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The purpose of this paper is to investigate the delay-dependent stability analysis for discrete-time
neural networks with interval time-varying delays. Based on Lyapunov method, improved delay-
dependent criteria for the stability of the networks are derived in terms of linear matrix inequalities
(LMIs) by constructing a suitable Lyapunov-Krasovskii functional and utilizing reciprocally
convex approach. Also, a new activation condition which has not been considered in the literature
is proposed and utilized for derivation of stability criteria. Two numerical examples are given to
illustrate the effectiveness of the proposed method.

1. Introduction

Neural networks have received increasing attention of researches from various fields of
science and engineering such as moving image reconstructing, signal processing, pattern
recognition, and fixed-point computation. In the hardware implementation of systems, there
exists naturally time delay due to the finite information processing speed and the finite
switching speed of amplifiers. It is well known that time delay often causes undesirable
dynamic behaviors such as performance degradation, oscillation, or even instability of the
systems. Since it is a prerequisite to ensure stability of neural networks before its application
to various fields such as information science and biological systems, the problem of stability
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of neural networks with time delay has been a challenging issue [1–10]. Also, these days,
most systems use digital computers (usually microprocessor or microcontrollers) with the
necessary input/output hardware to implement the systems. The fundamental character of
the digital computer is that it takes computed answers at discrete steps. Therefore, discrete-
time modeling with time delay plays an important role in many fields of science and
engineering applications. With this regard, various approaches to delay-dependent stability
criteria for discrete-time neural networks with time delay have been investigated in the
literature [11–16].

In the field of delay-dependent stability analysis, one of the hot issues attracting the
concern of the researchers is to increase the feasible region of stability criteria. The most
utilized index to check the conservatism of stability criteria is to get maximum delay bounds
for guaranteeing the globally exponential stability of the concerned networks. Thus, many
researchers put time and efforts into some new approaches to enhance the feasible region of
stability conditions. In this regard, Liu et al. [11] proposed a unified linear matrix inequality
approach to establish sufficient conditions for the discrete-time neural networks to be
globally exponentially stable by employing a Lyapunov-Krasovskii functional. In [12, 13], the
existence and stability of the periodic solution for discrete-time recurrent neural networkwith
time-varying delays were studied under more general description on activation functions
by utilizing free-weighting matrix method. Based on the idea of delay partitioning, a new
stability criterion for discrete-time recurrent neural networks with time-varying delays was
derived [14]. Recently, some novel delay-dependent sufficient conditions for guaranteeing
stability of discrete-time stochastic recurrent neural networks with time-varying delays were
presented in [15] by introducing the midpoint of the time delay’s variational interval. Very
recently, via a new Lyapunov functional, a novel stability criterion for discrete-time recurrent
neural networks with time-varying delays was proposed in [16] and its improvement on
the feasible region of stability criterion was shown through numerical examples. However,
there are rooms for further improvement in delay-dependent stability criteria of discrete-time
neural networks with time-varying delays.

Motivated by the above discussions, the problem of new delay-dependent stability
criteria for discrete-time neural networks with time-varying delays is considered in this
paper. It should be noted that the delay-dependent analysis has been paid more attention
than delay-independent one because the sufficient conditions for delay-dependent analysis
make use of the information on the size of time delay [17, 18]. That is, the former is generally
less conservative than the latter. By construction of a suitable Lyapunov-Krasovskii functional
and utilization of reciprocally convex approach [19], a new stability criterion is derived in
Theorem 3.1. Based on the results of Theorem 3.1 andmotivated by the work of [20], a further
improved stability criterion will be introduced in Theorem 3.4 by applying zero equalities
to the results of Theorem 3.1. Finally, two numerical examples are included to show the
effectiveness of the proposed method.

Notation. R
n is the n-dimensional Euclidean space, and R

m×n denotes the set of all m × n real
matrices. For symmetric matrices X and Y , X > Y (resp., X ≥ Y )means that the matrix X − Y
is positive definite (resp., nonnegative). X⊥ denotes a basis for the null space of X. I denotes
the identity matrix with appropriate dimensions. ‖ · ‖ refers to the Euclidean vector norm
or the induced matrix norm. diag{· · · } denotes the block diagonal matrix. � represents the
elements below the main diagonal of a symmetric matrix.



