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We study the degenerate semilinear elliptic systems of the form −div(h1(x)∇u) = λ(a(x)u +
b(x)v) + Fu(x, u, v), x ∈ Ω,−div(h2(x)∇v) = λ(d(x)v + b(x)u) + Fv(x, u, v), x ∈ Ω, u|∂Ω = v|∂Ω = 0,
where Ω ⊂ RN(N ≥ 2) is an open bounded domain with smooth boundary ∂Ω, the measurable,
nonnegative diffusion coefficients h1, h2 are allowed to vanish in Ω (as well as at the boundary
∂Ω) and/or to blow up inΩ. Some multiplicity results of solutions are obtained for the degenerate
elliptic systems which are near resonance at higher eigenvalues by the classical saddle point
theorem and a local saddle point theorem in critical point theory.

1. Introduction

In this paper, we study a class of degenerate elliptic systems:

−div(h1(x)∇u) = λ(a(x)u + b(x)v) + Fu(x, u, v), x ∈ Ω,

−div(h2(x)∇v) = λ(d(x)v + b(x)u) + Fv(x, u, v), x ∈ Ω

u|∂Ω = v|∂Ω = 0,

, (1.1)

where Ω ⊂ RN(N ≥ 2) is an open bounded domain with smooth boundary ∂Ω, F ∈ C1(Ω ×
R2, R) satisfies the following sublinear growth condition:

lim
|s|→∞

|∇F(x, s)|
|s| = 0 (1.2)
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uniformly in x ∈ Ω, where∇F = (Fu, Fv) denotes the gradient of F with respect to (u, v) ∈ R2.
The degeneracy of this system is considered in the sense that the measurable, nonnegative
diffusion coefficients h1, h2 are allowed to vanish inΩ (as well as at the boundary ∂Ω) and/or
to blow up in Ω. The consideration of suitable assumptions on the diffusion coefficients will
be based on the work [1], where the degenerate scalar equation was studied. We introduce
the function space (N)h, which consists of functions h : Ω ⊂ RN → R, such that h ∈ L1(Ω),
h−1 ∈ L1(Ω), and h−s ∈ L1(Ω), for some s > N/2.

Then for the weight functions h1, h2 we assume the following hypothesis. (N) there
exist functions μ satisfying condition (N)μ, for some sμ, and ν satisfying condition (N)ν, for
some sν, such that

μ(x)
k1

≤ h1(x) ≤ k1μ(x),
ν(x)
k2

≤ h2(x) ≤ k2ν(x), (1.3)

a.e. in Ω, for some constants k1 > 1 and k2 > 1.
The mathematical modeling of various physical processes, ranging from physics to

biology, where spatial heterogeneity plays a primary role, is reduced to nonlinear evolution
equations with variable diffusion or dispersion. Also note that problem (1.1) is closely related
(see [1]) to the following system:

−div(h1(x, u, v)∇u) = f(λ, x, u, v,∇u,∇v), x ∈ Ω,

−div(h2(x, u, v)∇v) = g(λ, x, u, v,∇u,∇v), x ∈ Ω,

u|∂Ω = v|∂Ω = 0.

(1.4)

Problems of such a type have been successfully applied to the heat propagation in
heterogeneous materials, to the study of transport of electron temperature in a confined
plasma, to the propagation of varying amplitude waves in a nonlinear medium, to the study
of electromagnetic phenomena in nonhomogeneous superconductors and the dynamics of
Josephson junctions, to electrochemistry, to nuclear reaction kinetics, to image segmentation,
to the spread ofmicroorganisms, to the growth and control of brain tumors, and to population
dynamics (see [2–4] and the references therein).

An example of the physical motivation of the assumptions (N), (N)h may be found
in [3]. These assumptions are related to the modeling of reaction diffusion processes in
composite materials occupying a bounded domain Ω, which at some point they behave as
perfect insulators. When at some point the medium is perfectly insulated, it is natural to
assume that h1(x) and/or h2(x) vanish in Ω. For more information we refer the reader to [4]
and the references therein.

For the perturbed problem,Mawhin and Schmitt [5] first considered the following two
point boundary value problem:

−u′′ − λu = f(x, u) + h(x), u(0) = u(π) = 0. (1.5)

Under the assumption that f is bounded and satisfies a sign condition, if the parameter λ
is sufficiently close to λ1 from left, problem (1.5) has at least three solutions, if λ1 ≤ λ < λ2,
problem (1.5) has at least one solution, where λ1, λ2 are the first and the second eigenvalues
of the corresponding linear problem. Ma et al. [6] considered the boundary value problem
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Δu + λu + f(x, u) = h(x) defined on a bounded open set Ω ⊂ RN , no matter whether the
boundary conditions are Dirichlet or Neumann condition, as the parameter λ approaches λ1
from left, there exist three solutions. Moreover, existence of three solutions was obtained for
the quasilinear problem in bounded domains as the parameter λ approaches λ1 from left. In
[7, 8], these results were extended to the perturbed p-Laplacian equation in RN . In [9], Ou
and Tang extended above some results to some elliptic systems with the Dirichlet boundary
conditions. Especially, de Paiva and Massa in [10] studied the semilinear elliptic boundary
value problem in any spatial dimension and by using variational techniques, they showed
that a suitable perturbation will turn the almost resonant situation (λ near to λk, i.e., near
resonance with a nonprincipal eigenvalue) in a situation where the solutions are at least
two. In [11], those results were extended to the cooperative elliptic systems in the bounded
domain. Motivated by the idea above, we have the goal in this paper of extending these
results in [10, 11] to some degenerate elliptic systems with the Dirichlet boundary conditions.

