
				s
				s
				i
				n
				f
			

			
				𝑥
				∈
				Ω
			

			
				ℎ
				(
				𝑥
				)
				>
				0
				.
			

		
	

					We are concerned with the existence of weak solutions of problems (1.3)+ and (1.3)−, that is, for functions 
	
		
			
				𝑢
				∈
				𝑊
			

			
				0
				1
				,
				𝑝
			

			
				(
				Ω
				)
			

		
	
 satisfying 
	
		
			
				e
				s
				s
				i
				n
				f
			

			

				𝐾
			

			
				𝑢
				>
				0
			

		
	
 over every compact set 
	
		
			
				𝐾
				⊂
				Ω
			

		
	
 and
						
	
 		
 			
				(
				1
				.
				5
				)
			
 		
	

	
		
			

				
			

			

				Ω
			

			
				|
				|
				|
				|
				∇
				𝑢
			

			
				𝑝
				−
				2
			

			
				
				∇
				𝑢
				⋅
				∇
				𝜙
				d
				𝑥
				=
				𝜆
			

			

				Ω
			

			
				𝑘
				(
				𝑥
				)
				𝑢
			

			

				𝑞
			

			
				
				𝜙
				d
				𝑥
				±
			

			

				Ω
			

			
				ℎ
				(
				𝑥
				)
				𝑢
			

			

				𝑟
			

			
				𝜙
				d
				𝑥
			

		
	

					for all 
	
		
			
				𝜙
				∈
				𝐶
			

			

				∞
			

			

				c
			

			
				(
				Ω
				)
			

		
	
. As usual, 
	
		
			

				𝐶
			

			

				∞
			

			

				c
			

			
				(
				Ω
				)
			

		
	
 denotes the space of all 
	
		
			

				𝐶
			

			

				∞
			

		
	
 functions 
	
		
			
				𝜙
				∶
				Ω
				→
				ℝ
			

		
	
 with compact support. Using variational methods, we will prove the following theorems.
Theorem 1.1.  Assume 
	
		
			
				0
				≤
				𝑞
				<
				𝑝
				−
				1
				<
				𝑟
				<
				𝑝
			

			

				∗
			

			
				−
				1
			

		
	
. Then there exists a positive number 
	
		
			

				Λ
			

		
	
 such that the following properties hold:  (1)for all 
	
		
			
				𝜆
				∈
				(
				0
				,
				Λ
				)
			

		
	
 problem (1.3)+ has a minimal solution 
	
		
			

				𝑢
			

			

				𝜆
			

		
	
;(2)Problem (1.3)+ has a solution if 
	
		
			
				𝜆
				=
				Λ
			

		
	
;(3)Problem (1.3)+ does not have any solution if 
	
		
			
				𝜆
				>
				Λ
			

		
	
.
Theorem 1.2.  Assume 
	
		
			
				0
				≤
				𝑞
				<
				𝑝
				−
				1
				<
				𝑟
				<
				𝑝
			

			

				∗
			

			
				−
				1
			

		
	
. Then there exists a positive number 
	
		
			

				Λ
			

		
	
 such that the following properties hold:  (1)If 
	
		
			
				𝜆
				>
				Λ
			

		
	
, then problem (1.3)− has at least one solution; (2)If 
	
		
			
				𝜆
				<
				Λ
			

		
	
, then problem (1.3)− does not have any solution. 
2. Proof of Theorem 1.1
 At first, we give the definition of weak supersolution and subsolution of (1.3)+. By definition 
	
		
			
				𝑢
				∈
				𝑊
			

			
				0
				1
				,
				𝑝
			

			
				(
				Ω
				)
			

		
	
 is a weak subsolution to (1.3)+ if 
	
		
			
				𝑢
				>
				0
			

		
	
 in 
	
		
			

				Ω
			

		
	
 and
						
	
 		
 			
				(
				2
				.
				1
				)
			
 		
	

	
		
			

				
			

			

				Ω
			

			
				|
				|
				|
				|
				∇
				𝑢
			

			
				𝑝
				−
				2
			

			
				
				∇
				𝑢
				⋅
				∇
				𝜙
				d
				𝑥
				≤
				𝜆
			

			

				Ω
			

			
				𝑘
				(
				𝑥
				)
				𝑢
			

			

				𝑞
			

			
				
				𝜙
				d
				𝑥
				±
			

			

				Ω
			

			
				ℎ
				(
				𝑥
				)
				𝑢
			

			

				𝑟
			

			
				𝜙
				d
				𝑥
			

		
	

					for all 
	
		
			
				𝜙
				∈
				𝐶
			

			

				∞
			

			

				c
			

			
				(
				Ω
				)
			

		
	
. Similarly 
	
		
			
				𝑢
				∈
				𝑊
			

			
				0
				1
				,
				𝑝
			

			
				(
				Ω
				)
			

		
	
 is a weak supersolution to (1.3)+ if in the above the reverse inequalities hold.
Let us define
						
	
 		
 			
				(
				2
				.
				2
				)
			
 		
	

	
		
			

				Λ
			

			
				d
				e
				f
			

			
				
				=
				s
				u
				p
				𝜆
				>
				0
				∶
				(
				1
				.
				3
				)
			

			

				+
			

			
				
				h
				a
				s
				a
				w
				e
				a
				k
				s
				o
				l
				u
				t
				i
				o
				n
			

		
	

					and the energy functional 
	
		
			

				𝐸
			

			

				𝜆
			

			
				∶
				𝑊
			

			
				0
				1
				,
				𝑝
			

			
				(
				Ω
				)
				→
				ℝ
			

		
	
 defined by
						
	
 		
 			
				(
				2
				.
				3
				)
			
 		
	

	
		
			

				𝐸
			

			

				𝜆
			

			
				1
				(
				𝑢
				)
				=
			

			
				
			
			
				𝑝
				
			

			

				Ω
			

			
				|
				|
				|
				|
				∇
				𝑢
			

			

				𝑝
			

			
				−
				𝜆
				d
				𝑥
			

			
				
			
			
				
				𝑞
				+
				1
			

			

				Ω
			

			
				𝑘
				(
				𝑥
				)
				𝑢
			

			
				𝑞
				+
				1
			

			
				1
				d
				𝑥
				−
			

			
				
			
			
				
				𝑟
				+
				1
			

			

				Ω
			

			
				ℎ
				(
				𝑥
				)
				𝑢
			

			
				𝑞
				+
				1
			

			
				d
				𝑥
			

		
	

					in the Sobolev space 
	
		
			

