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This paper investigates the guaranteed cost control of chaos problem in permanent magnet
synchronousmotor (PMSM) via Takagi-Sugeno (T-S) fuzzymethod approach. Based on Lyapunov
stability theory and linear matrix inequality (LMI) technique, a state feedback controller is
proposed to stabilize the PMSM systems. An illustrative example is provided to verify the validity
of the results developed in this paper.

1. Introduction

The permanent magnet synchronous motor (PMSM) is an important role in industrial
applications due to its simple structure, high efficiency, high power density, and low
maintenance cost [1–3]. However, the dynamic characteristics and stability analysis of PMSM
has emerged as a new and attractive research field, such as bifurcation, chaos, and limit cycle
dynamic behaviors [4–9]. Moreover, many profound theories and methodologies [10–16]
have been developed to deal with this issue. In [4], the adaptive dynamic surface control
(DSC) of PMSM has been presented. In [5, 6], the authors had derived some feedback control
design methods for stability of PMSM in their results. Some control methods had studied to
stabilize the PMSM systems, such as sliding mode control (SMC) [7], differential geometry
method [8], passivity control [9, 10], sensorless control [11–14], Lyapunov exponents (LEs)
placement [15], and fuzzy control [16].

Takagi-Sugeno (T-S) fuzzy concept was introduced by the pioneering work of Takagi
and Sugeno [17] and has been successfully and effectively used in complex nonlinear systems
[18]. The main feature of T-S fuzzy model is that a nonlinear system can be approximated by
a set of T-S linear models. The overall fuzzy model of complex nonlinear systems is achieved
by fuzzy “blending” of the set of T-S linear models. Therefore, the controller design and the
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stability analysis of nonlinear systems can be analyzed via T-S fuzzy models and the so-called
parallel distributed compensation (PDC) scheme [19, 20].

This paper contributes to the development of the state-feedback control design for
PMSM. Based on Lyapunov stability theory and LMI technique, the stability conditions of
PMSM are analyzed. Finally, an example is given to illustrate the usefulness of the obtained
results.

2. Problem Formulation and Main Results

Based on d-q axis, the dynamics of permanent synchronous motor plant can be described by
the following differential equation [15]:

did
dt

=
ud − R1id +wLqiq

Ld
,

diq

dt
=
uq − R1iq +wLqiq −wψr

Lq
,

dw

dt
=
npψriq + np

(
Ld − Lq

)
idiq − TL − βw

J
,

(2.1)

where id, iq, and w are state variables, which denote d, q axis stator currents, and w is
motor angular speed, respectively. TL, ud, and uq are the external load torque, the direct- and
quadrature-axis stator voltage components, respectively. J is the polar moment of inertia, β
is the viscous damping coefficient, R1 is the stator winding resistance, and Ld and Lq are
the direct- and quadrature-axis stator inductors, respectively. ψr is the permanent magnet
flux, and np is the number of pole pairs. By applying the affine transformation x = λx̃,

t = τt̃, x = [id iq w]T , x̃ = [̃id ĩq w̃]
T
, b = Lq/Ld, k = β/(npτψr), τ = Lq/R, and

λ = diag[λd λq λw] = diag[bk k 1/τ], system (2.1) can be transformed as follows:

dĩd
dt

= − ĩd + ĩqw̃ + ũd,

dĩq

dt
= − ĩq − ĩdw̃ + γw̃ + ũq,

dw̃

dt
= σ

(
ĩq − w̃

)
− T̃L,

(2.2)

where ũd = ud/kR, γ = −ψr/kLq, ũq = uq/kR, σ = βτ/J , and T̃L = τ2TL/J .
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In the system (2.2), the external inputs are set to zero, namely, T̃L = ũd = ũq = 0. Then,
the system (2.2) becomes

dĩd
dt

= − ĩd + ĩqw̃,

dĩq

dt
= − ĩq − ĩdw̃ + γw̃,

dw̃

dt
= σ

(
ĩq − w̃

)
,

(2.3)

or

ẋ1(t) = − x1(t) + x2(t)x3(t),
ẋ2(t) = − x2(t) − x1(t)x3(t) + γ · x3(t),
ẋ3(t) = σ · [x1(t) − x3(t)],

(2.4)

where x1 = ĩd, x2 = ĩq, x3 = w̃.
To investigate the control design of system (2.4), let the system’s state vector x(t) =

[x1 x2 x3]
T and the control input vector be u(t). Then, the state equations of PMSM can be

represented as follows:

ẋ(t) = A(x(t))x(t) + Bu(t), (2.5)

where x(t) = [x1(t) x2(t) x3(t)]
T , A(x(t)) =

[ −1 x3(t) 0
−x3(t) −1 γ

0 σ −σ

]
.

The continuous fuzzy system was proposed to represent a nonlinear system [17]. The
system dynamics can be captured by a set of fuzzy rules which characterize local correlations
in the state space. Each local dynamic described by the fuzzy IF-THEN rule has the property
of linear input-output relation. Based on the T-S fuzzy model concept, the nonlinear PMSM
system can be expressed as follows.