2. Preliminaries and Main Results

Let h(x) be a nonnegative weight function in Ω which satisfies condition (N)h. We consider
the weighted Sobolev space D1,2

0 (Ω, h) to be defined as the closure of C∞
0 (Ω) with respect to

the following norm:

‖u‖h =
(∫

Ω
h(x)|∇u|2dx

)1/2

, (2.1)

and the following scalar product:

〈u, v〉h =
∫
Ω
h(x)∇u∇v dx, (2.2)

for all u, v ∈ D1,2
0 (Ω, h). The space D1,2

0 (Ω, h) is a Hilbert space. For a discussion about the
space setting we refer to [1] and the references therein. Let

2∗s =
2Ns

N(s + 1) − 2s
. (2.3)

Lemma 2.1. Assume that Ω is a bounded domain in RN and the weight h satisfies (N)h. Then the
following embeddings hold:

(i) D1,2
0 (Ω, h) ↪→ L2∗s(Ω) continuously,

(ii) D1,2
0 (Ω, h) ↪→ Lr(Ω) compactly for any r ∈ [1, 2∗s).

In the sequel one denotes by 2∗μ and 2∗ν the quantities 2∗sμ and 2∗sν , respectively, where sμ and
sν are induced by condition (N), recall that h1, h2 satisfy (N). The assumptions concerning the
coefficient functions of systems (1.1) are as follows.

(AD) The functions a, d ∈ C(Ω, R) and there exists x0 ∈ Ω, such that a(x0) > 0, d(x0) > 0.

(B) The function b ∈ C(Ω, (0,+∞)).



4 Abstract and Applied Analysis

The space setting for our problem is the product space H = D1,2
0 (Ω, h1) × D1,2

0 (Ω, h2)
equipped with the following norm:

‖z‖ =
(
‖u‖2h1

+ ‖v‖2h2

)1/2
, z = (u, v) ∈ H, (2.4)

and the following scalar product:

〈
z, φ

〉
= 〈u, ξ〉h1

+ 〈v, τ〉h2
, (2.5)

for all z = (u, v), φ = (ξ, τ). Observe that inequalities (1.3) in condition (N) imply that
the functional spaces D1,2

0 (Ω, h1) × D1,2
0 (Ω, h2) and D1,2

0 (Ω, μ) × D1,2
0 (Ω, ν) are equivalent.

Especially, by Lemma 2.1 we know that for any 1 ≤ δ ≤ min{2∗μ, 2∗ν}, the embedding
H ↪→ Lδ(Ω) × Lδ(Ω) is continuous and there is a positive constant S = S(δ,N,Ω) such that∫
Ω |z|δdx ≤ Sδ‖z‖δ for all z ∈ H. Moreover, if δ < min{2∗μ, 2∗ν}, the embedding above is also
compact. Let

H(x) = diag(h1(x), h2(x)), A(x) =
(
a(x) b(x)
b(x) d(x)

)
. (2.6)

Assume that hypothesis (N) is satisfied and the coefficient functions a, d and b satisfy
conditions (AD) and (B), respectively.

We consider the eigenvalue problem with weight A(x),

−div(h1(x)∇u) = λ(a(x)u + b(x)v), x ∈ Ω,

−div(h2(x)∇v) = λ(d(x)v + b(x)u), x ∈ Ω,

u|∂Ω = v|∂Ω = 0.

(2.7)

A simple calculation shows that λ is an eigenvalue of (2.7) if and only if

TAz = λ−1z, (2.8)

where TA : H → H is the symmetric bounded linear operator defined by

〈
TAz, φ

〉
=
∫
Ω

(
A(x)z, φ

)
dx, ∀z, φ ∈ H. (2.9)

Since the coefficient of A are continuous functions and the embedding H ↪→ L2(Ω) × L2(Ω)
is compact, we can check that the operator TA is also compact. Thus, we may invoke the
spectral theory for compact operators to conclude thatH possesses a Hilbertian basis formed
by eigenfunctions of (2.7).

Let us denote z = (u, v) and

λ−11 = μ1 = sup{〈TAz, z〉 : ‖z‖ = 1}. (2.10)
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Recalling that A satisfies (AD) and (B), we can use [2, Theorem 1.1] (p = q = 2, α = β = 0)
to conclude that the eigenvalue μ1 is positive, simple, and isolated in the spectrum of TA.
Moreover, if we denote by φ1 the normalized eigenfunction associated to λ1, we can suppose
that the φ1 is positive on Ω. By using induction, if we suppose that μ1 > μ2 ≥ . . . ≥ μk−1 are
the k − 1 first eigenvalues of TA and {φi}k−1i=1 are the associated normalized eigenfunctions, we
can define

λ−1k = μk = sup
{
〈TAz, z〉 := ‖z‖ = 1, z ∈ (

span
{
φ1, . . . , φk−1

})⊥}
. (2.11)

It is proved in [12, Proposition 1.3], that, if μk > 0, then it is an eigenvalue of TA with
associated normalized eigenfunction φk. In view of the condition (AD), we can argue as in
the proof of [12, Proposition 1.11(c)], and conclude that μk > 0. Thus, we obtain a sequence
of eigenvalues for (2.7).