				𝑊
			

			
				0
				1
				,
				𝑝
			

			
				(
				Ω
				)
			

		
	
.
The proof of the theorem is organized in several steps.
Step 1 (existence of minimal solution for 
	
		
			
				0
				<
				𝜆
				<
				Λ
			

		
	
). To show the existence of a solution to (1.3)+, we construct a subsolution 
	
		
			

				𝑢
			

			

				_
			

			

				𝜆
			

		
	
, and a supersolution 
	
		
			
				
			
			

				𝑢
			

			

				𝜆
			

		
	
, such that 
	
		
			

				𝑢
			

			

				_
			

			

				𝜆
			

			

				≤
			

			
				
			
			

				𝑢
			

			

				𝜆
			

		
	
.We introduce the following Dirichlet problem:
							
	
 		
 			
				(
				2
				.
				4
				)
			
 		
	

	
		
			
				−
				Δ
			

			

				𝑝
			

			
				̃
				𝑢
				=
				𝜆
				𝑘
				(
				𝑥
				)
				̃
				𝑢
			

			

				𝑞
			

			
				|
				|
				i
				n
				Ω
				,
				̃
				𝑢
			

			
				𝜕
				Ω
			

			
				=
				0
				,
				̃
				𝑢
				>
				0
				i
				n
				Ω
				.
			

		
	

						From [2] we know there exists a unique solution, say 
	
		
			
				̃
				𝑢
			

		
	
, satisfying the problem (2.4). Define 
	
		
			

				𝑢
			

			

				_
			

			

				𝜆
			

			
				=
				𝜖
				̃
				𝑢
			

		
	
. Then 
	
		
			
				−
				Δ
			

			

				𝑝
			

			
				(
				𝑢
			

			

				_
			

			

				𝜆
			

			
				)
				=
				𝜆
				𝑘
				(
				𝑥
				)
				𝜖
			

			
				𝑝
				−
				1
			

			
				̃
				𝑢
			

			

				𝑞
			

		
	
 and 
	
		
			

				𝑢
			

			

				_
			

			

				𝜆
			

		
	
 is a subsolution of the problem (1.3)+ if 
							
	
 		
 			
				(
				2
				.
				5
				)
			
 		
	

	
		
			
				𝜆
				𝑘
				(
				𝑥
				)
				𝜖
			

			
				𝑝
				−
				1
			

			
				̃
				𝑢
			

			

				𝑞
			

			
				≤
				𝜆
				𝑘
				(
				𝑥
				)
				𝜖
			

			

				𝑞
			

			
				̃
				𝑢
			

			

				𝑞
			

			
				+
				ℎ
				(
				𝑥
				)
				𝜖
			

			

				𝑟
			

			
				̃
				𝑢
			

			

				𝑟
			

			

				.
			

		
	

						Indeed, for 
	
		
			

				𝜖
			

		
	
 small enough we get 
							
	
 		
 			
				(
				2
				.
				6
				)
			
 		
	

	
		
			
				𝜆
				𝑘
				(
				𝑥
				)
				𝜖
			

			
				𝑝
				−
				1
			

			
				̃
				𝑢
			

			

				𝑞
			

			
				≤
				𝜆
				𝑘
				(
				𝑥
				)
				𝜖
			

			

				𝑞
			

			
				̃
				𝑢
			

			

				𝑞
			

			
				≤
				𝜆
				𝑘
				(
				𝑥
				)
				𝜖
			

			

				𝑞
			

			
				̃
				𝑢
			

			

				𝑞
			

			
				+
				ℎ
				(
				𝑥
				)
				𝜖
			

			

				𝑟
			

			
				̃
				𝑢
			

			

				𝑟
			

			

				.
			

		
	

						(Since 
	
		
			
				𝑞
				<
				𝑝
				−
				1
			

		
	
 and for 
	
		
			
				𝜖
				∈
				(
				0
				,
				1
				)
			

		
	
). Then 
	
		
			
				𝜖
				̃
				𝑢
			

		
	
 is a subsolution of the problem (1.3)+.On the other hand, let 
	
		
			

				𝑣
			

		
	
 the solution to the following problem be: 
							
	
 		
 			
				(
				2
				.
				7
				)
			
 		
	

	
		
			
				−
				Δ
			

			

				𝑝
			

			
				𝑣
				=
				𝜆
				+
				1
				i
				n
				Ω
				,
				𝑣
				|
			

			
				𝜕
				Ω
			

			
				=
				0
				,
				𝑣
				>
				0
				i
				n
				Ω
				.
			

		
	
Then 
	
		
			
				0
				<
				𝑣
				<
				𝐾
			

		
	
 in 
	
		
			

				Ω
			

		
	
. By simplicity of writing we call 
							
	
 		
 			
				(
				2
				.
				8
				)
			
 		
	

	
		
			
				𝐹
				(
				𝑢
				)
				=
				𝜆
				𝑘
				(
				𝑥
				)
				𝑢
			

			

				𝑞
			

			
				+
				ℎ
				(
				𝑥
				)
				𝑢
			

			

				𝑟
			

			

				.
			

		
	
Define 
	
		
			
				
			
			

				𝑢
			

			

				𝜆
			

			
				(
				𝑥
				)
				=
				𝑇
				𝑣
				(
				𝑥
				)
			

		
	
 where 
	
		
			

				𝑇
			

		
	
 is a constant that will be chosen in such a way that 
							
	
 		
 			
				(
				2
				.
				9
				)
			
 		
	

	
		
			
				−
				Δ
			

			

				𝑝
			

			
				
			
			

				𝑢
			

			

				𝜆
			

			
				
				≥
				𝐹
				(
				𝑇
				𝑀
				)
				≥
				𝐹
			

			
				
			
			

				𝑢
			

			

				𝜆
			

			
				
				,
			

		
	

						where 
	
		
			
				𝑀
				=
				m
				a
				x
				{
				1
				,
				‖
				𝑣
				‖
			

			

				∞
			

			

				}
			

		
	
. Now 
	
		
			
				−
				Δ
			

			

				𝑝
			

			
				
			
			

				𝑢
			

			

				𝜆
			

			
				=
				𝑇
			

			
				𝑝
				−
				1
			

			
				(
				𝜆
				+
				1
				)
			

		
	
 and 
							
	
 		
 			
				(
				2
				.
				1
				0
				)
			
 		
	

	
		
			
				𝐹
				
			

