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We introduce a class of complex-valued biharmonic mappings, denoted by BH0(φk ;σ, a, b),
together with its subclass TBH0(φk ;σ, a, b), and then generalize the discussions in Ali et al. (2010)
to the setting of BH0(φk ;σ, a, b) and TBH0(φk ;σ, a, b) in a unified way.

1. Introduction

A four times continuously differentiable complex-valued function F = u + iv in a domain
D ⊂ C is biharmonic if ΔF, the Laplacian of F, is harmonic in D. Note that ΔF is harmonic in
D if F satisfies the biharmonic equation Δ(ΔF) = 0 in D, where Δ represents the Laplacian
operator

Δ = 4
∂2

∂z∂z
:=

∂2

∂x2
+

∂2

∂y2
. (1.1)

It is known that, when D is simply connected, a mapping F is biharmonic if and only
if F has the following representation:

F(z) =
2∑

k=1

|z|2(k−1)Gk(z), (1.2)
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where Gk are complex-valued harmonic mappings in D for k ∈ {1, 2} (cf. [1–6]). Also it is
known that Gk can be expressed as the form

Gk = hk + gk (1.3)

for k ∈ {1, 2}, where all hk and gk are analytic in D (cf. [7, 8]).
Biharmonic mappings arise in a lot of physical situations, particularly, in fluid

dynamics and elasticity problems, and have many important applications in engineering and
biology (cf. [9–11]). However, the investigation of biharmonic mappings in the context of
geometric function theory is a recent one (cf. [1–6]).

In this paper, we consider the biharmonic mappings in D = {z ∈ C : |z| < 1}. Let
BH0(D) denote the set of all biharmonic mappings F in D with the following form:

F(z) =
2∑

k=1

|z|2(k−1)
(
hk(z) + gk(z)

)

=
2∑

k=1

|z|2(k−1)
⎛

⎝
∞∑

j=1

ak,jz
j +

∞∑

j=1

bk,jzj

⎞

⎠,

(1.4)

with a1,1 = 1, a2,1 = 0, b1,1 = 0, and b2,1 = 0.
In [12], Qiao andWang proved that for each F ∈ BH0(D), if the coefficients of F satisfy

the following inequality:

2∑

k=1

∞∑

j=1

(
2(k − 1) + j

)(∣∣ak,j

∣∣ +
∣∣bk,j
∣∣) ≤ 2, (1.5)

then F is sense preserving, univalent, and starlike in D (see [12, Theorems 3.1 and 3.2]).
Let SH denote the set of all univalent harmonic mappings f in D, where

f(z) = h(z) + g(z) = z +
∞∑

j=2

ajz
j +

∞∑

j=1

bjzj , (1.6)

with |b1| < 1. In particular, we use S0
H to denote the set of all mappings in SH with b1 = 0.

Obviously, S0
H ⊂ BH0(D).

In 1984, Clunie and Sheil-Small [7] discussed the class SH and its geometric subclasses.
Since then, there have beenmany related papers on SH and its subclasses (see [13, 14] and the
references therein). In 1999, Jahangiri [15] studied the class S∗

H(α) consisting of all mappings
f = h + g such that h and g are of the form

h(z) = z −
∞∑

j=2

∣∣aj

∣∣zj , g(z) =
∞∑

j=1

∣∣bj
∣∣zj (1.7)
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and satisfy the condition

∂

∂θ

(
arg f

(
reiθ
))

= Re

{
zh′ − zg ′

h + g

}
> α (1.8)

in D, where 0 ≤ α < 1.
For two analytic functions f1 and f2, if

f1(z) =
∞∑

j=1

ajz
j , f2(z) =

∞∑

j=1

Ajz
j , (1.9)

then the convolution of f1 and f2 is defined by

(
f1 ∗ f2

)
(z) = f1(z) ∗ f2(z) =

∞∑

j=1

ajAjz
j . (1.10)

By using the convolution, in [16], Ali et al. introduced the class S0
H(φ, σ, α) of harmonic

mappings in the form of (1.6) such that

Re

⎧
⎨

⎩
z
(
h ∗ φ)′(z) − σz

(
g ∗ φ)′(z)

(
h ∗ φ)(z) + σ

(
g ∗ φ)(z)

⎫
⎬

⎭ > α (1.11)

and the class SP 0
H(φ, σ, α) such that

Re

⎧
⎨

⎩

(
1 + eiγ

)z
(
h ∗ φ)′(z) − σz

(
g ∗ φ)′(z)

(
h ∗ φ)(z) + σ

(
g ∗ φ)(z)

− eiγ

⎫
⎬

⎭ > α, (1.12)

where σ ∈ R and α ∈ [0, 1) are constants, γ ∈ R and φ(z) = z +
∑∞

n=2 φnz
n is analytic in D.