0 < λ1 < λ2 ≤ · · · ≤ λk ≤ · · · (2.12)

such that λk → ∞ as k → ∞. We denote by Ek the eigenfunction space corresponding to
λk. Moreover, if we set Vk = span{φ1, . . . , φk}, we can decompose H = Vk⊕V ⊥

k
. Moreover, the

following inequalities hold:

∫
Ω
(H(x)∇z,∇z)dx ≤ λk

∫
Ω
(A(x)z, z)dx, ∀z ∈ Vk, (2.13)

∫
Ω
(H(x)∇z,∇z)dx ≥ λk+1

∫
Ω
(A(x)z, z)dx, ∀z ∈ V ⊥

k . (2.14)

Lemma 2.2 (from Lemma 4.6 of [10]). Let X be a Hilbert space with orthonormal direct sum
splitting X = V ⊕ Z ⊕W . Moreover, let dim(V ⊕ Z) < ∞. For ρ > R > 0, set

A = {u ∈ W : ‖u‖ ≥ R} ∪ {u ∈ Z ⊕W : ‖u‖ = R},
B =

{
u ∈ V ⊕ Z : ‖u‖ = ρ

}
.

(2.15)

Then A links with B.

Lemma 2.3 (from Theorem 8.1 of [13]). Let H = X1 ⊕ X2 be a Hilbert space where X1 has finite
dimension, J ∈ C1(H,R) satisfying the (P.S.) condition and such that, for given ρ1, ρ2 > 0,

sup
z∈ρ1S1

J(z) < a = inf
z∈ρ2B2

J(z) ≤ b = sup
z∈ρ1B1

J(z) < inf
z∈ρ2S2

J(z), (2.16)

where Bi and Si represent the unit ball and the unit sphere in Xi : i = 1, 2.
Then there exists a critical point z0 such that J(z0) ∈ [a, b].
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Next, in order to state our main results, we introduce the following assumptions on
the nonlinear term:

(F1) lim|s|→∞(∇F(x, s), s)/|s| = +∞ uniformly with respect to x ∈ Ω.

(F2) lim|s|→∞F(x, s) = +∞ uniformly with respect to x ∈ Ω.

(F3) lim|s|→∞(∇F(x, s), s)/|s| = −∞ uniformly with respect to x ∈ Ω.

(F4) lim|s|→∞F(x, s) = −∞ uniformly with respect to x ∈ Ω.

Our main results are given by the following theorems.

Theorem 2.4. Let λk(k ≥ 2) be an eigenvalue of multiplicitym. Suppose that condition (N) and the
coefficient functions a, d and b satisfy conditions (AD) and (B), respectively. Assume, in addition,
that F satisfies (1.2) and ∇F(x, 0) = 0 for all x ∈ Ω, and one of the sets of hypotheses (F1) or (F2).
Then there exists δ0 > 0 such that for λ ∈ (λk − δ0, λk) problem (1.1) has at least two solutions.

Theorem 2.5. Let λk(k ≥ 2) be an eigenvalue of multiplicitym. Suppose that conditions (N) and the
coefficient functions a, d and b satisfy conditions (AD) and (B), respectively. Assume, in addition,
that F satisfies (1.2) and ∇F(x, 0) = 0 for all x ∈ Ω, and one of the sets of hypotheses (F3) or (F4).
Then there exists δ1 > 0 such that for λ ∈ (λk, λk + δ1) problem (1.1) has at least two solutions.

3. Proof of Theorems

Consider the C1 functional J : H → R, ∀z ∈ H,

J(z) =
1
2

∫
Ω
(H(x)∇z,∇z)dx − λ

2

∫
Ω
(A(x)z, z)dx −

∫
Ω
F(x, z)dx. (3.1)

Since the problems in Theorems 2.4 and 2.5 are not resonant, J satisfies the Palais-Smale
condition of compactness (see, e.g., in [14]). In addition, z ∈ H is a weak solution of problem
(1.1) if and only if z is a critical point of J .

We set

V = span
{
φ1, . . . , φk−1

}
, Z = span

{
φk, . . . , φk+m−1

}
= Ek, W = (V ⊕ Z)⊥, (3.2)

and we define

BV = {z ∈ V : ‖z‖ ≤ 1}, BVZ = {z ∈ V ⊕ Z : ‖z‖ ≤ 1}, BZW = {z ∈ Z ⊕W : ‖z‖ ≤ 1},
(3.3)

and SV , SVZ, SZW , respectively, their relative boundaries.
Theorems 2.4 and 2.5 will be a consequence of the geometry in Propositions 3.1 and

3.2, whose proofs will be postponed to Sections 4 and 5.
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Proposition 3.1. If λ ∈ (λk−1, λk) and hypothesis (1.2) is satisfied, then there exist constantsDλ and
ρλ such that

J(z) ≥ Dλ, for z ∈ Z ⊕W, (3.4)

J(z) < Dλ, for z ∈ ρλSV . (3.5)

Moreover, if one of the sets of hypotheses (F1) or (F2) is satisfied, then there exists δ0 such that for
λ ∈ (λk − δ0, λk) there exist DW,Dλ ∈ R, ρλ > R1 > 0 such that, in addition to (3.4) and (3.5),

J(z) ≥ DW, for z ∈ W, (3.6)

J(z) < DW, for z ∈ R1SVZ, (3.7)

J(z) < DW, for z ∈ V, ‖z‖ ≥ R1. (3.8)

(The values with index λ depend on λ, the others may be fixed uniformly.)
Based on this geometry one gives the following proof.