			
				
			
			

				𝑢
			

			

				𝜆
			

			
				
				≡
				𝜆
				𝑘
				(
				𝑥
				)
				𝑇
			

			

				𝑞
			

			

				𝑣
			

			

				𝑞
			

			
				+
				𝑇
			

			

				𝑟
			

			

				𝑣
			

			

				𝑟
			

			
				≤
				𝜆
				𝑐
			

			

				1
			

			

				𝑇
			

			

				𝑞
			

			

				𝑀
			

			

				𝑞
			

			
				+
				𝑐
			

			

				2
			

			

				𝑇
			

			

				𝑟
			

			

				𝑀
			

			

				𝑟
			

			

				,
			

		
	

						where 
	
		
			

				𝑐
			

			

				1
			

			
				=
				‖
				𝑘
				‖
			

			

				𝐿
			

			

				∞
			

		
	
 et 
	
		
			

				𝑐
			

			

				2
			

			
				=
				‖
				ℎ
				‖
			

			

				𝐿
			

			

				∞
			

		
	
. Then, it is sufficient to find 
	
		
			

				𝑇
			

		
	
 such that
							
	
 		
 			
				(
				2
				.
				1
				1
				)
			
 		
	

	
		
			
				(
				𝜆
				+
				1
				)
				≥
				𝜆
				𝑐
			

			

				1
			

			

				𝑇
			

			
				𝑞
				+
				1
				−
				𝑝
			

			

				𝑀
			

			

				𝑞
			

			
				+
				𝑐
			

			

				2
			

			

				𝑇
			

			
				𝑟
				+
				1
				−
				𝑝
			

			

				𝑀
			

			

				𝑟
			

			

				.
			

		
	
We call 
							
	
 		
 			
				(
				2
				.
				1
				2
				)
			
 		
	

	
		
			
				𝜑
				(
				𝑇
				)
				=
				𝜆
				𝐴
				𝑇
			

			
				𝑞
				+
				1
				−
				𝑝
			

			
				+
				𝐵
				𝑇
			

			
				𝑟
				+
				1
				−
				𝑝
			

			

				,
			

		
	

						with 
	
		
			
				𝐴
				=
				𝑐
			

			

				1
			

			

				𝑀
			

			

				𝑞
			

			
				,
				𝐵
				=
				𝑐
			

			

				2
			

			

				𝑀
			

			

				𝑟
			

		
	
. Then 
							
	
 		
 			
				(
				2
				.
				1
				3
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑇
				→
				0
			

			

				+
			

			
				𝜑
				(
				𝑇
				)
				=
				l
				i
				m
			

			
				𝑇
				→
				∞
			

			
				𝜑
				(
				𝑇
				)
				=
				∞
				,
			

		
	

						because 
	
		
			
				𝑞
				+
				1
				−
				𝑝
				<
				0
				<
				𝑟
				+
				1
				−
				𝑝
			

		
	
; then 
	
		
			

				𝜑
			

		
	
 attains a minimum in 
	
		
			
				[
				0
				,
				∞
				)
			

		
	
. Elementary computations shows that this function attains its minimum for 
	
		
			

				𝑇
			

			

				0
			

			
				=
				𝐶
				𝜆
			

			
				1
				/
				(
				𝑟
				−
				𝑞
				)
			

		
	
 where 
	
		
			
				𝐶
				=
				[
				𝐴
				𝐵
			

			
				−
				1
			

			
				(
				𝑟
				−
				𝑝
				+
				1
				)
				(
				𝑝
				−
				𝑞
				−
				1
				)
			

			
				−
				1
			

			

				]
			

			
				1
				/
				(
				𝑟
				−
				𝑞
				)
			

		
	
. For the validity of (2.11) it suffices that 
							
	
 		
 			
				(
				2
				.
				1
				4
				)
			
 		
	

	
		
			
				𝜑
				
				𝑇
			

			

				0
			

			
				
				≤
				𝜆
				+
				1
				,
			

		
	

						that is,
							
	
 		
 			
				(
				2
				.
				1
				5
				)
			
 		
	

	
		
			
				𝐷
				𝜆
			

			
				(
				𝑟
				+
				1
				−
				𝑝
				)
				/
				(
				𝑟
				−
				𝑞
				)
			

			
				<
				𝜆
				+
				1
				,
			

		
	

						where 
	
		
			

				𝐷
			

		
	
 is a constant, depends on 
	
		
			
				𝑝
				,
				𝑞
			

		
	
, and 
	
		
			

				𝑀
			

		
	
. Then there exists 
	
		
			

				𝜆
			

			

				0
			

		
	
 such that for 
	
		
			
				0
				<
				𝜆
				<
				𝜆
			

			

				0
			

			

				,
			

			
				
			
			
				𝑢
				(
				𝑥
				)
				=
				𝑇
			

			

				0
			

			

				𝑣
			

		
	
 is a supersolution of problem (1.3)+. It remains to show that 
	
		
			
				𝜖
				̃
				𝑢
				≤
				𝑇
			

			

				0
			

			

				𝑣
			

		
	
. In turn, fix the supersolution, that is, 
	
		
			

				𝑇
			

		
	
, for 
	
		
			

				𝜖
			

		
	
 small enough, we get 
							
	
 		
 			
				(
				2
				.
				1
				6
				)
			
 		
	

	
		
			
				−
				Δ
			

			

				𝑝
			

			

				𝑢
			

			

				_
			

			

				𝜆
			

			
				=
				𝜆
				𝑘
				(
				𝑥
				)
				𝜖
			

			
				𝑝
				−
				1
			

			
				̃
				𝑢
			

			

				𝑞
			

			
				≤
				𝜆
				𝜖
			

			
				𝑝
				−
				1
			

			
				≤
				−
				Δ
			

			

				𝑝
			

			

				
			

			
				
			
			

				𝑢
			

			

				𝜆
			

			
				
				.
			