Abstract and Applied Analysis 3

2. Problem Statements

Consider the following discrete-time neural networks with interval time-varying delays:

y(k + 1) = Ay(k) +W0g
(
y(k)

)
+W1g

(
y(k − h(k))

)
+ b, (2.1)

where n denotes the number of neurons in a neural network, y(k) = [y1(k), . . . , yn(k)]
T ∈ R

n

is the neuron state vector, g(k) = [g1(k), . . . , gn(k)]
T ∈ R

n denotes the neuron activation
function vector, b = [b1, . . . , bn]

T ∈ R
n means a constant external input vector, A =

diag{a1, . . . , an} ∈ R
n×n(0 ≤ ai < 1) is the state feedback matrix, Wi ∈ R

n×n(i = 0, 1) are
the connection weight matrices, and h(k) is interval time-varying delays satisfying

0 < hm ≤ h(k) ≤ hM, (2.2)

where hm and hM are known positive integers.
In this paper, it is assumed that the activation functions satisfy the following

assumption.

Assumption 2.1. The neurons activation functions, gi(·), are continuous and bounded, and for
any u, v ∈ R, u/=v,

k−
i ≤ gi(u) − gi(v)

u − v
≤ k+

i , i = 1, 2, . . . , n, (2.3)

where k−
i and k+

i are known constant scalars.

As usual, a vector y∗ = [y∗
1, . . . , y

∗
n]

T is said to be an equilibrium point of system (2.1)
if it satisfies y∗ = Ay∗ + W0g(y∗) + W1g(y∗) + b. From [10], under Assumption 2.1, it is not
difficult to ensure the existence of equilibrium point of the system (2.1) by using Brouwer’s
fixed-point theorem. In the sequel, we will establish a condition to ensure the equilibrium
point y∗ of system (2.1) is globally exponentially stable. That is, there exist two constants
α > 0 and 0 < β < 1 such that ‖y(k) − y∗‖ ≤ αβksup−hM≤s≤0‖y(s) − y∗‖. To confirm this,
refer to [16]. For simplicity, in stability analysis of the network (2.1), the equilibrium point
y∗ = [y∗

1, . . . , y
∗
n]

T is shifted to the origin by utilizing the transformation x(k) = y(k) − y∗,
which leads the network (2.1) to the following form:

x(k + 1) = Ax(k) +W0f(x(k)) +W1f(x(k − h(k))), (2.4)

where x(k) = [x1(k), . . . , xn(k)]
T ∈ R

n is the state vector of the transformed network, and
f(x(k)) = [f1(x1(k)), . . . , fn(xn(k))]

T ∈ R
n is the transformed neuron activation function

vector with fi(xi(k)) = gi(xi(k) + y∗
i ) − gi(y∗

i ) and fi(0) = 0. From Assumption 2.1, it should
be noted that the activation functions fi(·) (i = 1, . . . , n) satisfy the following condition [10]:

k−
i ≤ fi(u) − fi(v)

u − v
≤ k+

i , ∀u, v ∈ R, u /=v, (2.5)
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which is equivalent to

[
fi(u) − fi(v) − k−

i (u − v)
][
fi(u) − fi(v) − k+

i (u − v)
] ≤ 0, (2.6)

and if v = 0, then the following inequality holds:

[
fi(u) − k−

i (u)
][
fi(u) − k+

i (u)
] ≤ 0. (2.7)

Here, the aim of this paper is to investigate the delay-dependent stability analysis
of the network (2.4) with interval time-varying delays. In order to do this, the following
definition and lemmas are needed.