Proof of Theorem 2.4. Since the functional J satisfies the (P.S.) condition, we can apply the
saddle point theorem (see, e.g., in [15]) for two times, let

Γk−1 =
{
γ ∈ C0(ρλBV ;H

)
s.t. γ |ρλSV = id

}
,

Γk =
{
γ ∈ C0(R1BVZ;H)s.t. γ |R1SVZ

= id
}
.

(3.9)

The first solution, that we denote by zk−1 and may be obtained for any λ ∈ (λk−1, λk)
with just hypothesis (1.2), corresponds to a critical point at the level

ck−1 = inf
γ∈Γk−1

sup
w∈ρλBV

J
(
γ(w)

)
, (3.10)

the criticality of this level is guaranteed by the estimates (3.4) and (3.5), since ρλSV and Z⊕W
link, that is, the image of any map in Γk−1 intersects Z ⊕W .

The second solution, that we denote by zk, corresponds to a critical point at the critical
level

ck = inf
γ∈Γk

sup
w∈R1BVZ

J
(
γ(w)

)
, (3.11)

actually, this is a critical level because of the estimates (3.6) and (3.7), since R1SVZ and W
link.

To conclude the proof, we need to show that these two solutions are distinct.
We observe first that by estimate (3.6) we have that ck ≥ DW , then we observe that

we may build a map γ0 ∈ Γk−1 in such a way that its image is the union between the annulus
{z ∈ V : ‖z‖ ∈ [R1, ρλ]} and the image of a (k−1)-dimensional ball in R1SVZ whose boundary
is R1SV . By the estimates (3.7) and (3.8), we deduce that supw∈ρλBV

J(γ0(w)) < DW , and as a
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consequence ck−1 < DW , proving that the two solutions are distinct, for being at different
critical levels.

Proposition 3.2. If λ ∈ (λk, λk+m) and hypothesis (1.2) is satisfied, then there exist constants Kλ

and βλ such that

J(z) ≥ Kλ, for z ∈ W, (3.12)

J(z) < Kλ, for z ∈ βλSVZ. (3.13)

Moreover, if one of the sets of hypotheses (F3) or (F4) is satisfied, then there exists δ1 such that for
λ ∈ (λk, λk + δ1) there exist Kλ,KV , E ∈ R, βλ > R2 > 0, ξ > 0 such that, in addition to (3.12) and
(3.13),

J(z) < KV , for z ∈ V, (3.14)

J(z) > KV , for z ∈ R2SZW, (3.15)

J(z) > KV , for z ∈ W, ‖z‖ ≥ R2, (3.16)

J(z) > E, for z ∈ R2BZW, (3.17)

J(z) < E, for z ∈ ξSV . (3.18)

The values with index λ depend on λ, the others may be fixed uniformly.
This geometry, along with Lemma 2.2, allows one to give the following.

Proof of Theorem 2.5. Since the functional J satisfies the (P.S.) condition, we can apply the
saddle point theorem and Lemma 2.3.

The first solution that we denote by wk and may be obtained for any λ ∈
(λk, λk+m) with just hypothesis (1.2) is again obtained through the saddle point theorem and
corresponds to a critical point at the critical level

dk = inf
γ∈Γk

sup
w∈βλBVZ

J
(
γ(w)

)
, (3.19)

where now

Γk =
{
γ ∈ C0(βλBVZ;H

)
s.t. γ |βλSVZ

= id
}
, (3.20)

the criticality is guaranteed by estimates (3.12) and (3.13), since βλSVZ and W link.
The second solution that we denote by wk−1 comes from Lemma 2.3, where we set

X1 = V and X2 = Z ⊕W , actually we have the following structure:

sup
ξSV

J(z) < E = inf
R2BZW

J(z) ≤ sup
ξBV

J(z) < KV < inf
R2SZW

J(z), (3.21)

and then we have a critical point wk−1 at the level dk−1 ≤ KV .
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Finally, in order to prove that these two solutions are distinct, we need a sharper
estimate for dk than that given by (3.13). For this we use Lemma 2.2 to guarantee that for
any map γ ∈ Γk, since βλ > R2, one has that the image of γ either intersects R2SZW or has a
point z ∈ W with ‖z‖ ≥ R2. This implies that supw∈βλBVZ

J(γ(w)) > KV , by estimates (3.15)
and (3.16), and then dk > KV proving that the two solutions are distinct, for being at different
critical levels.

4. Proof of Estimates

In this section we will prove all the estimates in Propositions 3.1 and 3.2.
From (1.2) and the continuity of the potential F, for any ε > 0, there exists a positive

constant Mε = M(ε) such that

|∇F(x, s)| ≤ ε|s| +Mε, (4.1)

for all (x, s) ∈ Ω × R2. By (4.1), Hölder’s inequality, we have

∣∣∣∣
∫
Ω
F(x, z)dx

∣∣∣∣ ≤
∫
Ω

∣∣∣∣∣
∫1

0
(∇F(x, tz), z)dt

∣∣∣∣∣dx ≤
∫
Ω

∫1

0
|∇F(x, tz)||z|dt dx

≤
∫
Ω

(
ε|z|2 +Mε|z|

)
dx ≤ ε‖z‖2L2 +Mε|Ω|1/2‖z‖L2

≤ εS2‖z‖2 +MεS|Ω|1/2‖z‖,

(4.2)

where S is the best embedding constant.