Now we consider a class of biharmonic mappings, denoted by BH0(φk;σ, a, b), as
follows: F ∈ BH0(D) with the form (1.4) is said to be in BH0(φk;σ, a, b) if and only if

Re
{
a
Φ(z)
Ψ(z)

− b

}
> 0, (1.13)

where

Φ(z) = z

[ (
2∑

k=1

|z|2(k−1)(hk ∗ φk

)
(z)

)′
+ σ

(
2∑

k=1

|z|2(k−1)(gk ∗ φk

)
(z)

)′]
,

Ψ(z) = z′
2∑

k=1

|z|2(k−1)
((

hk ∗ φk

)
(z) + σ

(
gk ∗ φk

)
(z)
)
,

(1.14)
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φk(z) = z +
∑∞

j=2 φk,jz
j are analytic in D for k ∈ {1, 2}, σ ∈ R is a constant, a = p + ρeiγ ,

b = q + ρeiγ , p, q, ρ ∈ [0,+∞) are constants with a − b > 0, γ ∈ R, and z = reiθ. Here and in
what follows, “ ′ ” always stands for “∂/∂θ”.

Obviously, if φ2 = 0, a = 1 and b = α, then BH0(φk;σ, a, b) reduces to S0
H(φ, σ, α), and

if φ2 = 0, a = 1 + eiγ and b = α + eiγ , then BH0(φk;σ, a, b) reduces to SP 0
H(φ, σ, α).

Further, we use TBH0(φk;σ, a, b) to denote the class consisting of all mappings F in
BH0(φk;σ, a, b) with the form

F(z) =
2∑

k=1

|z|2(k−1)
(
hk(z) + gk(z)

)
, (1.15)

where

hk(z) = ak,1z −
∞∑

j=2

ak,jz
j , ak,j ≥ 0, a1,1 = 1, a2,1 = 0,

gk(z) = σ
∞∑

j=1

bk,jz
j , bk,j ≥ 0, b1,1 = b2,1 = 0.

(1.16)

The object of this paper is to generalize the discussions in [16] to the setting of
BH0(φk;σ, a, b) and TBH0(φk;σ, a, b) in a unified way. The organization of this paper is
as follows. In Section 2, we get a convolution characterization for BH0(φk;σ, a, b). As a
corollary, we derive a sufficient coefficient condition for mappings in BH0(D) to belong
to BH0(φk;σ, a, b). The main results are Theorems 2.1 and 2.3. In Section 3, first, we get
a coefficient characterization for TBH0(φk;σ, a, b), and then find the extreme points of
TBH0(φk;σ, a, b). The corresponding results are Theorems 3.1 and 3.6.

2. A Convolution Characterization

We begin with a convolution characterization for BH0(φk;σ, a, b).

Theorem 2.1. Let F ∈ BH0(D). Then F ∈ BH0(φk;σ, a, b) if and only if

2∑

k=1

|z|2(k−1)(hk ∗ φk

)
(z) ∗

(
z + ((ax − a + 2b)/(2a − 2b))z2

(1 − z)2

)

− σ
2∑

k=1

|z|2(k−1)(gk ∗ φk

)
(z) ∗

(
((ax + b)/(a − b))z − ((ax − a + 2b)/(2a − 2b))z2

(1 − z)2

)

/= 0,

(2.1)

for all z ∈ D \ {0} and all x ∈ C with |x| = 1.
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Proof. By definition, a necessary and sufficient condition for a mapping F in BH0(D) to be in
BH0(φk;σ, a, b) is given by (1.13). Let

G(z) =
1

a − b

(
a
Φ(z)
Ψ(z)

− b

)
. (2.2)

Then G(0) = 1, and so the condition (1.13) is equivalent to

G(z)/=
x − 1
x + 1

, (2.3)

for all z ∈ D \ {0} and all x ∈ C with |x| = 1 and x /= − 1. Obviously, (2.3) holds if and only if

a(x + 1)Φ(z) − b(x + 1)Ψ(z) − (a − b)(x − 1)Ψ(z)/= 0. (2.4)

Straightforward computations show that

a(x + 1)Φ(z) − b(x + 1)Ψ(z) − (a − b)(x − 1)Ψ(z)

= a(x + 1)z′
2∑

k=1

|z|2(k−1)
⎛

⎝z +
∞∑

j=2

jak,jφk,jz
j − σ

∞∑

j=2

jbk,jφk,jzj

⎞

⎠

− (ax − a + 2b)z′
2∑

k=1

|z|2(k−1)
⎛

⎝z +
∞∑

j=2

ak,jφk,jz
j + σ

∞∑

j=2

bk,jφk,jzj

⎞

⎠

= z′
2∑

k=1

|z|2(k−1)(hk ∗ φk

)
(z) ∗

(
2(a − b)z + (ax − a + 2b)z2

(1 − z)2

)

− σz′
2∑

k=1

|z|2(k−1)(gk ∗ φk

)
(z) ∗

(
2(ax + b)z − (ax − a + 2b)z2

(1 − z)2

)
,

(2.5)

from which we see that (2.3) is true if and only if so is (2.1). The proof is complete.