Definition 2.2 (see [16]). The discrete-time neural network (2.4) is said to be globally
exponentially stable if there exist two constants α > 0 and 0 ≤ β ≤ 1 such that

‖x(k)‖ ≤ αβk sup
−hM≤s≤0

‖x(s)‖. (2.8)

Lemma 2.3 ((Jensen inequality) [21]). For any constant matrix 0 < M = MT ∈ R
n×n, integers

hm and hM satisfying 1 ≤ hm ≤ hM, and vector function x(k) ∈ R
n, the following inequality holds:

−(hM − hm + 1)
hM∑

k=hm

xT (k)Mx(k) ≤ −
(

hM∑

k=hm

x(k)

)T

M

(
hM∑

k=hm

x(k)

)

. (2.9)

Lemma 2.4 ((Finsler’s lemma) [22]). Let ζ ∈ R
n, Φ = ΦT ∈ R

n×n, and Γ ∈ R
m×n such that

rank(Γ) < n. The following statements are equivalent:

(i) ζTΦζ < 0, ∀Γζ = 0, ζ /= 0,

(ii) Γ⊥TΦΓ⊥ < 0,

(iii) Φ +XΥ + ΥTXT < 0, ∀X ∈ R
n×m.

3. Main Results

In this section, new stability criteria for the network (2.4) will be proposed. For the sake
of simplicity on matrix representation, ei ∈ R

10n×n(i = 1, . . . , 10) are defined as block entry
matrices (e.g., e2 = [0, I, 0, . . . , 0

︸ ︷︷ ︸
8

]T ). The notations of several matrices are defined as
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hd = hM − hm,

ζ(k) =

[

xT (k), xT (k − hm), xT (k − h(k)), xT (k − hM),ΔxT (k),ΔxT (k − hm),

ΔxT (k − hM), fT (x(k)), fT (x(k − h(k))), fT (x(k + 1))

]T
,

χ(k) =
[
xT (k), xT (k − hm), xT (k − hM), fT (x(k))

]T
,

ξ(k) =
[
xT (k),ΔxT (k)

]T
,

Γ = [(A − I), 0, 0, 0,−I, 0, 0,W0,W1, 0],

Π1 = [e1 + e5, e2 + e6, e4 + e7, e10], Π2 = [e1, e2, e4, e8],

Π3 = [e1, e5], Π4 = [e2, e6], Π5 = [e4, e7], Π6 = [e2 − e3, e3 − e4],

Π7 = [e1, e8], Π8 = [e3, e9], Π9 = [e1 + e5, e10],

Ξ1 = Π1RΠT
1 −Π2RΠT

2 ,

Ξ2 = Π3NΠT
3 + Π4(M −N)ΠT

4 −Π5MΠT
5 ,

Ξ3 = e5
(
h2
mQ1

)
eT5 + e5

(
h2
dQ2

)
eT5 + e1(hmP1)eT1 − e2(hmP1)eT2 + hd

3∑

i=2

(
eiPie

T
i − ei+1Pie

T
i+1

)
,

Ξ4 = − (e1 − e2)(Q1 + P1)(e1 − e2)T −Π6

[
Q2 + P2 S

� Q2 + P3

]
ΠT

6 ,

Ξ5 = Π3

(
h2
mQ3

)
ΠT

3 + Π3

(
h2
dQ4

)
ΠT

3 ,

Φ =
5∑

i=1

Ξi,

Θ =
3∑

i=1

Π6+i

[−2KmHiKp

(
Km +Kp

)
Hi

� −2Hi

]
ΠT

6+i.

(3.1)

Now, the first main result is given by the following theorem.

Theorem 3.1. For given positive integers hm and hM, diagonal matrices Km = diag{k−
1 , . . . , k

−
n}

and Kp = diag{k+
1 , . . . , k

+
n}, the network (2.4) is globally exponentially stable for hm ≤ h(k) ≤

hM, if there exist positive definite matrices R ∈ R
4n×4n, M ∈ R

2n×2n, N ∈ R
2n×2n, Qi ∈ R

n×n,
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Qi+2 ∈ R
2n×2n(i = 1, 2), positive diagonal matrices Hi ∈ R

n×n(i = 1, 2, 3), any symmetric matrices
Pi ∈ R

n×n(i = 1, 2, 3), and any matrix S ∈ R
n×n satisfying the following LMIs:

[
Γ⊥
]T
(Φ + Θ)

[
Γ⊥
]
< 0, (3.2)

[
Q2 + P2 S

� Q2 + P3

]
≥ 0, (3.3)

Q3 +
[
0 P1

� 0

]
> 0, Q4 +

[
0 P2

� 0

]
> 0, Q4 +

[
0 P3

� 0

]
> 0, (3.4)

where Φ, Θ, and Γ are defined in (3.1).