4.1. Estimates of the Saddle Geometry

Lemma 4.1. Under hypothesis (1.2), one gets the following:

(i) for λ ∈ (λk−1, λk), there exists Dλ satisfying (3.4) and DW ∈ R satisfying (3.6);

(ii) for λ ∈ (λk, λk+m):

(a) there existsKλ ∈ R satisfying (3.12),
(b) for a given R2 > 0, there exists E ∈ R satisfying (3.17).

Proof. Let z ∈ W : using estimates (4.2) and (2.14)we get

J(z) ≥
(
λk+m − λ

2λk+m
− εS2

)
‖z‖2 −Mε|Ω|1/2S‖z‖. (4.3)

For λ ∈ (λk−1, λk), letting ε < (λk+m −λk)/2S2λk+m < (λk+m −λ)/2S2λk+m, it follows that
J is bounded below inW , that is, there exists a DW as in (3.6).

For λ ∈ (λk, λk+m), then the same estimate holds but the constant cannot be made
independent of λ, giving (3.12).
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In the same way, let z ∈ Z ⊕W and set δ = λk − λ > 0, we get

J(z) ≥
(
λk − λ

2λk
− εS2

)
‖z‖2 −Mε|Ω|1/2S‖z‖

≥
(

δ

2λk
− εS2

)
‖z‖2 −Mε|Ω|1/2S‖z‖.

(4.4)

Letting ε < δ/2S2λk, it follows that J is bounded below in Z ⊕ W , that is, there exists a Dλ

such that for all z ∈ Z ⊕W we have (3.4), where again the constant Dλ depends on δ, that is,
on λ.

Finally, (4.4)with λ ∈ (λk, λk+m) implies

J(z) ≥
(
λk − λk+m

2λk
− εS2

)
‖z‖2 −Mε|Ω|1/2S‖z‖, (4.5)

then, no matter the value of λ, J is bounded from below in any bounded subset of Z ⊕ W ,
giving (3.17) for a suitable value of E.

Lemma 4.2. Under hypothesis (1.2), one gets the following:

(i) for λ ∈ (λk−1, λk), given the constant Dλ ∈ R, there exists ρλ > 0 satisfying (3.5);

(ii) for λ ∈ (λk, λk+m):

(a) there existsKV ∈ R satisfying (3.14),

(b) for a given Kλ ∈ R, there exists βλ > 0 satisfying (3.13),

(c) for a given E ∈ R, there exists ξ > 0 satisfying (3.18).

Moreover, given the values R1, R2, one may always choose ρλ > R1, βλ > R2 as claimed in
Propositions 3.1 and 3.2.

Proof. Let z ∈ V , by estimates (4.2) and (2.13)we get

J(z) ≤
(
λk−1 − λ

2λk−1
+ εS2

)
‖z‖2 +Mε|Ω|1/2S‖z‖. (4.6)

For λ ∈ (λk−1, λk), letting ε < (λ − λk−1)/2S2λk−1, then one obtains (3.5) for suitably
large ρλ > R1.

For λ ∈ (λk, λk+m), letting ε < (λk − λk−1)/2S2λk−1, one obtains, for suitable KV and
ξ > 0, (3.14) and (3.18).

Finally, let z ∈ V ⊕ Z and set δ = λ − λk > 0, we get

J(z) ≤
(
λk − λ

2λk
+ εS2

)
‖z‖2 +Mε|Ω|1/2S‖z‖

≤
(
− δ

2λk
+ εS2

)
‖z‖2 +Mε|Ω|1/2S‖z‖.

(4.7)



Abstract and Applied Analysis 11

Letting ε < δ/2S2λk, it is clear that (once that δ is fixed) this goes to −∞ and then we may
find the claimed βλ > R2 such that (3.13) holds.

Observe that KV and E can be chosen uniformly for λ ∈ (λk, λk+m), while ρλ, βλ in fact
depend on λ.

4.2. Estimating the Effect of the Nontrivial Perturbation

In this section we will prove the remaining inequalities in Propositions 3.1 and 3.2, which
rely on the hypotheses (F1), or (F2), or (F3), or (F4), which, roughly speaking, say that the
perturbation F is nontrivial in such a way that a new solution arises when it is sufficiently
near to the eigenvalue λk. The proof is simpler for Theorem 2.4, since we need to estimate the
functional in the compact set SVZ, while for Theorem 2.5 the same kind of estimate is required
in the noncompact set SZW .

4.2.1. Estimating J in SVZ

For the next estimates, we will need the following lemma.

Lemma 4.3. Hypotheses (F2) implies that there exists a nondecreasing function D : (0,+∞) → R
such that

lim
R→+∞

D(R) = +∞, inf
z∈RSVZ

∫
Ω
F(x, z)dx > D(R). (4.8)

Proof. First we claim that there exists a constant η > 0 such that the setsΩz = {x ∈ Ω : |z(x)| >
η} have measure |Ωz| > η, for all z ∈ SVZ.

Actually, V ⊕Z is a finite-dimensional subspace and the functions z ∈ SVZ are smooth,
they are uniformly bounded, that is, there exists M > 0 such that |z(x)| ≤ M for all x ∈ Ω.
Suppose that for ηn → 0(ηn < 1) there exists {zn} ⊂ SVZ such that |Ωzn | ≤ ηn.

