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This paper is concerned with mean square exponential stability of switched stochastic system
with interval time-varying delays. The time delay is any continuous function belonging to a given
interval, but not necessary to be differentiable. By constructing a suitable augmented Lyapunov-
Krasovskii functional combined with Leibniz-Newton’s formula, a switching rule for the mean
square exponential stability of switched stochastic system with interval time-varying delays
and new delay-dependent sufficient conditions for the mean square exponential stability of the
switched stochastic system are first established in terms of LMIs. Numerical example is given to
show the effectiveness of the obtained result.

1. Introduction

Stability analysis of linear systems with time-varying delays ẋ(t) = Ax(t) + Dx(t − h(t))
is fundamental to many practical problems and has received considarable attention [1–11].
Most of the known results on this problem are derived assuming only that the time-varing
delay h(t) is a continuously differentiable function, satisfying some boundedness condition
on its derivative: ḣ(t) ≤ δ < 1. In delay-dependent stability criteria, the main concern is
to enlarge the feasible region of stability criteria in given time-delay interval. Interval time-
varying delay means that a time delay varies in an interval in which the lower bound is
not restricted to be zero. By constructing a suitable augmented Lyapunov functionals and
utilizing free weight matrices, some less conservative conditions for asymptotic stability
are derived in [12–21] for systems with time delay varying in an interval. However, the
shortcoming of the method used in these works is that the delay function is assumed to
be differential and its derivative is still bounded: ḣ(t) ≤ δ. This paper gives the improved
results for the mean square exponential stability of switched stochastic system with interval
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time-varying delay. The time delay is assumed to be a time-varying continuous function
belonging to a given interval, but not necessary to be differentiable. Specifically, our goal is to
develop a constructive way to design switching rule to the mean square exponential stability
of switched stochastic system with interval time-varying delay. By constructing argumented
Lyapunov functional combined with LMI technique, we propose new criteria for the mean
square exponential stability of the switched stochastic system. The delay-dependent stability
conditions are formulated in terms of LMIs.

The paper is organized as follows: Section 2 presents definitions and some well-
known technical propositions needed for the proof of the main results. Delay-dependent
mean square exponential stability conditions of the switched stochastic system and numerical
example showing the effectiveness of proposed method are presented in Section 3.

2. Preliminaries

The following notations will be used in this paper. R+ denotes the set of all real nonnegative
numbers; Rn denotes the n-dimensional space with the scalar product 〈·, ·〉 and the vector
norm ‖ · ‖; Mn×r denotes the space of all matrices of (n × r)-dimensions; AT denotes the
transpose of matrix A; A is symmetric if A = AT ; I denotes the identity matrix; λ(A) denotes
the set of all eigenvalues of A; λmin/max(A) = min/max{Reλ; λ ∈ λ(A)}; xt := {x(t + s) : s ∈
[−h, 0]}, ‖xt‖ = sups∈[−h,0]‖x(t + s)‖; C([0, t], Rn) denotes the set of all Rn-valued continuous
functions on [0, t]; matrix A is called semipositive definite (A ≥ 0) if 〈Ax, x〉 ≥ 0, for all
x ∈ Rn;A is positive definite (A > 0) if 〈Ax, x〉 > 0 for all x /= 0;A > B means A − B > 0. ∗
denotes the symmetric term in a matrix.

Consider a switched stochastic system with interval time-varying delay of the form

ẋ(t) = Aγx(t) +Dγx(t − h(t)) + σγ(x(t), x(k − h(t)), t)ω(t), t ∈ R+,

x(t) = φ(t), t ∈ [−h2, 0],
(2.1)

where x(t) ∈ Rn is the state; γ(·) : Rn → N := {1, 2, . . . ,N} is the switching rule, which is
a function depending on the state at each time and will be designed. A switching function
is a rule which determines a switching sequence for a given switching system. Moreover,
γ(x(t)) = i implies that the system realization is chosen as the ith system, i = 1, 2, . . . ,N.
It is seen that the system (2.1) can be viewed as an autonomous switched system in which
the effective subsystem changes when the state x(t) hits predefined boundaries. Ai, Di ∈
Mn×n, i = 1, 2, . . . ,N are given constant matrices, and φ(t) ∈ C([−h2, 0], Rn) is the initial
function with the norm ‖φ‖ = sups∈[−h2,0]‖φ(s)‖.

