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Abstract. 
We find the greatest value 
	
		
			

				𝛼
			

		
	
 and the least value 
	
		
			

				𝛽
			

		
	
 in 
	
		
			
				(
				1
				/
				2
				,
				1
				)
			

		
	
 such that the double inequality 
	
		
			
				𝐶
				(
				𝛼
				𝑎
				+
				(
				1
				−
				𝛼
				)
				𝑏
				,
				𝛼
				𝑏
				+
				(
				1
				−
				𝛼
				)
				𝑎
				)
				<
				𝑇
				(
				𝑎
				,
				𝑏
				)
				<
				𝐶
				(
				𝛽
				𝑎
				+
				(
				1
				−
				𝛽
				)
				𝑏
				,
				𝛽
				𝑏
				+
				(
				1
				−
				𝛽
				)
				𝑎
				)
			

		
	
 holds for all 
	
		
			
				𝑎
				,
				𝑏
				>
				0
			

		
	
 with 
	
		
			
				𝑎
				≠
				𝑏
			

		
	
. Here, 
	
		
			
				𝑇
				(
				𝑎
				,
				𝑏
				)
				=
				(
				𝑎
				−
				𝑏
				)
				/
				[
			

		
	
2 arctan
	
		
			
				(
				(
				𝑎
				−
				𝑏
				)
				/
				(
				𝑎
				+
				𝑏
				)
				)
				]
			

		
	
  and 
	
		
			
				𝐶
				(
				𝑎
				,
				𝑏
				)
				=
				(
				𝑎
			

			

				2
			

			
				+
				𝑏
			

			

				2
			

			
				)
				/
				(
				𝑎
				+
				𝑏
				)
			

		
	
 are the Seiffert and contraharmonic means
of 
	
		
			

				𝑎
			

		
	
 and 
	
		
			

				𝑏
			

		
	
, respectively.


1. Introduction
For 
	
		
			
				𝑎
				,
				𝑏
				>
				0
			

		
	
 with 
	
		
			
				𝑎
				≠
				𝑏
			

		
	
, the Seiffert mean 
	
		
			
				𝑇
				(
				𝑎
				,
				𝑏
				)
			

		
	
 and contraharmonic mean 
	
		
			
				𝐶
				(
				𝑎
				,
				𝑏
				)
			

		
	
 are defined by
						
	
 		
 			
				(
				1
				.
				1
				)
			
 			
				(
				1
				.
				2
				)
			
 		
	

	
		
			
				𝑇
				(
				𝑎
				,
				𝑏
				)
				=
				𝑎
				−
				𝑏
			

			
				
			
			
				,
				𝑎
				2
				a
				r
				c
				t
				a
				n
				(
				(
				𝑎
				−
				𝑏
				)
				/
				(
				𝑎
				+
				𝑏
				)
				)
				𝐶
				(
				𝑎
				,
				𝑏
				)
				=
			

			

				2
			

			
				+
				𝑏
			

			

				2
			

			
				
			
			
				,
				𝑎
				+
				𝑏
			

		
	

respectively. Recently, both mean values have been the subject of intensive research. In particular, many remarkable inequalities and properties for these means can be found in the literature [1–12].
Let 
	
		
			
				𝐴
				(
				𝑎
				,
				𝑏
				)
				=
				(
				𝑎
				+
				𝑏
				)
				/
				2
			

		
	
, 
	
		
			
				√
				𝐺
				(
				𝑎
				,
				𝑏
				)
				=
			

			
				
			
			
				𝑎
				𝑏
			

		
	
, 
	
		
			
				√
				𝑆
				(
				𝑎
				,
				𝑏
				)
				=
			

			
				
			
			
				(
				𝑎
			

			

				2
			

			
				+
				𝑏
			

			

				2
			

			
				)
				/
				2
			

		
	
, and let 
	
		
			

				𝑀
			

			

				𝑝
			

			
				(
				𝑎
				,
				𝑏
				)
				=
				(
				(
				𝑎
			

			

				𝑝
			

			
				+
				𝑏
			

			

				𝑝
			

			
				)
				/
				2
				)
			

			
				1
				/
				𝑝
			

			
				(
				𝑝
				≠
				0
				)
			

		
	
 and 
	
		
			

				𝑀
			

			

				0
			

			
				√
				(
				𝑎
				,
				𝑏
				)
				=
			

			
				
			
			
				𝑎
				𝑏
			

		
	
 be the arithmetic, geometric, square root, and 
	
		
			

				𝑝
			

		
	
th power means of two positive numbers 
	
		
			

				𝑎
			

		
	
 and 
	
		
			

				𝑏
			

		
	
, respectively. Then it is well known that 
	
		
			

				𝑀
			

			

				𝑝
			

			
				(
				𝑎
				,
				𝑏
				)
			

		
	
 is continuous and strictly increasing with respect to 
	
		
			
				𝑝
				∈
				ℝ
			

		
	
 for fixed 
	
		
			
				𝑎
				,
				𝑏
				>
				0
			

		
	
 with 
	
		
			
				𝑎
				≠
				𝑏
			

		
	
, and the inequalities 
	
 		
 			
				(
				1
				.
				3
				)
			
 		
	

	
		