On one hand, by (2.13), one obtains

1
λk

≤
∫
Ω
(A(x)zn, zn)dx. (4.9)

On the other hand,

∫
Ω
(A(x)zn, zn)dx =

∫
Ω

(
a(x)u2

n + 2b(x)unvn + d(x)v2
n

)
dx

≤
∫
Ω
(a(x) + b(x))u2

n +
∫
Ω
(b(x) + d(x))v2

ndx

≤ M

∫
Ω
|zn|2dx

= M

(∫
Ωzn

|zn|2dx +
∫
Ω−Ωzn

|zn|2dx
)

≤ M
(
M2|Ωzn | + η2

n|Ω −Ωzn |
)

≤ ηnC

−→ 0,

(4.10)
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where M = maxx∈Ω{|a(x) + b(x)|, |b(x) + d(x)|}, zn = (un, vn), C = M(M2 + |Ω|). That is a
contradiction.

Now for any H > 0, we will show that we can find an R̃ large enough so that∫
Ω F(x,Rz)dx ≥ H for any z ∈ SVZ and R ≥ R̃, which means that

lim
R→∞

inf
z∈RSVZ

∫
Ω
F(x, z)dx = +∞. (4.11)

Actually, letting M = (H + |Ω|CF)η−1, by (F2) we have that there exists s0 such that
F(x, s) > M for |s| > s0.

For R > s0/η, one has Ωz ⊆ {x ∈ Ω : |Rz(x)| > s0}, and then one gets

∫
|Rz|≥s0

F(x,Rz)dx ≥ Mη. (4.12)

ForR ≤ s0/η, by (F2) and F ∈ C1(Ω×R2, R), there existsCF > 0 such that F(x, s) ≥ −CF ,
for all (x, s) ∈ (Ω, R2).

One finally obtains

∫
Ω
F(x,Rz)dx =

∫
|Rz|≥s0

F(x,Rz)dx +
∫
|Rz|≤s0

F(x,Rz)dx

≥ Mη − |Ω|CF

= H,

(4.13)

it is elementary that

D(R) = inf
ρ≥R

inf
z∈RSVZ

∫
Ω
F(x, z)dx (4.14)

is well defined and satisfies the claim.

Now we may prove the following.

Lemma 4.4. Consider Theorem 2.4 with one of the sets of hypotheses (F1) or (F2). Given the constant
DW ∈ R, there exist R1, δ0 > 0 such that, for any λ ∈ (λk − δ0, λk), (3.7) and (3.8) hold.

Proof. We consider the two sets of hypotheses separately.
(i) In case (F1), assuming (1.2) and (F1) hold, we claim that there exists CM such that

F(x, s) ≥ M|s| − CM, ∀M ∈ R, (4.15)

uniformly in x ∈ Ω, in particular we set M = 1.
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In fact, by (F1), there exits R0 > 0 such that for |s| ≥ R0, (∇F(x, s), s) ≥ |s| uniformly in
x ∈ Ω. For any s ∈ R2(s /= 0), from (4.1) (letting ε = 2) we have

F(x, s) =
∫1

0
(∇F(x, ts), s)dt

=
∫1

R0/|s|
(∇F(x, ts), s)dt +

∫R0/|s|

0
(∇F(x, ts), s)dt

≥
∫1

R0/|s|
|s|dt +

∫R0/|s|

0
(∇F(x, ts), s)dt

≥ |s| − R0 −
∫R0/|s|

0

(
2t|s|2 + |M2||s|

)
dt

= |s| − R0 − R2
0 −M2R0

= |s| − C1,

(4.16)

where C1 = R0 + R2
0 +M2R0.

Let z ∈ RSVZ, for being in a finite-dimensional subspace, all the norms are equivalent,
so that (set δ = λk − λ > 0 and uses estimates (4.15) and (2.13))

J(z) ≤ λk − λ

2λk
‖z‖2 − ‖z‖ + C1|Ω|

≤ δ

2λk
‖z‖2 − ‖z‖ + C1|Ω|

≤ δ

2λk
R2 − R + C1|Ω|.

(4.17)

(ii) In case (F2), let D(R) be as in Lemma 4.3, for ‖z‖ = R, let z = w + φ with w ∈ V
and φ ∈ Z = Ek,

J(z) =
1
2

∫
Ω
(H(x)∇z,∇z)dx − λ

2

∫
Ω
(A(x)z, z) −

∫
Ω
F(x, z)dx

≤ λk−1 − λ

2λk−1
‖w‖2 + λk − λ

2λk

∥∥φ∥∥2 −
∫
Ω
F(x, z)dx

≤ λk−1 − λk + δ

2λk−1
‖w‖2 + δ

2λk

∥∥φ∥∥2 −
∫
Ω
F(x, z)dx

≤ δ

2λk

∥∥φ∥∥2 − λk − λk−1
4λk−1

‖w‖2 −
∫
Ω
F(x, z)dx.

(4.18)

Assume that δ ≤ (λk − λk−1)/2, it is easy to see that (−(λk − λk−1)/4λk−1)‖w‖2 ≤ C for some
constant C, we estimate

J(z) ≤ δ

2λk

∥∥φ∥∥2 + C −D(R)

≤ δ

2λk
R2 −D(R) + C.

(4.19)
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Considering (4.17) and (4.19), we see that since limR→∞D(R) = +∞ by Lemma 4.3, we may
fix R1 so that C − D(R1) < DW − 1 (or DM − R1 < DW − 1 for the case (F1)) and then for
0 < δ < min{2λk/R2

1, (λk − λk−1)/2} one gets (3.7).
To obtain (3.8), we observe that (since λ > λk−1) if φ = 0, that is, if z ∈ V , then in

estimates (4.17) and (4.19)we may avoid the term (δ/2λk)R2 so that (remember thatD(R) is
nondecreasing) J(z) < DW − 1 for ‖z‖ > R1.