ω(k) is a scalar Wiener process (Brownian Motion) on (Ω,F,P)with

E{ω(t)} = 0, E
{
ω2(t)

}
= 1, E

{
ω(i)ω

(
j
)}

= 0
(
i /= j

)
, (2.2)

and σi: Rn ×Rn ×R → Rn, i = 1, 2, . . . ,N is the continuous function and is assumed to satisfy
that

σT
i (x(t), x(t − h(t)), t)σi(x(t), x(t − h(t)), t) ≤ ρi1x

T (t)x(t) + ρi2x
T (t − h(t))x(t − h(t)),

x(t), x(t − h(t)) ∈ Rn,
(2.3)
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where ρi1 > 0 and ρi2 > 0, i = 1, 2, . . . ,N are known constant scalars. For simplicity, we denote
σi(x(t), x(t − h(t)), t) by σi, respectively.

The time-varying delay function h(t) satisfies

0 ≤ h1 ≤ h(t) ≤ h2, t ∈ R+. (2.4)

The stability problem for switched stochastic system (2.1) is to construct a switching rule that
makes the system exponentially stable.

Definition 2.1. Given α > 0, the switched stochastic system (2.1) is α-exponentially stable in
the mean square if there exists a switching rule γ(·) such that every solution x(t, φ) of the
system satisfies the following condition:

∃N > 0 : E
{∥∥x(t, φ)∥∥} ≤ E

{
Ne−αt

∥∥φ∥∥}, ∀t ∈ R+. (2.5)

We end this section with the following technical well-known propositions, which will be used
in the proof of the main results.

Proposition 2.2 (Cauchy inequality). For any symmetric positive definite marix N ∈ Mn×n and
a, b ∈ Rn one has

±aTb ≤ aTNa + bTN−1b. (2.6)

Proposition 2.3 (see [22]). For any symmetric positive definite matrixM ∈ Mn×n, scalar γ > 0 and
vector function ω : [0, γ] → Rn such that the integrations concerned are well defined, the following
inequality holds:

(∫ γ

0
ω(s)ds

)T

M

(∫ γ

0
ω(s)ds

)
≤ γ

(∫ γ

0
ωT (s)Mω(s)ds

)
. (2.7)

Proposition 2.4 (see [23]). Let E,H, and F be any constant matrices of appropriate dimensions and
FTF ≤ I. For any ε > 0, one has

EFH +HTFTET ≤ εEET + ε−1HTH. (2.8)

Proposition 2.5 (Schur complement lemma [24]). Given constant matrices X,Y,Z with appro-
priate dimensions satisfying X = XT, Y = YT > 0. Then X + ZTY−1Z < 0 if and only if

(
X ZT

Z −Y
)

< 0 or
(−Y Z
ZT X

)
< 0. (2.9)
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3. Main Results

Let us set

Mi =

⎛
⎜⎜⎜⎜⎜⎝

M11 M12 M13 M14 M15

∗ M22 0 M24 S2

∗ ∗ M33 M34 S3

∗ ∗ ∗ M44 M45

∗ ∗ ∗ ∗ M55

⎞
⎟⎟⎟⎟⎟⎠

,

λ1 = λmin(P),

λ2 = λmax(P) + 2h2
2λmax(R),

M11 = AT
i P + PAi − S1Ai −AT

i S
T
1 + 2αP

− e−2αh1R − e−2αh2R + 2ρi1,

M12 = e−2αh1R − S2Ai,

M13 = e−2αh2R − S3Ai,

M14 = PDi − S1Di − S4Ai,

M15 = S1 − S5Ai,

M22 = −e−2αh1R,

M24 = S2Di,

M33 = −e−2αh2R,

M34 = −S3Di,

M44 = −S4Di + 2ρi2,

M45 = S4 − S5Di,

M55 = S5 + ST
5 + h2

1R + h2
2R.

(3.1)

The main result of this paper is summarized in the following theorem.

Theorem 3.1. Given α > 0, the zero solution of the switched stochastic system (2.1) is α-
exponentially stable in the mean square if there exist symmetric positive definite matrices P,R, and
matrices Si, i = 1, 2, . . . , 5 satisfying the following conditions:

(i) Mi < 0, i = 1, 2, . . . ,N.

The switching rule is chosen as γ(x(t)) = i. Moreover, the solution x(t, φ) of the switched
stochastic system satisfies

E
{∥∥x(t, φ)∥∥} ≤ E

⎧
⎨
⎩

√
λ2
λ1

e−αt
∥∥φ∥∥

⎫
⎬
⎭, ∀t ∈ R+. (3.2)
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Proof. We consider the following Lyapunov-Krasovskii functional for the system (2.1):

E{V (t, xt)} =
3∑
i=1

E{Vi}, (3.3)

where

V1 = xT (t)Px(t),

V2 = h1

∫0

−h1

∫ t

t+s
e2α(τ−t)ẋT (τ)Rẋ(τ)dτ ds,

V3 = h2

∫0

−h2

∫ t

t+s
e2α(τ−t)ẋT (τ)Rẋ(τ)dτ ds.