Proof. Define the forward difference of x(k) and V (k) as

Δx(k) = x(k + 1) − x(k),

ΔV (k) = V (k + 1) − V (k).
(3.5)

Let us consider the following Lyapunov-Krasovskii functional candidate as

V (k) = V1(k) + V2(k) + V3(k) + V4(k), (3.6)

where

V1(k) = χT (k)Rχ(k),

V2(k) =
k−1∑

s=k−hm

ξT (s)Nξ(s) +
k−hm−1∑

s=k−hM

ξT (s)Mξ(s),

V3(k) = hm

−1∑

s=−hm

k−1∑

u=k+s

ΔxT (u)Q1Δx(u) + hd

−hm−1∑

s=−hM

k−1∑

u=k+s

ΔxT (u)Q2Δx(u),

V4(k) = hm

−1∑

s=−hm

k−1∑

u=k+s

ξT (u)Q3ξ(u) + hd

−hm−1∑

s=−hM

k−1∑

u=k+s

ξT (u)Q4ξ(u).

(3.7)
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The forward differences of V1(k) and V2(k) are calculated as

ΔV1(k) = χT (k + 1)Rχ(k + 1) − χT (k)Rχ(k)

=

⎡

⎢
⎢
⎣

x(k) + Δx(k)
x(k − hm) + Δx(k − hm)
x(k − hM) + Δx(k − hM)

f(x(k + 1))

⎤

⎥
⎥
⎦

T

R

⎡

⎢
⎢
⎣

x(k) + Δx(k)
x(k − hm) + Δx(k − hm)
x(k − hM) + Δx(k − hM)

f(x(k + 1))

⎤

⎥
⎥
⎦ − χT (k)Rχ(k)

= ζT(k)
(
Π1RΠT

1 −Π2RΠT
2

)
ζ(k)

= ζT(k)Ξ1ζ(k),

(3.8)

ΔV2(k) = ξT (k)Nξ(k) − ξT (k − hm)Nξ(k − hm)

+ ξT (k − hm)Mξ(k − hm) − ξT (k − hM)Mξ(k − hM)

= ζT(k)
(
Π3NΠT

3 + Π4(M −N)ΠT
4 −Π5MΠT

5

)
ζ(k)

= ζT(k)Ξ2ζ(k).

(3.9)

By calculating the forward differences of V3(k) and V4(k), we get

ΔV3(k) = h2
mΔxT (k)Q1Δx(k) − hm

k−1∑

s=k−hm

ΔxT (s)Q1Δx(s)

+ h2
dΔxT (k)Q2Δx(k) − hd

k−hm−1∑

s=k−hM

ΔxT (s)Q2Δx(s),

(3.10)

ΔV4(k) = h2
mξ

T (k)Q3ξ(k) − hm

k−1∑

s=k−hm

ξT (s)Q3ξ(s)

+ h2
dξ

T (k)Q4ξ(k) − hd

k−hm−1∑

s=k−hM

ξT (s)Q4ξ(s).

(3.11)

For any matrix P , integers l1 and l2 satisfying l1 < l2, and a vector function x(s) : [k − l2, k −
l1 − 1] → R

n where k is the discrete time, the following equality holds:

xT (k − l1)Px(k − l1) − xT (k − l2)Px(k − l2)

=
k−11−1∑

s=k−l2

(
xT (s + 1)Px(s + 1) − xT (s)Px(s)

)
.

(3.12)
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It should be noted that

xT (s + 1)Px(s + 1) − xT (s)Px(s)

= (Δx(s) + x(s))TP(Δx(s) + x(s)) − xT (s)Px(s)

= ΔxT (s)PΔx(s) + 2xT (s)PΔx(s).