		
	

						Consequently, we may apply the weak comparison principle (see Proposition 2.3 in [3]) in order to conclude that 
	
		
			

				𝑢
			

			

				_
			

			

				𝜆
			

			

				≤
			

			
				
			
			

				𝑢
			

			

				𝜆
			

		
	
. Thus, By the classical iteration method (1.3)+ has a solution between the subsolution and supersolution.Let us now prove that 
	
		
			

				𝑢
			

			

				𝜆
			

		
	
 is a minimal solution of (1.3)+. We use here the weak comparison principle (see Proposition 2.3 in  Cuesta and  Taká
	
		
			
				̆
				c
			

		
	
 [3]) and the following monotone iterative scheme:
							
	
 		
 			
				(
				2
				.
				1
				7
				)
			
 		
	

	
		
			
				−
				Δ
			

			

				𝑝
			

			

				𝑢
			

			

				𝑛
			

			
				=
				𝜆
				𝑘
				(
				𝑥
				)
				𝑢
			

			
				𝑞
				𝑛
				−
				1
			

			
				+
				ℎ
				(
				𝑥
				)
				𝑢
			

			
				𝑟
				𝑛
				−
				1
			

			
				𝑢
				i
				n
				Ω
				;
			

			

				𝑛
			

			
				|
				|
			

			
				𝜕
				Ω
			

			
				=
				0
				,
			

		
	

						where 
	
		
			

				𝑢
			

			

				0
			

			
				=
				𝑢
			

			

				_
			

			

				𝜆
			

		
	
, the unique solution to (2.4). Note that 
	
		
			

				𝑢
			

			

				0
			

		
	
 is a weak subsolution to (1.3)+. and 
	
		
			

				𝑢
			

			

				0
			

			
				≤
				𝑈
			

		
	
 where 
	
		
			

				𝑈
			

		
	
 is any weak solution to (1.3)+. Then, from the weak comparison principle, we get easily that 
	
		
			

				𝑢
			

			

				0
			

			
				≤
				𝑢
			

			

				1
			

		
	
 and 
	
		
			
				{
				𝑢
			

			

				𝑛
			

			

				}
			

			
				∞
				𝑛
				=
				1
			

		
	
 is a nondecreasing sequence. Furthermore, 
	
		
			

				𝑢
			

			

				𝑛
			

			
				≤
				𝑈
			

		
	
 and 
	
		
			
				{
				𝑢
			

			

				𝑛
			

			

				}
			

			
				∞
				𝑛
				=
				1
			

		
	
 is uniformly bounded in 
	
		
			

				𝑊
			

			
				0
				1
				,
				𝑝
			

			
				(
				Ω
				)
			

		
	
. Hence, it is easy to prove that 
	
		
			
				{
				𝑢
			

			

				𝑛
			

			

				}
			

		
	
 converges weakly in 
	
		
			

				𝑊
			

			
				0
				1
				,
				𝑝
			

			
				(
				Ω
				)
			

		
	
 and pointwise to 
	
		
			
				̂
				𝑢
			

			

				𝜆
			

		
	
, a weak solution to (1.3)+. Let us show that 
	
		
			
				̂
				𝑢
			

			

				𝜆
			

		
	
 is the minimal solution to (1.3)+ for any 
	
		
			
				0
				<
				𝜆
				<
				Λ
			

		
	
. Let 
	
		
			

				𝑣
			

			

				𝜆
			

		
	
 a weak solution to (1.3)+ for any 
	
		
			
				0
				<
				𝜆
				<
				Λ
			

		
	
. Then, 
	
		
			

				𝑢
			

			

				0
			

			
				=
				𝑢
			

			

				_
			

			

				𝜆
			

			
				≤
				𝑣
			

			

				𝜆
			

		
	
. From the weak comparison principle, 
	
		
			

				𝑢
			

			

				𝑛
			

			
				≤
				𝑣
			

			

				𝜆
			

		
	
 for any 
	
		
			
				𝑛
				≥
				0
			

		
	
. Letting 
	
		
			
				𝑛
				→
				∞
			

		
	
, we get 
	
		
			
				̂
				𝑢
			

			

				𝜆
			

			
				≤
				𝑣
			

			

				𝜆
			

		
	
. This completes the proof of the Step 1.
Step 2 (there exists 
	
		
			
				Λ
				>
				0
			

		
	
 such that (1.3)+ has no positive solution for 
	
		
			
				𝜆
				>
				Λ
			

		
	
). From the definition of 
	
		
			

				Λ
			

		
	
, problem (1.3)+ does not have any solution if 
	
		
			
				𝜆
				>
				Λ
			

		
	
. In what follows we claim that 
	
		
			
				Λ
				<
				∞
			

		
	
. We argue by contradiction: suppose there exists a sequence 
	
		
			

				𝜆
			

			

				𝑛
			

			
				→
				∞
			

		
	
 such that (1.3)+ admits a solution 
	
		
			

				𝑢
			

			

				𝑛
			

		
	
. Denote 
							
	
 		
 			
				(
				2
				.
				1
				8
				)
			
 		
	

	
		
			
				
				𝑚
				∶
				=
				m
				i
				n
				e
				s
				s
				i
				n
				f
			

			
				𝑥
				∈
				Ω
			

			
				𝑘
				(
				𝑥
				)
				,
				e
				s
				s
				i
				n
				f
			

			
				𝑥
				∈
				Ω
			

			
				
				ℎ
				(
				𝑥
				)
				>
				0
				.
			

		
	

						There exists 
	
		
			

				𝜆
			

			

				∗
			

			
				>
				0
			

		
	
 such that
							
	
 		
 			
				(
				2
				.
				1
				9
				)
			
 		
	

	
		
			
				𝑚
				(
				𝜆
				𝑡
			

			

				𝑞
			

			
				+
				𝑡
			

			

				𝑟
			

			
				
				𝜆
				)
				≥
			

			

				1
			

			
				
				𝑡
				+
				𝜖
			

			
				𝑝
				−
				1
			

			
				∀
				𝑡
				>
				0
				,
				𝜖
				∈
				(
				0
				,
				1
				)
				,
				𝜆
				>
				𝜆
			

			

				∗
			

			

				,
			

		
	

						where 
	
		
			

				𝜆
			

			

				1
			

		
	
 is the first Dirichlet eigenvalue of 
	
		
			
				−
				Δ
			

			

				𝑝
			

		
	
 is positive and is given by
							
	
 		
 			
				(
				2
				.
				2
				0
				)
			
 		
	

	
		
			

				𝜆
			

			

				1
			

			
				=
				m
				i
				n
			

			
				𝑢
				≠
				0
			

			

				∫
			

			

				Ω
			

			
				|
				|
				|
				|
				∇
				𝑢
			

			

				𝑝
			

			
				
			
			

				∫
			

			

				Ω
			

			
				|
				𝑢
				|
			

			

				𝑝
			

		
	

						(see Lindqvist [4]). Choose 
	
		
			

				𝜆
			

			