(3.4)

It easy to check that

E
{
λ1‖x(t)‖2

}
≤ E{V (t, xt)} ≤ E

{
λ2‖xt‖2

}
, ∀t ≥ 0, (3.5)

Taking the derivative of Lyapunov-Krasovskii functional along the solution of system (2.1)
and taking the mathematical expectation, we obtained

E
{
V̇1
}
= E

{
2xT (t)Pẋ(t)

}

= E
{
xT (t)

[
AT

i P +AiP
]
x(t) + 2xT (t)PDix(t − h(t)) + 2xT (t)Pσiω(t)

}
,

E
{
V̇2
}
= E

{
h2
1ẋ

T (t)Rẋ(t) − h1e
−2αh1

∫ t

t−h1

ẋT (s)Rẋ(s)ds − 2αV2

}
,

E
{
V̇3
}
= E

{
h2
2ẋ

T (t)Rẋ(t) − h2e
−2αh2

∫ t

t−h2

ẋT (s)Rẋ(s)ds − 2αV3

}
.

(3.6)

Applying Proposition 2.3 and the Leibniz-Newton formula, we have

E

{
−hi

∫ t

t−hi

ẋT (s)Rẋ(s)ds

}
≤ E

⎧
⎨
⎩−

[∫ t

t−hi

ẋ(s)ds

]T
R

[∫ t

t−hi

ẋ(s)ds

]⎫⎬
⎭

≤ E
{
−[x(t) − x(t − hi)]

TR[x(t) − x(t − hi)]
}

= E
{
−xT (t)Rx(t) + 2xT (t)Rx(t − hi) − xT (t − hi)Rx(t − hi)

}
,

(3.7)
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Therefore, we have

E
{
V̇ (·) + 2αV (·)} ≤ E

{
xT (t)

[
AT

i P +AiP + 2αP
]
x(t)

}

+ E
{
2xT (t)PDix(t − h(t)) + 2xT (t)Pσiω(t)

}

+ E
{
ẋT (t)

[(
h2
1 + h2

2

)
R
]
ẋ(t)

}

− E
{
e−2αh1[x(t) − x(t − h1)]

TR[x(t) − x(t − h1)]
}

− E
{
e−2αh2[x(t) − x(t − h2)]

TR[x(t) − x(t − h2)]
}
.

(3.8)

By using the following identity relation

ẋ(t) −Aix(t) −Dix(t − h(t)) = 0, (3.9)

we have

2xT (t)S1ẋ(t) − 2xT (t)S1Aix(t) − 2xT (t)S1Dix(t − h(t)) − 2xT (t)S1σiω(t) = 0,

2xT (t − h1)S2ẋ(t) − 2xT (t − h1)S2Aix(t) − 2xT (t − h1)S2Dix(t − h(t))

− 2xT (t − h1)S2σiω(t) = 0,

2xT (t − h2)S3ẋ(t) − 2xT (t − h2)S3Aix(t) − 2xT (t − h2)S3Dix(t − h(t))

− 2xT (t − h2)S3σiω(t) = 0,

2xT (t − h(t))S4ẋ(t) − 2xT (t − h(t))S4Aix(t) − 2xT (t − h(t))S4Dix(t − h(t))

− 2xT (t − h(t))S4σiω(t) = 0,

2ẋT (t)S5ẋ(t) − 2ẋT (t)S5Aix(t) − 2ẋT (t)S5Dix(t − h(t)) − 2ẋT (t)S5σiω(t) = 0,

2ωT (t)σT
i ẋ(t) − 2ωT (t)σT

i Aix(t) − 2ωT (t)σT
i Dix(t − h(t)) − 2ωT (t)σT

i σiω(t) = 0.

(3.10)

Adding all the zero items of (3.10) into (3.8), we obtain

E
{
V̇ (·) + 2αV (·)} ≤ E

{
xT (t)

[
AT

i P + PAi + 2αP − e−2αh1R
]
x(t)

}

− E
{
xT (t)

[
e−2αh2R − S1Ai −AT

i S
T
1

]
x(t)

}

+ E
{
2xT (t)

[
e−2αh1R − S2Ai

]
x(t − h1)

}

+ E
{
2xT (t)

[
e−2αh2R − S3Ai

]
x(t − h2)

}

+ E
{
2xT (t)[PDi − S1Di − S4Ai]x(t − h(t))

}
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+ E
{
2xT (t)[S1 − S5Ai]ẋ(t)