(3.13)

From the equalities (3.12) and (3.13), by choosing (l1, l2) as (0, hm), (hm, h(k)) and (h(k), hM),
the following three zero equations hold with any symmetric matrices P1, P2, and P3:

0 = xT (k)(hmP1)x(k) − xT (k − hm)(hmP1)x(k − hm)

− hm

k−1∑

s=k−hm

(
ΔxT (s)P1Δx(s) + 2xT (s)P1Δx(s)

)
,

(3.14)

0 = xT (k − hm)(hdP2)x(k − hm) − xT (k − h(k))(hdP2)x(k − h(k))

− hd

k−hm−1∑

s=k−h(k)

(
ΔxT (s)P2Δx(s) + 2xT (s)P2Δx(s)

)
,

(3.15)

0 = xT (k − h(k))(hdP3)x(k − h(k)) − xT (k − hM)(hdP3)x(k − hM)

− hd

k−h(k)−1∑

s=k−hM

(
ΔxT (s)P3Δx(s) + 2xT (s)P3Δx(s)

)
.

(3.16)

By adding three zero equalities into the results of ΔV3(k), we have

ΔV3(k) = ζT (k)

(

e5
(
h2
mQ1

)
eT5 + e5

(
h2
dQ2

)
eT5 + e1(hmP1)eT1 − e2(hmP1)eT2

+hd

3∑

i=2

(
eiPie

T
i − ei+1Pie

T
i+1

))

ζ(k) + Σ

= ζT (k)Ξ3ζ(k) + Σ + Υ,

(3.17)
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where

Σ = − hm

k−1∑

s=k−hm

ΔxT (s)(Q1 + P1)Δx(s) − hd

k−hm−1∑

s=k−h(k)
ΔxT (s)(Q2 + P2)Δx(s)

− hd

k−h(k)−1∑

s=k−hM

ΔxT (s)(Q2 + P3)Δx(s),

(3.18)

Υ = − hm

k−1∑

s=k−hm

2xT (s)P1Δx(s) − hd

k−hm−1∑

s=k−h(k)
2xT (s)P2Δx(s)

− hd

k−h(k)−1∑

s=k−hM

2xT (s)P3Δx(s).

(3.19)

By Lemma 2.3, when hm < h(k) < hM, the sum term Σ in (3.18) is bounded as

Σ ≤ −
(

k−1∑

s=k−hm

Δx(s)

)T

(Q1 + P1)

(
k−1∑

s=k−hm

Δx(s)

)

−
⎛

⎝
k−hm−1∑

s=k−h(k)
Δx(s)

⎞

⎠

T(
1

1 − α(k)

)
(Q2 + P2)

⎛

⎝
k−hm−1∑

s=k−h(k)
Δx(s)

⎞

⎠

−
(

k−h(k)−1∑

s=k−hM

Δx(s)

)T(
1

α(k)

)
(Q2 + P3)

(
k−h(k)−1∑

s=k−hM

Δx(s)

)

= − ζT (k)(e1 − e2)(Q1 + P1)(e1 − e2)Tζ(k)

− ζT (k)Π6

⎡

⎢⎢
⎣

1
1 − α(k)

(Q2 + P2) 0

�
1

α(k)
(Q2 + P3)

⎤

⎥⎥
⎦Π

T
6 ζ(k),

(3.20)

where α(k) = (hM − h(k))/hd.
By reciprocally convex approach [19], if the inequality (3.3) holds, then the following

inequality for any matrix S satisfies

⎡

⎢⎢⎢⎢
⎣

−
√

α(k)
1 − α(k)

I 0

�

√
1 − α(k)
α(k)

I

⎤

⎥⎥⎥⎥
⎦

[
Q2 + P2 S

� Q2 + P3

]

⎡

⎢⎢⎢⎢
⎣

−
√

α(k)
1 − α(k)

I 0

�

√
1 − α(k)
α(k)

I

⎤

⎥⎥⎥⎥
⎦

≥ 0, (3.21)
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which implies

⎡

⎢
⎢
⎣

1
1 − α(k)

(Q2 + P2) 0

�
1

α(k)
(Q2 + P3)

⎤

⎥
⎥
⎦ ≥

[
Q2 + P2 S

� Q2 + P3

]
. (3.22)

It should be pointed out that when h(k) = hm or h(k) = hM, we have
∑k−hm−1

s=k−h(k) Δx(s) =

x(k − hm) − x(k − h(k)) = 0 or
∑k−h(k)−1

s=k−hM
Δx(s) = x(k − h(k)) − x(k − hM) = 0, respectively.