				𝑛
			

			
				>
				𝜆
			

			

				∗
			

		
	
. Clearly 
	
		
			

				𝑢
			

			

				𝑛
			

		
	
 is a supersolution of the problem
							
	
 		
 			
				(
				2
				.
				2
				1
				)
			
 		
	

	
		
			
				−
				Δ
			

			

				𝑝
			

			
				
				𝜆
				𝑢
				=
			

			

				1
			

			
				
				𝑢
				+
				𝜖
			

			
				𝑝
				−
				1
			

			
				i
				n
				Ω
				,
				𝑢
				>
				0
				,
				𝑢
				|
			

			
				𝜕
				Ω
			

			
				=
				0
			

		
	

						for all 
	
		
			
				𝜖
				∈
				(
				0
				,
				1
				)
			

		
	
. We now use the result in [2] to choose 
	
		
			
				𝜇
				<
				𝜆
			

			

				1
			

			
				+
				𝜖
			

		
	
 small enough so that 
	
		
			
				𝜇
				𝜙
			

			

				1
			

			
				(
				𝑥
				)
				<
				𝑢
			

			

				𝑛
			

			
				(
				𝑥
				)
			

		
	
 and 
	
		
			
				𝜇
				𝜙
			

			

				1
			

		
	
 is a subsolution to problem (2.8). By a monotone interation procedure we obtain a solution to (2.8) for any 
	
		
			
				𝜖
				∈
				(
				0
				,
				1
				)
			

		
	
, contradicting the fact that 
	
		
			

				𝜆
			

			

				1
			

		
	
 is an isolated point in the spectrum of 
	
		
			
				−
				Δ
			

			

				𝑝
			

		
	
 in 
	
		
			

				𝑊
			

			
				0
				1
				,
				𝑝
			

			
				(
				Ω
				)
			

		
	
 (see  Anane [5]). This proves the claim and completes the proof of the Step 2.
Step 3 (there exists at least one positive-weak solution for 
	
		
			
				𝜆
				=
				Λ
			

		
	
 to (1.3)+). Let 
	
		
			
				{
				𝜆
			

			

				𝑘
			

			

				}
			

			
				𝑘
				∈
				ℕ
			

		
	
 be such that 
	
		
			

				𝜆
			

			

				𝑘
			

			
				↑
				Λ
			

		
	
 as 
	
		
			
				𝑘
				→
				∞
			

		
	
. Then, from Step 1, there exists 
	
		
			

				𝑢
			

			

				𝑘
			

			
				=
				𝑢
			

			

				𝜆
			

			

				𝑘
			

			
				≥
				𝑢
			

			

				_
			

			

				𝜆
			

			

				𝑘
			

		
	
 to a weak positive solution to (1.3)+ for 
	
		
			
				𝜆
				=
				𝜆
			

			

				𝑘
			

		
	
. Therefore, for any 
	
		
			
				𝜙
				∈
				𝐶
			

			
				∞
				𝑐
			

			
				(
				Ω
				)
			

		
	
, we have
							
	
 		
 			
				(
				2
				.
				2
				2
				)
			
 		
	

	
		
			

				
			

			

				Ω
			

			
				|
				|
				∇
				𝑢
			

			

				𝑘
			

			
				|
				|
			

			
				𝑝
				−
				2
			

			
				∇
				𝑢
			

			

				𝑘
			

			
				∇
				𝜙
				d
				𝑥
				=
				𝜆
			

			

				𝑘
			

			
				
				𝑘
				(
				𝑥
				)
			

			

				Ω
			

			
				
				𝑢
			

			

				𝑘
			

			

				
			

			

				𝑞
			

			
				
				𝜙
				d
				𝑥
				+
				ℎ
				(
				𝑥
				)
			

			

				Ω
			

			

				𝑢
			

			
				𝑟
				𝑘
			

			
				𝜙
				d
				𝑥
				.
			

		
	

						Since 
	
		
			

				𝑢
			

			

				𝑘
			

			
				∈
				𝑊
			

			
				0
				1
				,
				𝑝
			

			
				(
				Ω
				)
			

		
	
 and 
	
		
			

				𝑢
			

			

				𝑘
			

			
				≥
				𝑢
			

			

				_
			

			

				𝜆
			

			

				𝑘
			

		
	
 it is easy to see that (2.22) holds also for 
	
		
			
				𝜙
				∈
				𝑊
			

			
				0
				1
				,
				𝑝
			

			
				(
				Ω
				)
			

		
	
. Moreover, from above
							
	
 		
 			
				(
				2
				.
				2
				3
				)
			
 		
	

	
		
			

				𝐸
			

			

				𝜆
			

			

				𝑘
			

			
				
				𝑢
			

			

				𝑘
			

			
				
				≤
				𝐸
			

			

				𝜆
			

			

				𝑘
			

			
				
				𝑢
			

			

				_
			

			

				𝜆
			

			

				𝑘
			

			
				
				<
				1
			

			
				
			
			
				𝑝
				
			

			

				Ω
			

			
				|
				|
				|
				|
				∇
				𝑢
			

			

				_
			

			

				𝜆
			

			

				𝑘
			

			
				|
				|
				|
				|
			

			

				𝑝
			

			
				𝜆
				d
				𝑥
				−
			

			

				𝑘
			

			
				𝑘
				(
				𝑥
				)
			

			
				
			
			
				
				𝑞
				+
				1
			

			

				Ω
			

			

				𝑢
			

			

				_
			

			

				𝜆
			

			

				𝑘
			

			
				𝑞
				+
				1
			

			
				d
				𝑥
				<
				0
				,
			

		
	

						it follows that
							
	
 		
 			
				(
				2
				.
				2
				4
				)
			
 		
	

	
		
			
				s
				u
				p
			

			

				𝑘
			

			
				‖
				‖
				𝑢
			

			

				𝑘
			

			
				‖
				‖
			

			

				𝑝
			

			
				<
				∞
				.
			