Remark 2.2. If h2 = g2 = 0, a = 1 and b = α, then Theorem 2.1 coincides with Theorem 2.1 in
[16], and if h2 = g2 = 0, a = 1 + eiγ , and b = α + eiγ , then Theorem 2.1 coincides with Theorem
2.3 in [16].

As an application of Theorem 2.1, we derive a sufficient condition for mappings in
BH0(D) to be in BH0(φk;σ, a, b) in terms of their coefficients.

Theorem 2.3. Let F ∈ BH0(D). Then F ∈ BH0(φk;σ, a, b) if

2∑

k=1

∞∑

j=2

j‖a‖max − ‖b‖max

a − b

∣∣φk,jak,j

∣∣ + |σ|
2∑

k=1

∞∑

j=2

j‖a‖max + ‖b‖max

a − b

∣∣φk,jbk,j
∣∣ ≤ 1, (2.6)
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here and in the following, ‖z‖max = maxγ∈R{|x+yeiγ |} = x+y, where z = x+yeiγ , x and y ∈ [0,+∞)
are constants.

Proof. For F given by (1.4), we see that

L(z) �
∣∣∣∣∣

2∑

k=1

|z|2(k−1)(hk ∗ φk

)
(z) ∗

(
z + ((ax − a + 2b)/(2a − 2b))z2

(1 − z)2

)

−σ
2∑

k=1

|z|2(k−1)(gk ∗ φk

)
(z) ∗

(
((ax + b)/(a − b))z − ((ax − a + 2b)/(2a − 2b))z2

(1 − z)2

)∣∣∣∣∣

=

∣∣∣∣∣∣
z +

2∑

k=1

|z|2(k−1)
∞∑

j=2

(
j +
(
j − 1

)ax − a + 2b
2a − 2b

)
φk,jak,jz

j

−σ
2∑

k=1

|z|2(k−1)
∞∑

j=2

(
j
ax + b

a − b
− (j − 1

)ax − a + 2b
2a − 2b

)
φk,jbk,jzj

∣∣∣∣∣∣
.

(2.7)

If F is the identity, obviously, L(z) = |z|.
If F is not the identity, then

L(z) > |z|
⎛

⎝1 −
2∑

k=1

∞∑

j=2

j‖a‖max − ‖b‖max

a − b

∣∣φk,jak,j

∣∣ −|σ|
2∑

k=1

∞∑

j=2

j‖a‖max + ‖b‖max

a − b

∣∣φk,jbk,j
∣∣
⎞

⎠.

(2.8)

Hence the assumption implies that L(z) > 0 for all z ∈ D \ {0} and all x ∈ C with |x| = 1. It
follows from Theorem 2.1 that F ∈ BH0(φk;σ, a, b).

Remark 2.4. If h2 = g2 = 0, a = 1 and b = α, then Theorem 2.3 coincides with Theorem 2.2 in
[16], and if h2 = g2 = 0, a = 1 + eiγ and b = α + eiγ , then Theorem 2.3 coincides with Theorem
2.4 in [16].

3. A Coefficient Characterization and Extreme Points

We start with a coefficient characterization for TBH0(φk;σ, a, b).

Theorem 3.1. Let φk(z) = z +
∑∞

j=2 φk,jz
j with φk,j ≥ 0, and let F be of the form (1.15). Then

F ∈ TBH0(φk;σ, a, b) if and only if

2∑

k=1

∞∑

j=2

j‖a‖max − ‖b‖max

a − b
φk,jak,j + σ2

2∑

k=1

∞∑

j=2

j‖a‖max + ‖b‖max

a − b
φk,jbk,j ≤ 1. (3.1)
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Proof. By similar arguments as in the proof of Theorem 2.3, we see that it suffices to prove the
“only if” part. For F ∈ TBH0(φk;σ, a, b), obviously, (1.13) is equivalent to

Re

⎧
⎨

⎩
P(z) −Q(z)

z −∑2
k=1 |z|2(k−1)

(∑∞
j=2 ak,jφk,jzj − σ2

∑∞
j=2 bk,jφk,jz

j
)

⎫
⎬

⎭ > 0 (3.2)

in D, where

P(z) = (a − b)z −
2∑

k=1

|z|2(k−1)
∞∑

j=2

(
aj − b

)
ak,jφk,jz

j ,

Q(z) = σ2
2∑

k=1

|z|2(k−1)
∞∑

j=2

(
aj + b

)
bk,jφk,jz

j .