Thus, the following inequality still holds:

Σ ≤ ζT (k)
(
−(e1 − e2)(Q1 + P1)(e1 − e2)T −Π6

[
Q2 + P2 S

� Q2 + P3

]
ΠT

6

)
ζ(k)

= ζT (k)Ξ4ζ(k).

(3.23)

Then, ΔV3 + ΔV4 has an upper bound as follows:

ΔV3 + ΔV4 ≤ ζT (k)

⎛

⎜⎜
⎝Ξ3 + Ξ4 + Π3

(
h2
mQ3

)
ΠT

3 + Π3

(
h2
dQ4

)
ΠT

3
︸ ︷︷ ︸

Ξ5

⎞

⎟⎟
⎠ζ(k)

− hm

k−1∑

s=k−hm

ξT (s)
{
Q3 +

[
0 P1

� 0

]}
ξ(s)

− hd

k−hm−1∑

s=k−h(k)
ξT (s)

{
Q4 +

[
0 P2

� 0

]}
ξ(s)

− hd

k−h(k)−1∑

s=k−hM

ξT (s)
{
Q4 +

[
0 P3

� 0

]}
ξ(s).

(3.24)

Here, if the inequalities (3.4) hold, then ΔV3 + ΔV4 is bounded as

ΔV3 + ΔV4 ≤ ζT (k)(Ξ3 + Ξ4 + Ξ5)ζ(k). (3.25)
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From (2.7), for any positive diagonal matrices Hi = diag{hi1, . . . , hin} (i = 1, 2, 3), the
following inequality holds:

0 ≤ − 2
n∑

i=1

h1i
[
fi(xi(k)) − k−

i xi(k)
][
fi(xi(k)) − k+

i xi(k)
]

− 2
n∑

i=1

h2i
[
fi(xi(k − h(k))) − k−

i xi(k − h(k))
][
fi(xi(k − h(k))) − k+

i xi(k − h(k))
]

− 2
n∑

i=1

h3i
[
fi(xi(k + 1)) − k−

i xi(k + 1)
][
fi(xi(k + 1)) − k+

i xi(k + 1)
]

= ζT (k)

(
3∑

i=1

Π6+i

[−2KmHiKp

(
Km +Kp

)
Hi

� −2Hi

]
ΠT

6+i

)

ζ(k)

= ζT (k)Θζ(k).

(3.26)

Therefore, from (3.8)–(3.16) and by application of the S-procedure [23], ΔV has a new upper
bound as

ΔV ≤ ζT (k)

⎛

⎜⎜⎜⎜
⎝

5∑

i=1

Ξi

︸︷︷︸
Φ

+ Θ

⎞

⎟⎟⎟⎟
⎠

ζ(k), (3.27)

where Φ and Θ are defined in (3.1).
Also, the system (2.4) with the augmented vector ζ(k) can be rewritten as

Γζ(k) = 0, (3.28)

where Γ is defined in (3.1).
Then, a delay-dependent stability condition for the system (2.4) is

ζT (k)(Φ + Θ)ζ(k) < 0 subject to Γζ(k) = 0. (3.29)

Finally, by utilizing Lemma 2.4, the condition (3.29) is equivalent to the following inequality

[
Γ⊥
]T
(Φ + Θ)

[
Γ⊥
]
< 0. (3.30)

From the inequality (3.30), if the LMIs (3.2)–(3.4) hold. From (ii) and (iii) of Lemma 2.4, if
the stability condition (3.29) holds, then for any free maxrix X with appropriate dimension,
the condition (3.29) is equivalent to

Φ +Θ +XΓ + ΓTXT

︸ ︷︷ ︸
Ψ

< 0. (3.31)
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Therefore, from (3.31), there exists a sufficient small scalar ρ > 0 such that

ΔV ≤ ζT (k)Ψζ(k) < −ρ‖x(k)‖2. (3.32)

By using the similar method of [11, 12], the system (2.4) is globally exponentially stable for
any time-varying delay hm ≤ h(k) ≤ hM from Definition 2.2. This completes our proof.