		
	
 Hence, there exists 
	
		
			

				𝑢
			

			

				Λ
			

			
				≥
				𝑢
			

			

				_
			

			

				𝜆
			

			

				𝑘
			

		
	
 such that 
	
		
			

				𝑢
			

			

				𝑘
			

			
				⇀
				𝑢
			

			

				Λ
			

		
	
 in 
	
		
			

				𝑊
			

			
				0
				1
				,
				𝑝
			

			
				(
				Ω
				)
			

		
	
 as 
	
		
			
				𝑘
				→
				∞
			

		
	
 and then by Sobolev imbedding and using the fact that 
	
		
			
				𝑘
				,
				ℎ
				∈
				𝐿
			

			

				∞
			

			
				(
				Ω
				)
			

		
	
:
							
	
 		
 			
				(
				2
				.
				2
				5
				)
			
 		
	

	
		
			

				𝑢
			

			

				𝑘
			

			
				⇀
				𝑢
				i
				n
				𝐿
			

			

				𝑞
			

			
				(
				Ω
				)
				a
				n
				d
				p
				o
				i
				n
				t
				w
				i
				s
				e
				a
				.
				e
				.
				a
				s
				𝑘
				⟶
				∞
				.
			

		
	

						From (2.22), (2.24), and (2.25), we get for any 
	
		
			
				𝜙
				∈
				𝑊
			

			
				0
				1
				,
				𝑝
			

			
				(
				Ω
				)
			

		
	

	
 		
 			
				(
				2
				.
				2
				6
				)
			
 		
	

	
		
			

				
			

			

				Ω
			

			
				|
				|
				∇
				𝑢
			

			

				Λ
			

			
				|
				|
			

			
				𝑝
				−
				2
			

			
				∇
				𝑢
			

			

				Λ
			

			
				
				∇
				𝜙
				d
				𝑥
				=
				𝜆
			

			

				Ω
			

			
				𝑘
				(
				𝑥
				)
				𝑢
			

			
				𝑞
				Λ
			

			
				
				𝜙
				d
				𝑥
				+
			

			

				Ω
			

			
				ℎ
				(
				𝑥
				)
				𝑢
			

			
				𝑟
				Λ
			

			
				𝜙
				d
				𝑥
			

		
	

						which completes the proof of the Step 3 and gives the proof of Theorem 1.1.  
3. Proof of Theorem 1.2
  At first, we introduce some notation which will be used throughout the proof. The norm in 
	
		
			

				𝑊
			

			
				0
				1
				,
				𝑝
			

			
				(
				Ω
				)
			

		
	
 will be denoted by
						
	
 		
 			
				(
				3
				.
				1
				)
			
 		
	

	
		
			
				‖
				𝑢
				‖
			

			
				𝑝
				d
				e
				f
			

			
				=
				
				
			

			

				Ω
			

			
				|
				|
				|
				|
				∇
				𝑢
			

			

				𝑝
			

			
				
				d
				𝑥
			

			
				1
				/
				𝑝
			

			

				.
			

		
	

					The norm in 
	
		
			

				𝐿
			

			
				𝑞
				+
				1
			

			
				(
				Ω
				)
			

		
	
 will be denoted by
						
	
 		
 			
				(
				3
				.
				2
				)
			
 		
	

	
		
			
				‖
				𝑢
				‖
			

			
				𝑞
				+
				1
				d
				e
				f
			

			
				=
				
				
			

			

				Ω
			

			
				|
				𝑢
				|
			

			
				𝑞
				+
				1
			

			
				
				d
				𝑥
			

			
				1
				/
				𝑞
				+
				1
			

			

				.
			

		
	

					The norm in 
	
		
			

				𝐿
			

			
				𝑟
				+
				1
			

			
				(
				Ω
				)
			

		
	
 will be denoted by
						
	
 		
 			
				(
				3
				.
				3
				)
			
 		
	

	
		
			
				‖
				𝑢
				‖
			

			
				𝑟
				+
				1
				d
				e
				f
			

			
				=
				
				
			

			

				Ω
			

			
				|
				𝑢
				|
			

			
				𝑟
				+
				1
			

			
				
				d
				𝑥
			

			
				1
				/
				𝑟
				+
				1
			

			

				.
			

		
	

					Let us define the energy functional 
	
		
			

				𝐽
			

			

				𝜆
			

			
				∶
				𝑊
			

			
				0
				1
				,
				𝑝
			

			
				(
				Ω
				)
				→
				ℝ
			

		
	
 defined by
						
	
 		
 			
				(
				3
				.
				4
				)
			
 		
	

	
		
			

				𝐽
			

			

				𝜆
			

			
				1
				(
				𝑢
				)
				=
			

			
				
			
			
				𝑝
				
			

			

				Ω
			

			
				|
				|
				|
				|
				∇
				𝑢
			

			

				𝑝
			

			
				−
				𝜆
				d
				𝑥
			

			
				
			
			
				
				𝑞
				+
				1
			

			

				Ω
			

			
				𝑘
				(
				𝑥
				)
				𝑢
			

			
				𝑞
				+
				1
			

			
				1
				d
				𝑥
				+
			

			
				
			
			
				
				𝑟
				+
				1
			

			

				Ω
			

			
				ℎ
				(
				𝑥
				)
				𝑢
			

			
				𝑟
				+
				1
			

			
				d
				𝑥
			

		
	

					in the Sobolev space 
	
		
			

				𝑊
			

			
				0
				1
				,
				𝑝
			

			
				(
				Ω
				)
			

		
	
.
The proof of the theorem is organized in several steps.
Step 1 (coercivity of 
	
		
			

				𝐽
			

			

				𝜆
			

		
	
:). For any 
	
		
			
				𝑢
				∈
				𝑊
			

			
				0
				1
				,
				𝑝
			

			
				(
				Ω
				)
			

		
	
 and all 
	
		
			
				𝜆
				>
				0
			

		
	

	
 		
 			
				(
				3
				.
				5
				)
			
 		
	

	
		
			

				𝐽
			

			

				𝜆
			

			
				1
				(
				𝑢
				)
				≥
			

			
				
			
			
				𝑝
				‖
				𝑢
				‖
			

			

				𝑝
			

			
				−
				𝐶
			

			

				1
			

			
				‖
				𝑢
				‖
			

			
				𝑞
				+
				1
				𝑞
				+
				1
			

			
				+
				𝐶
			

			

				2
			

			
				‖
				𝑢
				‖
			

			
				𝑟
				+
				1
				𝑟
				+
				1
			

			

				,
			

		
	

						where 
	
		
			

				𝐶
			

			

				1
			

			
				=
				𝜆
				‖
				𝑘
				‖
			

			

				𝐿
			

			

				∞
			

			
				/
				(
				𝑞
				+
				1
				)
			

		
	
 and 
	
		
			

				𝐶
			

			

				2
			

			
				=
				(
				𝑟
				+
				1
				)
			

			
				−
				1
			

			
				e
				s
				s
				i
				n
				f
			

			
				𝑥
				∈
				Ω
			

			
				ℎ
				(
				𝑥
				)
			

		
	
 are positive constants. We call 
							
	
 		
 			
				(
				3
				.
				6
				)
			
 		
	

	
		
			
				𝜙
				(
				𝑇
				)
				=
				𝐴
				𝑇
			

			
				𝑞
				+
				1
				−
				𝑝
			

			
				−
				𝐵
				𝑇
			

			
				𝑟
				+
				1
				−
				𝑝
			

			

				.
			