(3.3)

Letting z → 1− through real values leads to the desired inequality. So the proof is complete.

Remark 3.2. If h2 = g2 = 0, a = 1, and b = α, then Theorem 3.1 coincides with Theorem 3.1 in
[16].

It follows from Theorem 3.1 that we have the following.

Corollary 3.3. Let φk(z) = z +
∑∞

j=2 φk,jz
j with φk,j ≥ φ1,2 > 0 (k ∈ {1, 2}, j ≥ 2) and |σ| ≥

(2‖a‖max − ‖b‖max)/(2‖a‖max + ‖b‖max). If F ∈ TBH0(φk;σ, a, b), then for |z| = r < 1, one has

r − a − b

(2‖a‖max − ‖b‖max)φ1,2
r2 ≤ |F(z)| ≤ r +

a − b

(2‖a‖max − ‖b‖max)φ1,2
r2. (3.4)

The result is sharp with equality for mappings

F(z) = z − a − b

(2‖a‖max − ‖b‖max)φ1,2
z2. (3.5)

Theorem 3.1 and Corollary 3.3 imply the following

Corollary 3.4. Under the hypotheses of Corollary 3.3, one has that TBH0(φk;σ, a, b) is closed under
the convex combination.

Definition 3.5. Let X be a topological vector space over the field of complex numbers, and let
E be a subset of X. A point x ∈ E is called an extreme point of E if it has no representation of
the form x = ty + (1 − t)z (0 < t < 1) as a proper convex combination of two distinct points y
and z in E (cf. [17]).

We now determine the extreme points of TBH0(φk;σ, a, b).
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Theorem 3.6. Let

(1) h11(z) = z,

(2) h21(z) = g11(z) = g21(z) = 0,

(3) hkj(z) = z − |z|2(k−1)((a − b)/(j‖a‖max − ‖b‖max)φk,j)zj for k ∈ {1, 2} and all j ≥ 2,

(4) gkj(z) = z + |z|2(k−1)((a − b)/σ(j‖a‖max + ‖b‖max)φk,j)z
j for k ∈ {1, 2} and all j ≥ 2.

Under the hypotheses of Corollary 3.3, one has that F ∈ TBH0(φk;σ, a, b) if and only if it can be
expressed as

F(z) =
2∑

k=1

∞∑

j=1

(
xkjhkj(z) + ykjgkj(z)

)
, (3.6)

where x21 = y11 = y21 = 0, all other xkj and ykj are nonnegative, and
∑2

k=1
∑∞

j=1(xkj + ykj) = 1.

In particular, the extreme points of TBH0(φk;σ, a, b) are all mappings hkj and gkj listed in
(1), (3), and (4) above.

Proof. It follows from the assumptions that

F(z) =
2∑

k=1

∞∑

j=1

(
xkjhkj(z) + ykjgkj(z)

)

= z −
2∑

k=1

∞∑

j=2
|z|2(k−1) a − b

(
j‖a‖max − ‖b‖max

)
φk,j

xkjz
j

+ σ
2∑

k=1

∞∑

j=2
|z|2(k−1) a − b

σ2
(
j‖a‖max + ‖b‖max

)
φk,j

ykjz
j ,

(3.7)

whence

2∑

k=1

∞∑

j=2

(
j‖a‖max − ‖b‖max

)

a − b
φk,j · a − b

(
j‖a‖max − ‖b‖max

)
φk,j

xkj

+ σ2
2∑

k=1

∞∑

j=2

(
j‖a‖max + ‖b‖max

)

a − b
φk,j · a − b

σ2
(
j‖a‖max + ‖b‖max

)
φk,j

ykj

=
2∑

k=1

∞∑

j=2

xkj +
2∑

k=1

∞∑

j=2

ykj

≤ 1,

(3.8)

and so Theorem 3.1 implies that F ∈ TBH0(φk;σ, a, b).
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Conversely, assume F ∈ TBH0(φk;σ, a, b), and let

x21 = y11 = y21 = 0, x11 = 1 −
2∑

k=1

∞∑

j=2

xkj −
2∑

k=1

∞∑

j=2

ykj ,

xkj =

(
j‖a‖max − ‖b‖max

)
φk,jak,j

a − b
,

ykj =
σ2(j‖a‖max + ‖b‖max

)
φk,jbk,j

a − b
,

(3.9)

for k ∈ {1, 2} and all j ≥ 2. Then

F(z) = z −
2∑

k=1

|z|2(k−1)
∞∑

j=2

ak,jz
j + σ

2∑

k=1

|z|2(k−1)
∞∑

j=2

bk,jz
j . (3.10)

The proof of the theorem is complete.

Remark 3.7. If h2 = g2 = 0, a = 1 and b = α, then Theorem 3.6 coincides with Theorem 3.2 in
[16].
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