4.2.2. Estimating J in SZW

We consider the corresponding of the previous lemma, for Theorem 2.5.

Lemma 4.5. Considering Theorem 2.5 with one of the sets of hypotheses (F3) or (F4). Given the
constant KV ∈ R, there exists R2, δ1 > 0 such that, for any λ ∈ (λk, λk + δ1), (3.15) and (3.16) hold.

Proof. Letting λ = λk +δ, we see from (4.3), that property (3.16)will be satisfied provided that
R2 is large enough (say R2 > R̃) and observing that this value can be made independent from
λ once that δ is small enough.

Now we consider the two sets of hypotheses separately.
(i) In case (F3), suppose z ∈ Ek ⊕W , we can assume that z = w + φ, with w ∈ W and

φ ∈ Ek. Since Ek is a finite dimension subspace, all the norms are equivalent, so that there
exists C > 0 such that for all φ ∈ Ek we have ‖φ‖ ≤ C‖φ‖L1 . By (F3), from the proof of (4.15),
we also have the similar inequality: there exists C2 such that

−F(x, s) ≥ C|s| − C2, (4.20)

uniformly in x ∈ Ω. So by (2.14) and (4.20),

J
(
w + φ

)
=

1
2

∫
Ω

(
H(x)∇(

w + φ
)
, ∇(

w + φ
))
dx

− λ

2

∫
Ω

(
A(x)

(
w + φ

)
, w + φ

)
dx −

∫
Ω
F
(
x,w + φ

)
dx

≥ λk+m − (λk + δ)
2λk+m

‖w‖2 − δ

2λk

∥∥φ∥∥2 + C
∥∥w + φ

∥∥
L1 − C2|Ω|

≥ λk+m − (λk + δ)
2λk+m

‖w‖2 − δ

2λk

∥∥φ∥∥2 + C
∥∥φ∥∥L1 − C‖−w‖L1 − C2|Ω|

≥ λk+m − (λk + δ)
2λk+m

‖w‖2 − δ

2λk

∥∥φ∥∥2 +
∥∥φ∥∥ − C3‖w‖ − C4,

(4.21)

where C3 = |Ω|1/2SC, C4 = C2|Ω|. Since

(
1 − δ

2λk
‖z‖

)
‖z‖ ≤ ‖w‖ + ∥∥φ∥∥ − δ

2λk

(∥∥φ∥∥2 + ‖w‖2
)

≤
(
1 − δ

2λk

∥∥φ∥∥
)∥∥φ∥∥ + ‖w‖,

(4.22)
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suppose δ ≤ (λk+m − λk)/2, (4.21) becomes

J
(
w + φ

) ≥ λk+m − (λk + δ)
2λk+m

‖w‖2 − C3‖w‖ − C4 − ‖w‖ +
(
1 − δ

2λk
‖z‖

)
‖z‖

≥ λk+m − λk
4λk+m

‖w‖2 − (C3 + 1)‖w‖ − C4 +
(
1 − δ

2λk
‖z‖

)
‖z‖,

(4.23)

since (λk+1 − λk)/4λk+1 > 0, so ((λk+1 − λk)/4λk+1)‖w‖2 − (C3 + 1)‖w‖ − C4 is bounded below
for all w ∈ W , that is, there exists C5 ∈ R such that

λk+m − λk
4λk+m

‖w‖2 − C3‖w‖ − C4 ≥ C5, (4.24)

by (4.23) one gets

J(z) ≥
(
1 − δ

2λk
‖z‖

)
‖z‖ + C5

= − δ

2λk
‖z‖2 + ‖z‖ + C5.

(4.25)

(ii) In case (F4), first we give some conclusions which are similar to Lemma 3 of [16].
Under the property of F, there exists a constant C, and G ∈ C(R2, R) which is subadditive,
that is,

G(s + t) ≤ G(s) +G(t), (4.26)

for all s, t ∈ R2, and coercive, that is,

G(s) −→ +∞, (4.27)

as |s| → ∞, and satisfies that

G(s) ≤ |s| + 4, (4.28)

for all s ∈ R2, such that

−F(x, s) ≥ G(s) − C, (4.29)

for all s ∈ R2 and x ∈ Ω.
In fact, since −F(x, s) → +∞ as |s| → ∞ uniformly for all x ∈ Ω, there exists a

sequence of positive integers nk with nk+1 > 2nk for all positive integers k such that

−F(x, s) ≥ k, (4.30)
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for all |s| ≥ nk and all x ∈ Ω. Let n0 = 0 and define

G(s) = k + 2 +
|s| − nk−1
nk − nk−1

, (4.31)

for nk−1 ≤ |s| < nk, where k ∈ N.
By the definition of G we have

k + 2 ≤ G(s) ≤ k + 3, (4.32)

for all nk−1 ≤ |s| < nk. By (F4) and F ∈ C1(Ω × R2, R), there exists CF > 0 such that

−F(x, s) ≥ −CF, ∀(x, s) ∈
(
Ω, R2

)
. (4.33)

It follows that

−F(x, s) ≥ G(s) − C, (4.34)

where C = CF + 4. In fact, when nk−1 ≤ |s| < nk for some k ≥ 2, one has, by (4.30) and (4.32),