			
				𝐺
				(
				𝑎
				,
				𝑏
				)
				=
				𝑀
			

			

				0
			

			
				(
				𝑎
				,
				𝑏
				)
				<
				𝐴
				(
				𝑎
				,
				𝑏
				)
				=
				𝑀
			

			

				1
			

			
				(
				𝑎
				,
				𝑏
				)
				<
				𝑆
				(
				𝑎
				,
				𝑏
				)
				=
				𝑀
			

			

				2
			

			
				(
				𝑎
				,
				𝑏
				)
				<
				𝐶
				(
				𝑎
				,
				𝑏
				)
			

		
	

					hold for all 
	
		
			
				𝑎
				,
				𝑏
				>
				0
			

		
	
 with 
	
		
			
				𝑎
				≠
				𝑏
			

		
	
.
Seiffert [12] proved that the double inequality 
	
 		
 			
				(
				1
				.
				4
				)
			
 		
	

	
		
			
				𝐴
				(
				𝑎
				,
				𝑏
				)
				=
				𝑀
			

			

				1
			

			
				(
				𝑎
				,
				𝑏
				)
				<
				𝑇
				(
				𝑎
				,
				𝑏
				)
				<
				𝑀
			

			

				2
			

			
				(
				𝑎
				,
				𝑏
				)
				=
				𝑆
				(
				𝑎
				,
				𝑏
				)
			

		
	

					holds for all 
	
		
			
				𝑎
				,
				𝑏
				>
				0
			

		
	
 with 
	
		
			
				𝑎
				≠
				𝑏
			

		
	
.
Hästö [13] proved that the function 
	
		
			
				𝑇
				(
				1
				,
				𝑥
				)
				/
				𝑀
			

			

				𝑝
			

			
				(
				1
				,
				𝑥
				)
			

		
	
 is increasing in 
	
		
			
				(
				0
				,
				∞
				)
			

		
	
 if 
	
		
			
				𝑝
				≤
				1
			

		
	
.
In [14], the authors found the greatest value 
	
		
			

				𝑝
			

		
	
 and the least value 
	
		
			

				𝑞
			

		
	
 such that the double inequality 
	
		
			

				𝐻
			

			

				𝑝
			

			
				(
				𝑎
				,
				𝑏
				)
				<
				𝑇
				(
				𝑎
				,
				𝑏
				)
				<
				𝐻
			

			

				𝑞
			

			
				(
				𝑎
				,
				𝑏
				)
			

		
	
 holds for all 
	
		
			
				𝑎
				,
				𝑏
				>
				0
			

		
	
 with 
	
		
			
				𝑎
				≠
				𝑏
			

		
	
. Here, 
	
		
			

				𝐻
			

			

				𝑘
			

			
				(
				𝑎
				,
				𝑏
				)
				=
				(
				(
				𝑎
			

			

				𝑘
			

			
				+
				(
				𝑎
				𝑏
				)
			

			
				𝑘
				/
				2
			

			
				+
				𝑏
			

			

				𝑘
			

			
				)
				/
				3
				)
			

			
				1
				/
				𝑘
			

			
				(
				𝑘
				≠
				0
				)
			

		
	
, and 
	
		
			

				𝐻
			

			

				0
			

			
				√
				(
				𝑎
				,
				𝑏
				)
				=
			

			
				
			
			
				𝑎
				𝑏
			

		
	
 is the 
	
		
			

				𝑘
			

		
	
th power-type Heron mean of 
	
		
			

				𝑎
			

		
	
 and 
	
		
			

				𝑏
			

		
	
.

				Wang et al. [15] answered the question: what are the best possible parameters 
	
		
			

				𝜆
			

		
	
 and 
	
		
			

				𝜇
			

		
	
 such that the double inequality 
	
		
			

				𝐿
			

			

				𝜆
			

			
				(
				𝑎
				,
				𝑏
				)
				<
				𝑇
				(
				𝑎
				,
				𝑏
				)
				<
				𝐿
			

			

				𝜇
			

			
				(
				𝑎
				,
				𝑏
				)
			

		
	
 holds for all 
	
		
			
				𝑎
				,
				𝑏
				>
				0
			

		
	
 with 
	
		
			
				𝑎
				≠
				𝑏
			

		
	
, where 
	
		
			

				𝐿
			

			

				𝑟
			

			
				(
				𝑎
				,
				𝑏
				)
				=
				(
				𝑎
			

			
				𝑟
				+
				1
			

			
				+
				𝑏
			

			
				𝑟
				+
				1
			

			
				)
				/
				(
				𝑎
			

			

				𝑟
			

			
				+
				𝑏
			

			

				𝑟
			

			

				)
			

		
	
 is the 
	
		
			

				𝑟
			

		
	
th Lehmer mean of 
	
		
			

				𝑎
			

		
	
 and 
	
		
			

				𝑏
			

		
	
.
In [16, 17], the authors proved that the inequalities 
	
 		
 			
				(
				1
				.
				5
				)
			
 		
	

	
		
			

				𝛼
			

			

				1
			

			
				
				𝑇
				(
				𝑎
				,
				𝑏
				)
				+
				1
				−
				𝛼
			

			

				1
			

			
				