		
	

						Then 
							
	
 		
 			
				(
				3
				.
				7
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑇
				→
				0
			

			

				+
			

			
				𝜙
				(
				𝑇
				)
				=
				l
				i
				m
			

			
				𝑇
				→
				∞
			

			
				𝜙
				(
				𝑇
				)
				=
				∞
				,
			

		
	

						because 
	
		
			
				𝑞
				+
				1
				−
				𝑝
				<
				0
				<
				𝑟
				+
				1
				−
				𝑝
			

		
	
; then 
	
		
			

				𝜑
			

		
	
 attains a minimum 
	
		
			
				𝑚
				<
				0
			

		
	
 in 
	
		
			
				[
				0
				,
				∞
				)
			

		
	
. By elementary computations shows that this function attains its minimum for 
	
		
			
				𝑇
				=
				[
				𝐴
				(
				𝑞
				+
				1
				−
				𝑝
				)
				/
				(
				𝐵
				𝑟
				+
				1
				−
				𝑝
				)
				]
			

			
				1
				/
				(
				𝑟
				−
				𝑞
				)
			

		
	
.Returning to (3.5), we deduce that
							
	
 		
 			
				(
				3
				.
				8
				)
			
 		
	

	
		
			

				𝐽
			

			

				𝜆
			

			
				1
				(
				𝑢
				)
				≥
			

			
				
			
			
				𝑝
				‖
				𝑢
				‖
			

			

				𝑝
			

			
				+
				𝑚
				.
			

		
	

						Hence, from (3.8), we get that 
							
	
 		
 			
				(
				3
				.
				9
				)
			
 		
	

	
		
			

				𝐽
			

			

				𝜆
			

			
				(
				𝑢
				)
				⟶
				+
				∞
				a
				s
				‖
				𝑢
				‖
				⟶
				∞
				.
			

		
	
Let 
	
		
			
				𝑛
				↦
				𝑢
			

			

				𝑛
			

		
	
 be a minimizing sequence of 
	
		
			

				𝐽
			

			

				𝜆
			

		
	
 in 
	
		
			

				𝑊
			

			
				0
				1
				,
				𝑝
			

			
				(
				Ω
				)
			

		
	
, which is bounded in 
	
		
			

				𝑊
			

			
				0
				1
				,
				𝑝
			

			
				(
				Ω
				)
			

		
	
 by Step 1. Without loss of generality, we may assume that 
	
		
			
				(
				𝑢
			

			

				𝑛
			

			

				)
			

			

				𝑛
			

		
	
 is nonnegative, converges weakly to some 
	
		
			

				𝑢
			

		
	
 in 
	
		
			

				𝑊
			

			
				0
				1
				,
				𝑝
			

			
				(
				Ω
				)
			

		
	
, and converges also pointwise. Moreover, by the weak lower semicontinuity of the norm 
	
		
			
				‖
				⋅
				‖
			

		
	
 and the boundedness of 
	
		
			
				(
				𝑢
			

			

				𝑛
			

			

				)
			

			

				𝑛
			

		
	
 in 
	
		
			

				𝑊
			

			
				0
				1
				,
				𝑝
			

			
				(
				Ω
				)
			

		
	
 we get 
							
	
 		
 			
				(
				3
				.
				1
				0
				)
			
 		
	

	
		
			

				𝐽
			

			

				𝜆
			

			
				(
				𝑢
				)
				≤
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				i
				n
				f
				𝐽
			

			

				𝜆
			

			
				
				𝑢
			

			

				𝑛
			

			
				
				.
			

		
	

						Hence 
	
		
			

				𝑢
			

		
	
 is a global minimizer of 
	
		
			

				𝐽
			

			

				𝜆
			

		
	
 in 
	
		
			

				𝑊
			

			
				0
				1
				,
				𝑝
			

			
				(
				Ω
				)
			

		
	
, which completes the proof of the Step 1.
Step 2 (the weak limit 
	
		
			

				𝑢
			

		
	
 is a nonnegative weak solution of (1.3)- if 
	
		
			
				𝜆
				>
				0
			

		
	
 is sufficiently large). Firstly, observe that 
	
		
			

				𝐽
			

			

				𝜆
			

			
				(
				0
				)
				=
				0
			

		
	
. Thus, to prove that the nonnegative solution is nontrivial, it suffices to prove that there exists 
	
		
			

				𝜆
			

			

				∗
			

			
				>
				0
			

		
	
 such that
							
	
 		
 			
				(
				3
				.
				1
				1
				)
			
 		
	

	
		
			
				i
				n
				f
			

			
				𝑢
				∈
				𝑊
			

			
				0
				1
				,
				𝑝
			

			
				(
				Ω
				)
			

			

				𝐽
			

			

				𝜆
			

			
				(
				𝑢
				)
				<
				0
				∀
				𝜆
				>
				𝜆
			

			

				∗
			

			

				.
			

		
	

						For this, we consider the constrained minimization problem
							
	
 		
 			
				(
				3
				.
				1
				2
				)
			
 		
	

	
		
			

				𝜆
			

			
				∗
				d
				e
				f
			

			
				
				1
				=
				i
				n
				f
			

			
				
			
			
				𝑝
				
			

			

				Ω
			

			
				|
				|
				|
				|
				∇
				𝑤
			

			

				𝑝
			

			
				1
				d
				𝑥
				+
			

			
				
			
			
				
				𝑟
				+
				1
			

			

				Ω
			

			
				ℎ
				(
				𝑥
				)
				|
				𝑤
				|
			

			
				𝑟
				+
				1
			

			
				d
				𝑥
				∶
				𝑤
				∈
				𝑊
			

			
				0
				1
				,
				𝑝
			

			
				1
				(
				Ω
				)
				a
				n
				d
			

			
				
			
			
				×
				
				𝑞
				+
				1
			

			

				Ω
			

			
				𝑘
				(
				𝑥
				)
				|
				𝑤
				|
			

			
				𝑞
				+
				1
			

			
				