−F(x, s) ≥ k − 1 ≥ G(s) − 4 ≥ G(s) − C, (4.35)

for all x ∈ Ω. When |s| < n1, we have, by (4.32) and (4.33),

−F(x, s) ≥ −CF = 4 − C ≥ G(s) − C, (4.36)

for all x ∈ Ω.
It is obvious that G is continuous and coercive. Moreover one has

G(s) ≤ |s| + 4, (4.37)

for all s ∈ R2. In fact, for every s ∈ R2 there exists k ∈ N such that

nk−1 ≤ |s| < nk, (4.38)

which implies that

G(s) ≤ (k − 1) + 4 ≤ nk−1 + 4 ≤ |s| + 4, (4.39)

for all s ∈ R2 by (4.32) and the fact that nk ≥ k for all integers k ≥ 0.
Now we only need to prove the subadditivity of G. Let

nk−1 ≤ |s| < nk, nj−1 ≤ |t| < nj, (4.40)



Abstract and Applied Analysis 17

and m = max{k, j}. Then we have

|s + t| ≤ |s| + |t| < nk + nj ≤ 2nm < nm+1. (4.41)

Hence we obtain, by (4.32),

G(s + t) ≤ m + 4 ≤ k + 2 + j + 2 ≤ G(s) +G(t), (4.42)

which shows that G is subadditive.
For z ∈ = Ek ⊕ W , assuming that z = w + φ, with w ∈ W and φ ∈ Ek, and letting

0 < δ < (λk+m − λk)/2, by (2.13), (4.29), (4.26), and (4.28), one gets

J
(
w + φ

)
=

1
2

∫
Ω

(
H(x)∇(

w + φ
)
,∇(

w + φ
))
dx

− λ

2

∫
Ω

(
A(x)

(
w + φ

)
, w + φ

)
dx −

∫
Ω
F
(
x,w + φ

)
dx

≥ λk+m − (λk + δ)
2λk+m

‖w‖2 − δ

2λk

∥∥φ∥∥2

+
∫
Ω
G
(
φ +w

)
dx − C|Ω|

≥ λk+m − (λk + δ)
2λk+m

‖w‖2 − δ

2λk

∥∥φ∥∥2

+
∫
Ω
G
(
φ
)
dx −

∫
Ω
G(−w)dx − C|Ω|

≥ λk+m − λk
4λk+m

‖w‖2 − δ

2λk

∥∥φ∥∥2

+
∫
Ω
G
(
φ
)
dx −

∫
Ω
(|w| + 4)dx − C|Ω|

≥ λk+m − λk
4λk+m

‖w‖2 − δ

2λk
‖z‖2

+
∫
Ω
G
(
φ
)
dx − S|Ω|‖w‖ − C1

= g(w) +
∫
Ω
G
(
φ
)
dx − δ

2λk
‖z‖2,

(4.43)

where g(w) = ((λk+m − λk)/4λk+m)‖w‖2 − S|Ω|‖w‖ −C1, C1 = (4 +C)|Ω|. Since φ ∈ Ek, Ek is a
finite-dimensional subspace, and G is coercive, from the proof of (4.8), one can get

lim
‖φ‖→∞

∫
Ω
G
(
φ
)
dx = +∞, (4.44)
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that is,
∫
Ω G(φ)dx is coercive on Ek. Since (λk+m − λk)/4λk+m > 0, so g(w) is coercive on W ,

and
∫
Ω G(φ)dx and g(w) is bounded below, it is obvious that

lim
‖z‖→∞

(
g(w) +

∫
Ω
G
(
φ
)
dx

)
= +∞, (4.45)

for all z ∈ Z ⊕W .
Considering (4.25), (4.43), and (4.45), we can choose R2 large enough such that for all

‖z‖ ≥ R2 one gets

g(w) +
∫
Ω
G
(
φ
)
dx > KV + 1, (4.46)

(or R2 + C5 > KV + 1 for the case (F3)) and property (3.16) holds, then for 0 < δ <
min{2λk/R2

2, (λk+m − λk)/2} = δ1 and z ∈ R2SZW one gets J(z) > KV , that is, the property
(3.15) holds.

5. Proof of the Geometry in Propositions 3.1 and 3.2

We finally give the proof of Propositions 3.1 and 3.2, which is nothing but a resume of
the lemmata above, verifying that all the constants can be chosen sequentially without
contradictions.

Proof of Proposition 3.1. Under hypothesis (1.2), if we fix a value λ, then we obtain the constant
Dλ from Lemma 4.1 and with this we get ρλ from Lemma 4.2. If we also consider one of the
two sets of hypotheses (F1) or (F2), then we proceed as follows: first of all, we determine
(once for ever) the constant DW from Lemma 4.1, with this we obtain from Lemma 4.4 the
values R1 and δ0. Then, for any (now fixed) λ ∈ (λk − δ0, λk), we obtain from Lemma 4.1 the
value Dλ. Finally, we can get from Lemma 4.2 the corresponding value of ρλ > R1.

Proof of Proposition 3.2. Under hypothesis (1.2), if we fix a value λ ∈ (λk, λk+m), then we obtain
the constantKλ from Lemma 4.1 and with this we get βλ from Lemma 4.2. If we also consider
one of the two sets of hypotheses (F3) or (F4), then we proceed as follows: first of all,
we determine (once for ever) the constant KV from Lemma 4.2, with this we obtain from
Lemma 4.5 the values R2 and δ1. Since we have R2, we can get from Lemma 4.1 the constant
E and with this obtain ξ from Lemma 4.2.

Finally, for any (now fixed) λ ∈ (λk, λk + δ1), we obtain from Lemma 4.1 the constant
Kλ and with this we get from Lemma 4.2 the corresponding value of βλ > R2.
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