				𝐺
				(
				𝑎
				,
				𝑏
				)
				<
				𝐴
				(
				𝑎
				,
				𝑏
				)
				<
				𝛽
			

			

				1
			

			
				
				𝑇
				(
				𝑎
				,
				𝑏
				)
				+
				1
				−
				𝛽
			

			

				1
			

			
				
				𝛼
				𝐺
				(
				𝑎
				,
				𝑏
				)
				,
			

			

				2
			

			
				
				𝑆
				(
				𝑎
				,
				𝑏
				)
				+
				1
				−
				𝛼
			

			

				2
			

			
				
				𝐴
				(
				𝑎
				,
				𝑏
				)
				<
				𝑇
				(
				𝑎
				,
				𝑏
				)
				<
				𝛽
			

			

				2
			

			
				
				𝑆
				(
				𝑎
				,
				𝑏
				)
				+
				1
				−
				𝛽
			

			

				2
			

			
				
				𝑆
				𝐴
				(
				𝑎
				,
				𝑏
				)
				,
			

			

				𝛼
			

			

				3
			

			
				(
				𝑎
				,
				𝑏
				)
				𝐴
			

			
				1
				−
				𝛼
			

			

				3
			

			
				(
				𝑎
				,
				𝑏
				)
				<
				𝑇
				(
				𝑎
				,
				𝑏
				)
				<
				𝑆
			

			

				𝛽
			

			

				3
			

			
				(
				𝑎
				,
				𝑏
				)
				𝐴
			

			
				1
				−
				𝛽
			

			

				3
			

			
				(
				𝑎
				,
				𝑏
				)
			

		
	

					hold for all 
	
		
			
				𝑎
				,
				𝑏
				>
				0
			

		
	
 with 
	
		
			
				𝑎
				≠
				𝑏
			

		
	
 if and only if 
	
		
			

				𝛼
			

			

				1
			

			
				≤
				3
				/
				5
			

		
	
, 
	
		
			

				𝛽
			

			

				1
			

			
				≥
				𝜋
				/
				4
			

		
	
, 
	
		
			

				𝛼
			

			

				2
			

			
				√
				≤
				(
				4
				−
				𝜋
				)
				/
				[
				(
			

			
				
			
			
				2
				−
				1
				)
				𝜋
				]
			

		
	
, 
	
		
			

				𝛽
			

			

				2
			

			
				≥
				2
				/
				3
			

		
	
, 
	
		
			

				𝛼
			

			

				3
			

			
				≤
				2
				/
				3
			

		
	
 and 
	
		
			

				𝛽
			

			

				3
			

			
				≥
				4
				−
				2
				l
				o
				g
				𝜋
				/
				l
				o
				g
				2
			

		
	
.
For fixed 
	
		
			
				𝑎
				,
				𝑏
				>
				0
			

		
	
 with 
	
		
			
				𝑎
				≠
				𝑏
			

		
	
, let 
	
		
			
				𝑥
				∈
				[
				1
				/
				2
				,
				1
				]
			

		
	
 and 
	
 		
 			
				(
				1
				.
				6
				)
			
 		
	

	
		
			
				𝐽
				(
				𝑥
				)
				=
				𝐶
				(
				𝑥
				𝑎
				+
				(
				1
				−
				𝑥
				)
				𝑏
				,
				𝑥
				𝑏
				+
				(
				1
				−
				𝑥
				)
				𝑎
				)
				.
			

		
	

Then it is not difficult to verify that 
	
		
			
				𝐽
				(
				𝑥
				)
			

		
	
 is continuous and strictly increasing in 
	
		
			
				[
				1
				/
				2
				,
				1
				]
			

		
	
. Note that 
	
		
			
				𝐽
				(
				1
				/
				2
				)
				=
				𝐴
				(
				𝑎
				,
				𝑏
				)
				<
				𝑇
				(
				𝑎
				,
				𝑏
				)
			

		
	
 and 
	
		
			
				𝐽
				(
				1
				)
				=
				𝐶
				(
				𝑎
				,
				𝑏
				)
				>
				𝑇
				(
				𝑎
				,
				𝑏
				)
			

		
	
. Therefore, it is natural to ask what are the greatest value 
	
		
			

				𝛼
			

		
	
 and the least value 
	
		
			

				𝛽
			

		
	
 in 
	
		
			
				(
				1
				/
				2
				,
				1
				)
			

		
	
 such that the double inequality 
	
 		
 			
				(
				1
				.
				7
				)
			
 		
	

	
		
			
				𝐶
				(
				𝛼
				𝑎
				+
				(
				1
				−
				𝛼
				)
				𝑏
				,
				𝛼
				𝑏
				+
				(
				1
				−
				𝛼
				)
				𝑎
				)
				<
				𝑇
				(
				𝑎
				,
				𝑏
				)
				<
				𝐶
				(
				𝛽
				𝑎
				+
				(
				1
				−
				𝛽
				)
				𝑏
				,
				𝛽
				𝑏
				+
				(
				1
				−
				𝛽
				)
				𝑎
				)
			

		
	

					holds for all 
	
		
			
				𝑎
				,
				𝑏
				>
				0
			

		
	
 with 
	
		
			