Remark 3.2. In Theorem 3.1, the stability condition is derived by utilizing a new augmented
vector ζ(k) including f(x(k + 1)). This state vector f(x(k + 1)) which may give more
information on dynamic behavior of the system (2.4) has not been utilized as an element of
augmented vector ζ(k) in any other literature. Correspondingly, the state vector f(x(k + 1))
is also included in (3.26).

Remark 3.3. As mentioned in [10], the activation functions of transformed system (2.4) also
satisfy the condition (2.6). In Theorem 3.4, by choosing (u, v) in (2.6) as (x(k), x(k − h(k)))
and (x(k − h(k)), f(x(k + 1)), more information on cross-terms among the states f(x(k)),
f(x(k − h(k))), f(x(k + 1)), x(k), and x(k − h(k)) will be utilized, which may lead to
less conservative stability criteria. In stability analysis for discrete-time neural networks
with time-varying delays, this consideration has not been proposed in any other literature.
Through two numerical examples, it will be shown that the newly proposed activation
conditionmay enhance the feasible region of stability criterion by comparingmaximumdelay
bounds with the results obtained by Theorem 3.1.

As mentioned in Remark 3.3, from (2.6), we add the following new inequality with
any positive diagonal matrices Hi = diag{hi1, . . . , hin} (i = 4, 5, 6) to be chosen as

0 ≤ − 2
n∑

i=1

h4i
[
fi(xi(k)) − fi(xi(k − h(k))) − k−

i (xi(k) − xi(k − h(k)))
]

× [fi(xi(k)) − fi(xi(k − h(k))) − k+
i (xi(k) − xi(k − h(k)))

]

− 2
n∑

i=1

h5i
[
fi(xi(k − h(k))) − fi(xi(k + 1)) − k−

i (xi(k − h(k)) − xi(k) −Δxi(k))
]

× [fi(xi(k − h(k))) − fi(xi(k + 1)) − k+
i (xi(k − h(k)) − xi(k) −Δxi(k))

]

− 2
n∑

i=1

h6i
[
fi(xi(k + 1)) − fi(xi(k)) − k−

i Δxi(k)
]

× [fi(xi(k + 1)) − fi(xi(k)) − k+
i Δxi(k)

]

− ζT (k)

(
3∑

i=1

Π9+i

[−2KmH3+iKp

(
Km +Kp

)
H3+i

� −2H3+i

]
ΠT

9+i

)

ζ(k)

= ζT(k)Ωζ(k),

(3.33)

whereΠ10 = [e1 − e3, e8 − e9],Π11 = [e3 − e1 − e5, e9 − e10], andΠ12 = [e5, e10 − e8]. We will add
this inequality (3.33) in Theorem 3.4. Now, we have the following theorem.
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Theorem 3.4. For given positive integers hm and hM, diagonal matrices Km = diag{k−
1 , . . . , k

−
n}

and Kp = diag{k+
1 , . . . , k

+
n}, the network (2.4) is globally exponentially stable for hm ≤ h(k) ≤ hM,

if there exist positive definite matrices R ∈ R
4n×4n, M ∈ R

2n×2n, N ∈ R
2n×2n, Qi ∈ R

n×n, Qi+2 ∈
R

2n×2n (i = 1, 2), positive diagonal matrices Hi ∈ R
n×n (i = 1, . . . , 6), any symmetric matrices

Pi ∈ R
n×n (i = 1, 2, 3), and any matrix S ∈ R

n×n satisfying the following LMIs:

[
Γ⊥
]T
(Φ + Θ + Ω)

[
Γ⊥
]
< 0, (3.34)

[
Q2 + P2 S

� Q2 + P3

]
≥ 0, (3.35)

Q3 +
[
0 P1

� 0

]
> 0, Q4 +

[
0 P2

� 0

]
> 0, Q4 +

[
0 P3

� 0

]
> 0, (3.36)

where Φ, Γ, and Ω are defined in (3.1) and Θ is in (3.33).