}

+ E
{
2xT (t)

[
Pσi − S1σi −AT

i σi

]
ω(t)

}

+ E
{
xT (t − h1)

[
−e−2αh1R

]
x(t − h1)

}

+ E
{
2xT (t − h1)[−S2Di]x(t − h(t))

}

+ E
{
2xT (t − h1)S2ẋ(t) + 2xT (t − h1)[−S2σi]ω(t)

}

+ E
{
xT (t − h2)

[
−e−2αh2R

]
x(t − h2)

}

+ E
{
xT (t − h2)[−S3Di]x(t − h(t))

}

+ E
{
2xT (t − h2)S3ẋ(t) + 2xT (t − h2)[−S3σi]ω(t)

}

+ E
{
xT (t − h(t))[−S4Di]x(t − h(t))

}

+ E
{
2xT (t − h(t))[S4 − S5Di]ẋ(t)

}

+ E
{
2xT (t − h(t))

[
−S4σi −DT

i σi

]
ω(t)

}

+ E
{
ẋT (t)

[
S5 + ST

5 + h2
1R + h2

2R
]
ẋ(t)

}

+ E
{
2ẋT (t)

[
σT
i − S5σi

]
ω(t)

}

+ E
{
2ωT (t)[−σiσi]ω(t)

}
.

(3.11)

By assumption (2.2), we have

E
{
V̇ (·) + 2αV (·)} ≤ E

{
xT (t)

[
AT

i P + PAi + 2αP − e−2αh1R
]
x(t)

}

− E
{
xT (t)

[
e−2αh2R − S1Ai −AT

i S
T
1

]
x(t)

}

+ E
{
2xT (t)

[
e−2αh1R − S2Ai

]
x(t − h1)

}

+ E
{
2xT (t)

[
e−2αh2R − S3Ai

]
x(t − h2)

}

+ E
{
2xT (t)[PDi − S1Di − S4Ai]x(t − h(t))

}

+ E
{
2xT (t)[S1 − S5Ai]ẋ(t)

}

+ E
{
xT (t − h1)

[
−e−2αh1R

]
x(t − h1)

}
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+ E
{
2xT (t − h1)[−S2Di]x(t − h(t))

}

+ E
{
xT (t − h2)

[
−e−2αh2R

]
x(t − h2)

}

+ E
{
xT (t − h2)[−S3Di]x(t − h(t))

}

+ E
{
2xT (t − h2)S3ẋ(t)

}

+ E
{
xT (t − h(t))[−S4Di]x(t − h(t))

}

+ E
{
2xT (t − h(t))[S4 − S5Di]ẋ(t)

}

+ E
{
ẋT (t)

[
S5 + ST

5 + h2
1R + h2

2R
]
ẋ(t)

}

+ E
{
2
[
−σT

i σi

]}
.

(3.12)

Applying assumption (2.3), the following estimations hold:

E
{
V̇ (·) + 2αV (·)} ≤ E

{
xT (t)

[
AT

i P + PAi + 2αP − e−2αh1R
]
x(t)

}

− E
{
xT (t)

[
e−2αh2R − S1Ai −AT

i S
T
1 + 2ρi1I

]
x(t)

}

+ E
{
2xT (t)

[
e−2αh1R − S2Ai

]
x(t − h1)

}

+ E
{
2xT (t)

[
e−2αh2R − S3Ai

]
x(t − h2)

}

+ E
{
2xT (t)[PDi − S1Di − S4Ai]x(t − h(t))

}

+ E
{
2xT (t)[S1 − S5Ai]ẋ(t)

}

+ E
{
xT (t − h1)

[
−e−2αh1R

]
x(t − h1)

}

+ E
{
2xT (t − h1)[−S2Di]x(t − h(t))

}

+ E
{
xT (t − h2)

[
−e−2αh2R

]
x(t − h2)

}

+ E
{
xT (t − h2)[−S3Di]x(t − h(t))

}

+ E
{
2xT (t − h2)S3ẋ(t)

}

+ E
{
xT (t − h(t))

[−S4Di + 2ρi2I
]
x(t − h(t))

}

+ E
{
2xT (t − h(t))[S4 − S5Di]ẋ(t)

}
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+ E
{
ẋT (t)

[
S5 + ST

5 + h2
1R + h2

2R
]
ẋ(t)

}

= E
{
ζT (t)Miζ(t)