				𝑎
				≠
				𝑏
			

		
	
. The main purpose of this paper is to answer this question. Our main result is the following Theorem 1.1.
Theorem 1.1.  If 
	
		
			
				𝛼
				,
				𝛽
				∈
				(
				1
				/
				2
				,
				1
				)
			

		
	
, then the double inequality
							
	
 		
 			
				(
				1
				.
				8
				)
			
 		
	

	
		
			
				𝐶
				(
				𝛼
				𝑎
				+
				(
				1
				−
				𝛼
				)
				𝑏
				,
				𝛼
				𝑏
				+
				(
				1
				−
				𝛼
				)
				𝑎
				)
				<
				𝑇
				(
				𝑎
				,
				𝑏
				)
				<
				𝐶
				(
				𝛽
				𝑎
				+
				(
				1
				−
				𝛽
				)
				𝑏
				,
				𝛽
				𝑏
				+
				(
				1
				−
				𝛽
				)
				𝑎
				)
			

		
	

						holds for all 
	
		
			
				𝑎
				,
				𝑏
				>
				0
			

		
	
 with 
	
		
			
				𝑎
				≠
				𝑏
			

		
	
 if and only if 
	
		
			
				√
				𝛼
				≤
				(
				1
				+
			

			
				
			
			
				4
				/
				𝜋
				−
				1
				)
				/
				2
			

		
	
 and 
	
		
			
				√
				𝛽
				≥
				(
				3
				+
			

			
				
			
			
				3
				)
				/
				6
			

		
	
.
2. Proof of Theorem 1.1
Proof of Theorem 1.1. Let 
	
		
			
				√
				𝜆
				=
				(
				1
				+
			

			
				
			
			
				4
				/
				𝜋
				−
				1
				)
				/
				2
			

		
	
 and 
	
		
			
				√
				𝜇
				=
				(
				3
				+
			

			
				
			
			
				3
				)
				/
				6
			

		
	
. We first proof that the inequalities
							
	
 		
 			
				(
				2
				.
				1
				)
			
 			
				(
				2
				.
				2
				)
			
 		
	

	
		
			
				𝑇
				(
				𝑎
				,
				𝑏
				)
				>
				𝐶
				(
				𝜆
				𝑎
				+
				(
				1
				−
				𝜆
				)
				𝑏
				,
				𝜆
				𝑏
				+
				(
				1
				−
				𝜆
				)
				𝑎
				)
				,
				𝑇
				(
				𝑎
				,
				𝑏
				)
				<
				𝐶
				(
				𝜇
				𝑎
				+
				(
				1
				−
				𝜇
				)
				𝑏
				,
				𝜇
				𝑏
				+
				(
				1
				−
				𝜇
				)
				𝑎
				)
			

		
	

						hold for all 
	
		
			
				𝑎
				,
				𝑏
				>
				0
			

		
	
 with 
	
		
			
				𝑎
				≠
				𝑏
			

		
	
.From (1.1) and (1.2) we clearly see that both 
	
		
			
				𝑇
				(
				𝑎
				,
				𝑏
				)
			

		
	
 and 
	
		
			
				𝐶
				(
				𝑎
				,
				𝑏
				)
			

		
	
 are symmetric and homogenous of degree 1. Without loss of generality, we assume that 
	
		
			
				𝑎
				>
				𝑏
			

		
	
. Let 
	
		
			
				𝑡
				=
				𝑎
				/
				𝑏
				>
				1
			

		
	
 and 
	
		
			
				𝑝
				∈
				(
				1
				/
				2
				,
				1
				)
			

		
	
, then from (1.1) and (1.2) one has
							
	
 		
 			
				(
				2
				.
				3
				)
			
 		
	

	
		
			
				𝐶
				[
				]
				(
				𝑝
				𝑎
				+
				(
				1
				−
				𝑝
				)
				𝑏
				,
				𝑝
				𝑏
				+
				(
				1
				−
				𝑝
				)
				𝑎
				)
				−
				𝑇
				(
				𝑎
				,
				𝑏
				)
				=
				𝑏
				𝑝
				𝑡
				+
				(
				1
				−
				𝑝
				)
			

			

				2
			

			
				+
				[
				]
				(
				1
				−
				𝑝
				)
				𝑡
				+
				𝑝
			

			

				2
			

			
				
			
			
				×
				
				
				2
				(
				𝑡
				+
				1
				)
				a
				r
				c
				t
				a
				n
				(
				(
				𝑡
				−
				1
				)
				/
				(
				𝑡
				+
				1
				)
				)
				2
				a
				r
				c
				t
				a
				n
				𝑡
				−
				1
			

			
				
			
			
				
				−
				𝑡
				𝑡
				+
				1
			

			

				2
			

			
				−
				1
			

			
				
			
			
				[
				]
				𝑝
				𝑡
				+
				(
				1
				−
				𝑝
				)
			

			

				2
			

			
				+
				[
				]
				(
				1
				−
				𝑝
				)
				𝑡
				+
				𝑝
			

			

				2
			

			
				
				.
			