Proof. With the same Lyapunov-Krasovskii functional candidate in (3.6), by using the similar
method in (3.8)–(3.16), and considering inequality (3.36), the procedure of deriving the
condition (3.34)–(3.36) is straightforward from the proof of Theorem 3.1, so it is omitted.

4. Numerical Examples

In this section, we provide two numerical examples to illustrate the effectiveness of the
proposed criteria in this paper.

Example 4.1. Consider the discrete-time neural networks (2.4)where

A =

⎡

⎣
0.4 0 0
0 0.3 0
0 0 0.3

⎤

⎦, W0 =

⎡

⎣
0.2 −0.2 0.1
0 −0.3 0.2

−0.2 −0.1 −0.2

⎤

⎦, W1 =

⎡

⎣
−0.2 0.1 0
−0.2 0.3 0.1
0.1 −0.2 0.3

⎤

⎦. (4.1)

The activation functions satisfy Assumption 2.1 with

Km = diag{0,−0.4,−0.2}, Kp = diag{0.6, 0, 0}. (4.2)

For various hm, the comparison of maximum delay bounds (hM) obtained by Theorems 3.1
and 3.4 with those of [12, 16] is conducted in Table 1. From Table 1, it can be confirmed that
the results of Theorem 3.1 give a larger delay bound than those of [12] and are equal to the
results of [16]. However, the results obtained by Theorem 3.4 are better than the results of
[16] and Theorem 3.1, which supports the effectiveness of the proposed idea mentioned in
Remark 3.3.
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Table 1: Maximum bounds hM with different hm (Example 4.1).

Methods 2 4 6 10
Song and Wang [12] 6 8 10 14
Wu et al. [16] 12 14 16 20
Theorem 3.1 12 14 16 20
Theorem 3.4 14 16 18 22

Table 2: Maximum bounds hM with different hm and a = 0.9 (Example 4.2).

Methods 2 4 6 8 10 15
Song and Wang [12] 11 11 12 13 14 17
Zhang et al. [13] 11 12 13 14 16 19
Song et al. [14] 15 16 17 18 19 22
Wu et al. [16] 16 18 18 20 20 22
Theorem 3.1 18 18 19 20 20 23
Theorem 3.4 18 18 19 20 21 23

Example 4.2. Consider the discrete-time neural networks (2.4) having the following
parameters:

A =
[
0.8 0
0 a

]
, W0 =

[
0.001 0
0 0.005

]
, W1 =

[−0.1 0.01
−0.2 −0.1

]
, Km = 0, Kp = I.

(4.3)

When a = 0.9, for different values of hm, maximum delay bounds obtained by [12–14, 16]
and our Theorems are listed in Table 2. From Table 2, it can be confirmed that all the results
of Theorems 3.1 and 3.4 provide larger delay bounds than those of [12–14]. Also, our results
are better than or equal to the results of [16]. For the case of a = 0.7, another comparison of
our results with those of [15, 16] is conducted in Table 3, which shows all the results obtained
by Theorems 3.1 and 3.4 give larger delay bounds than those of [15, 16].

5. Conclusions

In this paper, improved delay-dependent stability criteria were proposed for discrete-time
neural networks with time-varying delays. In Theorem 3.1, by constructing the suitable
Lyapunov-Krasovskii’s functional and utilizing some recent results introduced in [19, 20],
the sufficient condition for guaranteeing the global exponential stability of discrete-time
neural network having interval time-varying delays has been derived. Based on the
results of Theorem 3.1, by constructing new inequalities of activation functions, the further
improved stability criterion was presented in Theorem 3.4. Via two numerical examples, the
improvement of the proposed stability criteria has been successfully verified.
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Table 3: Maximum bounds hM with different hm and a = 0.7 (Example 4.2).

Methods 2 4 6 8 10 15 20 100 1000
Zhang et al. [15] 20 22 24 26 28 33 38 118 1018
Wu et al. [16] 24 26 28 30 32 37 42 122 1022
Theorem 3.1 29 31 32 34 36 41 46 126 1026
Theorem 3.4 29 31 32 34 36 41 46 126 1026
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