}
,

(3.13)

where

ζ(t) = [x(t), x(t − h1), x(t − h2), x(t − h(t)), ẋ(t)],

Mi =

⎡
⎢⎢⎢⎢⎢⎣

M11 M12 M13 M14 M15

∗ M22 0 M24 S2

∗ ∗ M33 M34 S3

∗ ∗ ∗ M44 M45

∗ ∗ ∗ ∗ M55

⎤
⎥⎥⎥⎥⎥⎦
,

M11 = AT
i P + PAi − S1Ai −AT

i S
T
1

+ 2αP − e−2αh1R − e−2αh2R + 2ρi1,

M12 = e−2αh1R − S2Ai,

M13 = e−2αh2R − S3Ai,

M14 = PDi − S1Di − S4Ai,

M15 = S1 − S5Ai,

M22 = −e−2αh1R,

M24 = −S2Di,

M33 = −e−2αh2R,

M34 = −S3Di,

M44 = −S4Di + 2ρi2I,

M45 = S4 − S5Di,

M55 = S5 + ST
5 + h2

1R + h2
2R.

(3.14)

Therefore, we finally obtain from (3.13) and the condition (i) that

E
{
V̇ (·) + 2αV (·)} < 0, ∀i = 1, 2, . . . ,N, t ∈ R+, (3.15)

and hence

E
{
V̇ (t, xt)

} ≤ −E{2αV (t, xt)}, ∀t ∈ R+. (3.16)
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Integrating both sides of (3.16) from 0 to t, we obtain

E{V (t, xt)} ≤ E
{
V
(
φ
)
e−2αt

}
, ∀t ∈ R+. (3.17)

Furthermore, taking condition (3.5) into account, we have

E
{
λ1
∥∥x(t, φ)∥∥2

}
≤ E{V (xt)} ≤ E

{
V
(
φ
)
e−2αt

}
≤ E

{
λ2e

−2αt∥∥φ∥∥2
}
, (3.18)

then

E
{∥∥x(t, φ)∥∥} ≤ E

⎧
⎨
⎩

√
λ2
λ1

e−αt
∥∥φ∥∥

⎫
⎬
⎭, t ∈ R+, (3.19)

By Definition 2.1, the system (2.1) is exponentially stable in the mean square. The proof is
complete.

To illustrate the obtained result, let us give the following numerical examples.

Example 3.2. Consider the following the switched stochastic systems with interval time-
varying delay (2.1), where the delay function h(t) is given by

h(t) = 0.1 + 0.8311sin23t,

A1 =
( −1 0.01
0.02 −2

)
, A2 =

(−1.1 0.02
0.01 −2

)
,

D1 =
(−0.1 0.01
0.02 −0.3

)
, D2 =

(−0.1 0.02
0.01 −0.2

)
.

(3.20)

It is worth noting that the delay function h(t) is nondifferentiable. Therefore, the methods
used is in [2–15] are not applicable to this system. By LMI toolbox of MATLAB, by using
LMI Toolbox in MATLAB, the LMI (i) is feasible with h1 = 0.1, h2 = 0.9311, α = 0.1, ρ11 =
0.01, ρ12 = 0.01, ρ21 = 0.01, ρ22 = 0.01, and

P =
(

2.0788 −0.0135
−0.0135 1.5086

)
, R =

(
1.0801 −0.0042
−0.0042 0.8450

)
,

S1 =
(−0.6210 −0.0335

0.0499 −0.3576
)
, S2 =

(−0.3602 0.0170
0.0298 −0.3550

)
,

S3 =
(−0.3602 0.0170

0.0298 −0.3550
)
, S4 =

(
0.6968 −0.0401
−0.0525 0.7040

)
, S5 =

(−1.4043 0.0265
−0.0028 −0.9774

)

(3.21)
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By Theorem 3.1 the switched stochastic systems (2.1) are 0.1-exponentially stable in the mean
square and the switching rule is chosen as γ(x(t)) = i. Moreover, the solution x(t, φ) of the
system satisfies

E
{∥∥x(t, φ)∥∥} ≤ E

{
1.8731e−0.1t

∥∥φ∥∥
}
, ∀t ∈ R+. (3.22)

4. Conclusions

In this paper, we have proposed new delay-dependent conditions for the mean square
exponential stability of switched stochastic system with non-differentiable interval time-
varying delay. By constructing a set of improved Lyapunov-Krasovskii functionals and
Newton-Leibniz formula, the conditions for the exponential stability of the systems have been
established in terms of LMIs.
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differential systems with quadratic right-hand sides in a cone,” Abstract and Applied Analysis, vol.
2011, Article ID 154916, 23 pages, 2011.

[5] J. Diblı́k, D. Y. Khusainov, I. V. Grytsay, and Z. Šmarda, “Stability of nonlinear autonomous quadratic
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