		
	

						Let
							
	
 		
 			
				(
				2
				.
				4
				)
			
 		
	

	
		
			
				
				𝑓
				(
				𝑡
				)
				=
				2
				a
				r
				c
				t
				a
				n
				𝑡
				−
				1
			

			
				
			
			
				
				−
				𝑡
				𝑡
				+
				1
			

			

				2
			

			
				−
				1
			

			
				
			
			
				[
				]
				𝑝
				𝑡
				+
				(
				1
				−
				𝑝
				)
			

			

				2
			

			
				+
				[
				]
				(
				1
				−
				𝑝
				)
				𝑡
				+
				𝑝
			

			

				2
			

			

				.
			

		
	

						Then simple computations lead to
							
	
 		
 			
				(
				2
				.
				5
				)
			
 			
				(
				2
				.
				6
				)
			
 			
				(
				2
				.
				7
				)
			
 		
	

	
		
			
				𝑓
				(
				1
				)
				=
				0
				,
				l
				i
				m
			

			
				𝑡
				→
				+
				∞
			

			
				𝜋
				𝑓
				(
				𝑡
				)
				=
			

			
				
			
			
				2
				−
				1
			

			
				
			
			

				𝑝
			

			

				2
			

			
				+
				(
				1
				−
				𝑝
				)
			

			

				2
			

			
				,
				𝑓
			

			

				
			

			
				(
				𝑡
				)
				=
				2
				𝑓
			

			

				1
			

			
				(
				𝑡
				)
			

			
				
			
			
				
				[
				]
				𝑝
				𝑡
				+
				(
				1
				−
				𝑝
				)
			

			

				2
			

			
				+
				[
				]
				(
				1
				−
				𝑝
				)
				𝑡
				+
				𝑝
			

			

				2
			

			

				
			

			

				2
			

			
				
				𝑡
			

			

				2
			

			
				
				,
				+
				1
			

		
	

						where
							
	
 		
 			
				(
				2
				.
				8
				)
			
 			
				(
				2
				.
				9
				)
			
 		
	

	
		
			

				𝑓
			

			

				1
			

			
				
				(
				𝑡
				)
				=
				4
				𝑝
			

			

				4
			

			
				−
				8
				𝑝
			

			

				3
			

			
				+
				1
				0
				𝑝
			

			

				2
			

			
				
				𝑡
				−
				6
				𝑝
				+
				1
			

			

				4
			

			
				−
				2
				(
				2
				𝑝
				−
				1
				)
			

			

				2
			

			
				
				2
				𝑝
			

			

				2
			

			
				
				𝑡
				−
				2
				𝑝
				+
				1
			

			

				3
			

			
				
				+
				2
				1
				2
				𝑝
			

			

				4
			

			
				−
				2
				4
				𝑝
			

			

				3
			

			
				+
				1
				8
				𝑝
			

			

				2
			

			
				
				𝑡
				−
				6
				𝑝
				+
				1
			

			

				2
			

			
				−
				2
				(
				2
				𝑝
				−
				1
				)
			

			

				2
			

			
				
				2
				𝑝
			

			

				2
			

			
				
				−
				2
				𝑝
				+
				1
				𝑡
				+
				4
				𝑝
			

			

				4
			

			
				−
				8
				𝑝
			

			

				3
			

			
				+
				1
				0
				𝑝
			

			

				2
			

			
				𝑓
				−
				6
				𝑝
				+
				1
				,
			

			

				1
			

			
				(
				1
				)
				=
				0
				.
			

		
	
Let 
	
		
			

				𝑓
			

			

				2
			

			
				(
				𝑡
				)
				=
				𝑓
			

			
				
				1
			

			
				(
				𝑡
				)
				/
				2
			

		
	
, 
	
		
			

				𝑓
			

			

				3
			

			
				(
				𝑡
				)
				=
				𝑓
			

			
				
				2
			

			
				(
				𝑡
				)
				/
				2
			

		
	
, 
	
		
			

				𝑓
			

			

				4
			

			
				(
				𝑡
				)
				=
				𝑓
			

			
				
				3
			

			
				(
				𝑡
				)
				/
				3
			

		
	
. Then from (2.8) we get
							
	
 		
 			
				(
				2
				.
				1
				0
				)
			
 		
	

	
		
			

				𝑓
			

			

				2
			

			
				
				(
				𝑡
				)
				=
				2
				4
				𝑝
			

			

				4
			

			
				−
				8
				𝑝
			

			

				3
			

			
				+
				1
				0
				𝑝
			

			

				2
			

			
				
				𝑡
				−
				6
				𝑝
				+
				1
			

			

				3
			

			
				−
				3
				(
				2
				𝑝
				−
				1
				)
			

			

				2
			

			
				
				2
				𝑝
			

			

				2
			

			
				
				𝑡
				−
				2
				𝑝
				+
				1
			

			

				2
			

			
				
				+
				2
				1
				2
				𝑝
			

			

				4
			

			
				−
				2
				4
				𝑝
			

			

				3
			

			
				+
				1
				8
				𝑝
			

			

				2
			

			
				
				−
				6
				𝑝
				+
				1
				𝑡
				−
				(
				2
				𝑝
				−
				1
				)
			

			

				2
			

			
				
				2
				𝑝
			

			

				2
			

			
				
				,
				−
				2
				𝑝
				+
				1
			

		
	