				.
				d
				𝑥
				=
				1
			

		
	
 Let 
	
		
			
				𝑛
				↦
				𝑣
			

			

				𝑛
			

		
	
 be a minimizing sequence of (3.12) in 
	
		
			

				𝑊
			

			
				0
				1
				,
				𝑝
			

			
				(
				Ω
				)
			

		
	
, which is bounded in 
	
		
			

				𝑊
			

			
				0
				1
				,
				𝑝
			

			
				(
				Ω
				)
			

		
	
, so that we can assume, without loss of generality, that it converges weakly to some 
	
		
			
				𝑣
				∈
				𝑊
			

			
				0
				1
				,
				𝑝
			

			
				(
				Ω
				)
			

		
	
, with 
							
	
 		
 			
				(
				3
				.
				1
				3
				)
			
 		
	

	
		
			

				1
			

			
				
			
			
				
				𝑞
				+
				1
			

			

				Ω
			

			
				𝑘
				(
				𝑥
				)
				|
				𝑣
				|
			

			
				𝑞
				+
				1
			

			
				d
				𝑥
				=
				1
				,
				𝜆
			

			

				∗
			

			
				=
				1
			

			
				
			
			
				𝑝
				
			

			

				Ω
			

			
				|
				|
				|
				|
				∇
				𝑣
			

			

				𝑝
			

			
				1
				d
				𝑥
				+
			

			
				
			
			
				
				𝑟
				+
				1
			

			

				Ω
			

			
				ℎ
				(
				𝑥
				)
				|
				𝑣
				|
			

			
				𝑟
				+
				1
			

			
				d
				𝑥
				.
			

		
	

						Thus, 
	
		
			

				𝐽
			

			

				𝜆
			

			
				(
				𝑣
				)
				=
				𝜆
			

			

				∗
			

			
				−
				𝜆
				<
				0
			

		
	
 for any 
	
		
			
				𝜆
				>
				𝜆
			

			

				∗
			

		
	
.Now put
							
	
 		
 			
				(
				3
				.
				1
				4
				)
			
 		
	

	
		
			

				Λ
			

			
				d
				e
				f
			

			
				
				=
				i
				n
				f
				𝜆
				>
				0
				∶
				(
				1
				.
				3
				)
			

			

				−
			

			
				
				.
				a
				d
				m
				i
				t
				s
				a
				n
				o
				n
				t
				r
				i
				v
				i
				a
				l
				w
				e
				a
				k
				s
				o
				l
				u
				t
				i
				o
				n
			

		
	

						From above 
	
		
			

				𝜆
			

			

				∗
			

			
				≥
				Λ
			

		
	
 and that problem (1.3)− has a solution for all 
	
		
			
				𝜆
				>
				𝜆
			

			

				∗
			

		
	
. The proof of the Step 2 is now completed.
Step 3 (problem (1.3)− has a weak solution for any 
	
		
			
				𝜆
				>
				Λ
			

		
	
). By the definition of 
	
		
			

				Λ
			

		
	
, there exists 
	
		
			
				𝜇
				∈
				(
				Λ
				,
				𝜆
				)
			

		
	
 such that 
	
		
			

				𝐽
			

			

				𝜇
			

		
	
 has a nontrivial critical point 
	
		
			

				𝑢
			

			

				𝜇
			

			
				∈
				𝑊
			

			
				0
				1
				,
				𝑝
			

			
				(
				Ω
				)
			

		
	
. Since 
	
		
			
				𝜇
				<
				𝜆
			

		
	
,
	
		
			

				𝑢
			

			

				𝜇
			

		
	
 is a subsolution of the problem (1.3)−. In order to find a super-solution of the problem (1.3)− which dominates 
	
		
			

				𝑢
			

			

				𝜇
			

		
	
, we consider the constrained minimization problem
							
	
 		
 			
				(
				3
				.
				1
				5
				)
			
 		
	

	
		
			
				
				𝐽
				i
				n
				f
			

			

				𝜆
			

			
				(
				𝑤
				)
				;
				𝑤
				∈
				𝑊
			

			
				0
				1
				,
				𝑝
			

			
				(
				Ω
				)
				a
				n
				d
				𝑤
				≥
				𝑢
			

			

				𝜇
			

			
				.
				
				.
			

		
	

						Arguments similar to those used in Step 2 show that the above minimization problem has a solution 
	
		
			

				𝑢
			

			

				𝜆
			

			
				≥
				𝑢
			

			

				𝜇
			

		
	
 which is also a weak solution of problem (1.3)−, provided 
	
		
			
				𝜆
				>
				Λ
			

		
	
.Using similar arguments as in [6]. Thus, from Theorem 2.2 in Pucci and Servadei [7], based on the Moser iteration, it is clear that  
	
		
			
				𝑢
				∈
				𝐿
			

			
				∞
				l
				o
				c
			

		
	
. Next, again by bootstrap regularity [Corollary on p. 830] due to DiBenedetto, [8] shows that the weak solution 
	
		
			
				𝑢
				∈
				𝐶
			

			
				1
				,
				𝛼
			

			
				(
				Ω
				)
			

		
	
 where 
	
		
			
				𝛼
				∈
				(
				0
				,
				1
				)
			

		
	
. Finally, the nonnegative follows immediately by the strong maximum principle since 
	
		
			

				𝑢
			

		
	
 is a 
	
		
			

				𝐶
			

			

				1
			

		
	
 nonnegative weak solution of the differential inequality 
	
		
			
				∇
				(
				|
				∇
				𝑢
				|
			

			
				𝑝
				−
				2
			

			
				∇
				𝑢
				)
				−
				ℎ
				(
				𝑥
				)
				𝑢
			

			

				𝑟
			

			
				≤
				0
			

		
	
 in 
	
		
			

				Ω
			

		
	
, with 
	
		
			
				𝑝
				−
				1
				<
				𝑟
			

		
	
, see, for instance, Section 4.8 of Pucci and Serrin [9]. Thus, 
	
		
			
				𝑢
				>
				0
			

		
	
 in 
	
		
			

				Ω
			

		
	
. The proof of the Step 3 is now completed.
Step 4 (nonexistence for 
	
		
			
				𝜆
				>
				0
			

		
	
 is small). The same monotonicity arguments as in Step 3 show that (1.3)− does not have any solution if 
	
		
			
				𝜆
				<
				Λ
			

		
	
, which completes the proof of the Theorem 1.2. 
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