 
	
 		
 			
				(
				2
				.
				1
				1
				)
			
 		
	

	
		
			

				𝑓
			

			

				2
			

			
				(
				1
				)
				=
				0
				,
			

		
	
 
	
 		
 			
				(
				2
				.
				1
				2
				)
			
 		
	

	
		
			

				𝑓
			

			

				3
			

			
				
				(
				𝑡
				)
				=
				3
				4
				𝑝
			

			

				4
			

			
				−
				8
				𝑝
			

			

				3
			

			
				+
				1
				0
				𝑝
			

			

				2
			

			
				
				𝑡
				−
				6
				𝑝
				+
				1
			

			

				2
			

			
				−
				3
				(
				2
				𝑝
				−
				1
				)
			

			

				2
			

			
				
				2
				𝑝
			

			

				2
			

			
				
				𝑡
				−
				2
				𝑝
				+
				1
				+
				1
				2
				𝑝
			

			

				4
			

			
				−
				2
				4
				𝑝
			

			

				3
			

			
				+
				1
				8
				𝑝
			

			

				2
			

			
				−
				6
				𝑝
				+
				1
				,
			

		
	
 
	
 		
 			
				(
				2
				.
				1
				3
				)
			
 		
	

	
		
			

				𝑓
			

			

				3
			

			
				(
				1
				)
				=
				6
				𝑝
			

			

				2
			

			
				−
				6
				𝑝
				+
				1
				,
			

		
	
 
	
 		
 			
				(
				2
				.
				1
				4
				)
			
 		
	

	
		
			

				𝑓
			

			

				4
			

			
				
				(
				𝑡
				)
				=
				2
				4
				𝑝
			

			

				4
			

			
				−
				8
				𝑝
			

			

				3
			

			
				+
				1
				0
				𝑝
			

			

				2
			

			
				
				−
				6
				𝑝
				+
				1
				𝑡
				−
				(
				2
				𝑝
				−
				1
				)
			

			

				2
			

			
				
				2
				𝑝
			

			

				2
			

			
				
				,
				−
				2
				𝑝
				+
				1
			

		
	
 
	
 		
 			
				(
				2
				.
				1
				5
				)
			
 		
	

	
		
			

				𝑓
			

			

				4
			

			
				(
				1
				)
				=
				6
				𝑝
			

			

				2
			

			
				−
				6
				𝑝
				+
				1
				.
			

		
	
We divide the proof into two cases.Case 1 (
	
		
			
				√
				𝑝
				=
				𝜆
				=
				(
				1
				+
			

			
				
			
			
				4
				/
				𝜋
				−
				1
				)
				/
				2
			

		
	
). Then (2.6), (2.13), and (2.15) lead to
									
	
 		
 			
				(
				2
				.
				1
				6
				)
			
 			
				(
				2
				.
				1
				7
				)
			
 			
				(
				2
				.
				1
				8
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑡
				→
				+
				∞
			

			
				𝑓
				𝑓
				(
				𝑡
				)
				=
				0
				,
			

			

				3
			

			
				(
				1
				)
				=
				−
				2
				(
				𝜋
				−
				3
				)
			

			
				
			
			
				𝜋
				𝑓
				<
				0
				,
			

			

				4
			

			
				(
				1
				)
				=
				−
				2
				(
				𝜋
				−
				3
				)
			

			
				
			
			
				𝜋
				<
				0
				.
			

		
	
Note that
									
	
 		
 			
				(
				2
				.
				1
				9
				)
			
 		
	

	
		
			
				4
				𝑝
			

			

				4
			

			
				−
				8
				𝑝
			

			

				3
			

			
				+
				1
				0
				𝑝
			

			

				2
			

			
				−
				6
				𝑝
				+
				1
				=
				4
				+
				2
				𝜋
				−
				𝜋
			

			

				2
			

			
				
			
			

				𝜋
			

			

				2
			

			
				>
				0
				.
			

		
	
It follows from (2.8), (2.10), (2.12), (2.14), and (2.19) that
									
	
 		
 			
				(
				2
				.
				2
				0
				)
			
 			
				(
				2
				.
				2
				1
				)
			
 			
				(
				2
				.
				2
				2
				)
			
 			
				(
				2
				.
				2
				3
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑡
				→
				+
				∞
			

			

				𝑓
			

			

				1
			

			
				(
				𝑡
				)
				=
				+
				∞
				,
				l
				i
				m
			

			
				𝑡
				→
				+
				∞
			

			

				𝑓
			

			

				2
			

			
				(
				𝑡
				)
				=
				+
				∞
				,
				l
				i
				m
			

			
				𝑡
				→
				+
				∞
			

			

				𝑓
			

			

				3
			

			
				(
				𝑡
				)
				=
				+
				∞
				,
				l
				i
				m
			

			
				𝑡
				→
				+
				∞
			

			

				𝑓
			

			

				4
			

			
				(
				𝑡
				)
				=
				+
				∞
				.
			

		
	
From (2.14) and inequality (2.19), we clearly see that 
	
		
			

				𝑓
			

			

				4
			

			
				(
				𝑡
				)
			

		
	
 is strictly increasing in 
	
		
			
				[
				1
				,
				+
				∞
				)
			

		
	
. Then (2.18) and (2.23) lead to the conclusion that there exists 
	
		
			

				𝑡
			

			

				0
			

			
				>
				1
			

		
	
 such that 
	
		
			

				𝑓
			

			

				4
			

			
				(
				𝑡
				)
				<
				0
			

		
	
 for 
	
		
			
				𝑡
				∈
				[
				1
				,
				𝑡
			

			

				0
			

			

				)
			

		
	
 and 
	
		
			

				𝑓
			

			

				4
			

			
				(
				𝑡
				)
				>
				0
			

		
	
 for 
	
		
			
				𝑡
				∈
				(
				𝑡
			

			

				0
			

			
				,
				+
				∞
				)
			

		
	
. Hence, 
	
		
			

				𝑓
			

			

				3
			

			
				(
				𝑡
				)
			

		
	
 is strictly decreasing in 
	
		
			
				[
				1
				,
				𝑡
			

			

				0
			

			

				]
			

		
	
 and strictly increasing in 
	
		
			
				[
				𝑡
			

			

				0
			

			
				,
				+
				∞
				)
			

		
	
.It follows from (2.17) and (2.22) together with the piecewise monotonicity of 
	
		
			

				𝑓
			

			

				3
			

			
				(
				𝑡
				)
			

		
	
 that there exists 
	
		
			

				𝑡
			

			

				1
			

			
				>
				𝑡
			

			

				0
			

			
				>
				1
			

		
	
 such that 
	
		
			

				𝑓
			

			

				2
			

			
				(
				𝑡
				)
			

		
	
 is strictly decreasing in 
	
		
			
				[
				1
				,
				𝑡
			

			

				1
			

			

				]
			

		
	
 and strictly increasing in 
	
		
			
				[
				𝑡
			

			

				1
			

			
				,
				+
				∞
				)
			

		
	
.From (2.11) and (2.21) together with the piecewise monotonicity of 
	
		
			

				𝑓
			

			

				2
			

			
				(
				𝑡
				)
			

		
	
, we conclude that there exists 
	
		
			

				𝑡
			

			

				2
			

			
				>
				𝑡
			

			

				1
			

			
				>
				1
			

		
	
 such that 
	
		
			

				𝑓
			

			

				1
			

			
				(
				𝑡
				)
			

		
	
 is strictly decreasing in 
	
		
			
				[
				1
				,
				𝑡
			

			

				2
			

			

				]
			

		
	
 and strictly increasing in 
	
		
			
				[
				𝑡
			

			

				2
			

			
				,
				+
				∞
				)
			

		
	
.Equations (2.7), (2.9), and (2.20) together with the piecewise monotonicity of 
	
		
			

				𝑓
			

			

				1
			

			
				(
				𝑡
				)
			

		
	
 imply that there exists 
	
		
			

				𝑡
			

			

				3
			

			
				>
				𝑡
			

			

				2
			

			
				>
				1
			

		
	
 such that 
	
		
			
				𝑓
				(
				𝑡
				)
			

		
	
 is strictly decreasing in 
	
		
			
				[
				1
				,
				𝑡
			

			

				3
			

			

				]
			

		
	
 and strictly increasing in 
	
		
			
				[
				𝑡
			

			

				3
			

			
				,
				+
				∞
				)
			

		
	
.Therefore, inequality (2.1) follows from (2.3)–(2.5) and (2.16) together with the piecewise monotonicity of 
	
		
			
				𝑓
				(
				𝑡
				)
			

		
	
.Case 2 (
	
		
			
				√
				𝑝
				=
				𝜇
				=
				(
				3
				+
			

			
				
			
			
				3
				)
				/
				6
			

		
	
). Then (2.8) leads to
									
	
 		
 			
				(
				2
				.
				2
				4
				)
			
 		
	

	
		
			

				𝑓
			

			

				1
			

			
				(
				𝑡
				)
				=
				(
				𝑡
				−
				1
				)
			

			

				4
			

			
				
			
			
				9
				>
				0
			

		
	

								for 
	
		
			
				𝑡
				>
				1
			

		
	
.Inequality (2.24) and (2.7) imply that 
	
		
			
				𝑓
				(
				𝑡
				)
			

		
	
 is strictly increasing in 
	
		
			
				[
				1
				,
				+
				∞
				)
			

		
	
. Therefore, inequality (2.2) follows from (2.3)–(2.5) together with the monotonicity of 
	
		
			
				𝑓
				(
				𝑡
				)
			

		
	
.From inequalities (2.1) and (2.2) together with the monotonicity of 
	
		
			
				𝐽
				(
				𝑥
				)
				=
				𝐶
				(
				𝑥
				𝑎
				+
				(
				1
				−
				𝑥
				)
				𝑏
				,
				𝑥
				𝑏
				+
				(
				1
				−
				𝑥
				)
				𝑎
				)
			

		
	
 in 
	
		
			
				[
				1
				/
				2
				,
				1
				]
			

		
	
, we know that inequality (1.8) holds for all 
	
		
			
				√
				𝛼
				≤
				(
				1
				+
			

			
				
			
			
				4
				/
				𝜋
				−
				1
				)
				/
				2
			

		
	
, 
	
		
			
				√
				𝛽
				≥
				(
				3
				+
			

			
				
			
			
				3
				)
				/
				6
			

		
	
, and all 
	
		
			
				𝑎
				,
				𝑏
				>
				0
			

		
	
 with 
	
		
			
				𝑎
				≠
				𝑏
			

		
	
.Next, we prove that 
	
		
			
				√
				𝜆
				=
				(
				1
				+
			

			
				
			
			
				4
				/
				𝜋
				−
				1
				)
				/
				2
			

		
	
 is the best possible parameter in 
	
		
			
				[
				1
				/
				2
				,
				1
				]
			

		
	
 such that inequality (2.1) holds for all 
	
		
			
				𝑎
				,
				𝑏
				>
				0
			

		
	
 with 
	
		
			
				𝑎
				≠
				𝑏
			

		
	
.For any 
	
		
			
				√
				1
				>
				𝑝
				>
				𝜆
				=
				(
				1
				+
			

			
				
			
			
				4
				/
				𝜋
				−
				1
				)
				/
				2
			

		
	
, from (2.6) one has
									
	
 		
 			
				(
				2
				.
				2
				5
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑡
				→
				+
				∞
			

			
				𝜋
				𝑓
				(
				𝑡
				)
				=
			

			
				
			
			
				2
				−
				1
			

			
				
			
			

				𝑝
			

			

				2
			

			
				+
				(
				1
				−
				𝑝
				)
			

			

				2
			

			
				>
				0
				.
			

		
	
Equations (2.3) and (2.4) together with inequality (2.25) imply that for any 
	
		
			
				√
				1
				>
				𝑝
				>
				𝜆
				=
				(
				1
				+
			

			
				
			
			
				4
				/
				𝜋
				−
				1
				)
				/
				2
			

		
	
 there exists 
	
		
			

				𝑇
			

			

				0
			

			
				=
				𝑇
			

			

				0
			

			
				(
				𝑝
				)
				>
				1
			

		
	
 such that 
									
	
 		
 			
				(
				2
				.
				2
				6
				)
			
 		
	

	
		
			
				𝐶
				(
				𝑝
				𝑎
				+
				(
				1
				−
				𝑝
				)
				𝑏
				,
				𝑝
				𝑏
				+
				(
				1
				−
				𝑝
				)
				𝑎
				)
				>
				𝑇
				(
				𝑎
				,
				𝑏
				)
			

		
	

								for 
	
		
			
				𝑎
				/
				𝑏
				∈
				(
				𝑇
			

			

				0
			

			
				,
				+
				∞
				)
			

		
	
.Finally, we prove that 
	
		
			
				√
				𝜇
				=
				(
				3
				+
			

			
				
			
			
				3
				)
				/
				6
			

		
	
 is the best possible parameter such that inequality (2.2) holds for all 
	
		
			
				𝑎
				,
				𝑏
				>
				0
			

		
	
 with 
	
		
			
				𝑎
				≠
				𝑏
			

		
	
.For any 
	
		
			
				√
				1
				/
				2
				<
				𝑝
				<
				𝜇
				=
				(
				3
				+
			

			
				
			
			
				3
				)
				/
				6
			

		
	
, from (2.13) one has
									
	
 		
 			
				(
				2
				.
				2
				7
				)
			
 		
	

	
		
			

				𝑓
			

			

				3
			

			
				(
				1
				)
				=
				6
				𝑝
			

			

				2
			

			
				−
				6
				𝑝
				+
				1
				<
				0
				.
			

		
	
From inequality (2.27) and the continuity of 
	
		
			

				𝑓
			

			

				3
			

			
				(
				𝑡
				)
			

		
	
, we know that there exists 
	
		
			
				𝛿
				=
				𝛿
				(
				𝑝
				)
				>
				0
			

		
	
 such that
									
	
 		
 			
				(
				2
				.
				2
				8
				)
			
 		
	

	
		
			

				𝑓
			

			

				3
			

			
				(
				𝑡
				)
				<
				0
			

		
	

								for 
	
		
			
				𝑡
				∈
				(
				1
				,
				1
				+
				𝛿
				)
			

		
	
.Equations (2.3)–(2.5), (2.7), (2.9), and (2.11) together with inequality (2.28) imply that for any 
	
		
			
				√
				1
				/
				2
				<
				𝑝
				<
				𝜇
				=
				(
				3
				+
			

			
				
			
			
				3
				)
				/
				6
			

		
	
 there exists 
	
		
			
				𝛿
				=
				𝛿
				(
				𝑝
				)
				>
				0
			

		
	
 such that 
									
	
 		
 			
				(
				2
				.
				2
				9
				)
			
 		
	

	
		
			
				𝑇
				(
				𝑎
				,
				𝑏
				)
				>
				𝐶
				(
				𝑝
				𝑎
				+
				(
				1
				−
				𝑝
				)
				𝑏
				,
				𝑝
				𝑏
				+
				(
				1
				−
				𝑝
				)
				𝑎
				)
			

		
	

								for 
	
		
			
				𝑎
				/
				𝑏
				∈
				(
				1
				,
				1
				+
				𝛿
				)
			

		
	
.
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