Model rule i:
If z1(t) isMi1 and · · · zr(t) isMir , then

ẋ(t) = Aix(t) + Biu(t), (2.6)

where z1(t), z2(t), . . . , zr(t) are known premise variables,Mij, i ∈ {1, 2, . . . , m}, j ∈ {1, 2, . . . , r}
is the fuzzy set, andm is the number of model rules; x(t) is the state vector, and u(t) is input
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vector. The matrices Ai and B are known constant matrices with appropriate dimensions.
Given a pair of (x(t), u(t)), the final outputs of the fuzzy system are inferred as follows:

ẋ(t) =
∑m

i=1wi(z(t)) · {Aix(t)Biu(t)}
∑m

i=1wi(z(t))

=
m∑

i=1

ηi(z(t)) · {Aix(t) + Biu(t)},
(2.7)

where z(t) = [z1(t) z2(t) · · · zr(t)], wi(z(t)) =
∏r

j=1Mij(zj(t)), ηi(z(t)) = wi(z(t))/∑m
i=1wi(z(t)). The term Mij(zj(t)) is the grade of membership of zj(t) in Mij . In this paper,

we assume that wi(z(t)) ≥ 0, i ∈ {1, 2, . . . , m}, and ∑m
i=1wi(z(t)) > 0. Therefore, we have

ηi(z(t)) ≥ 0, i ∈ {1, 2, . . . , m} and∑m
i=1 ηi(z(t)) = 1, for all t ≥ 0.

To derive themain results, we first introduce the cost fuction of system (2.4) as follows:

J =
∫∞

0

[
xT (s) · S1 · x(s) + uT (s) · S2 · u(s)

]
ds, (2.8)

where S1 and S2 are two given positive definite symmetric matrices with appropriate
dimensions. Associated with cost function (2.8), the fuzzy guaranteed cost control is defined
as follows.

Definition 2.1 (see [21]). Consider the T-S fuzzy PMSM system (2.6); if there exist a control
law u(t) and a positive scalar J∗ such that the closed-loop system is stable and the value of
cost function (2.8) satisfies J ≤ J∗, then J∗ is said to be a guaranteed cost and u(t) is said to be
a guaranteed cost control law for the T-S fuzzy PMSM system (2.6).

This paper aims at designing a guaranteed cost control law for the asymptotic
stabilization of the T-S fuzzy PMSM system (2.6). To achieve this control goal, we utilize the
concept of PDC [17] scheme and select the fuzzy guaranteed cost controller via state feedback
as follows.

Control rule j:
If z1(t) isMj1 and · · · zr(t) isMjr , then

u(t) = −Kjx(t), t ≥ 0, j = {1, 2, . . . , m}, (2.9)

where Kj , j ∈ {1, 2, . . . , m} are the state feedback gains. Hence, the overall state feedback
control law is represented as follows:

u(t) = −
m∑

j=1

ηj(z(t)) ·Kjx(t), t ≥ 0. (2.10)

Before proposing the main theorem for determining the feedback gains Kj (j =
1, 2, . . . , m), a lemma is introduced.

Lemma 2.2 (see [22] (Schur complement)). For a given matrix S =
[
S11 S12

ST12 S22

]
with S11 = ST11,

S22 = ST22, then the following conditions are equivalent:
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(1) S < 0,

(2) S22 < 0, S11 − S12S
−1
22S

T
12 < 0.

Nowwe present a asymptotic stabilization condition for T-S fuzzy PMSM system (2.6).

Theorem 2.3. If there exist some positive definite symmetric matrices P and matrices K̂j , j ∈
{1, 2, . . . , m} such that the following LMI condition holds for all i, j ∈ {1, 2, . . . , m}:

Φ̃ij =

⎡

⎢
⎣
AiP + PAT

i − BiK̂j − K̂T
j B

T
i P K̂T

j

∗ −S−1
1 0

∗ ∗ −S−1
2

⎤

⎥
⎦ < 0, (2.11)

then system (2.6) is asymptotically stabilizable by controller (2.10). The stabilizing feedback control

gain is given by Kj = K̂jP
−1
, and the system performance (2.8) is bounded by

J ≤ J∗ = xT (0)Px(0), (2.12)

where P = P
−1
.

Proof. Define the Lyapunov functional

V (xt) = xT (t)Px(t), (2.13)

where V (xt) is a legitimate Lyapunov functional candidate, and P is positive definte
symmetric matrices . By the system (2.6)with

∑m
i=1 ηi(z(t)) = 1, the time derivatives of V (xt),

along the trajectories of system (2.6) with (2.8) and (2.10), satisfy

V̇ (xt) −
m∑

i=1

m∑

j=1

ηi(z(t))ηj(z(t))xT (t)
(
S1 +KT

j S2Kj

)
x(t)

=
m∑

i=1

m∑

j=1

ηi(z(t))ηj(z(t))xT (t)
(
PAi +AT

i P −KT
j B

T
i P − PBiKj

)
x(t)

=
m∑

i=1

m∑

j=1

ηi(z(t))ηj(z(t))xT (t)
(
PAi +AT

i P −KT
j B

T
i P − PBiKj + S1 +KT

j S2Kj

)
x(t)

≤
m∑

i=1

m∑

j=1

ηi(z(t))ηj(z(t))xT (t)Φijx(t).

(2.14)
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In order to guarantee V̇ (xt) −
∑m

i=1
∑m

j=1 ηi(z(t))ηj(z(t))x
T(t)(S1 +KT

j S2Kj)x(t) < 0, we need
to satisfy Φij < 0. By Lemma 2.2, premultiplying, and postmultiplying the Φij in (2.14) by
P−1 > 0, Φij < 0 are equivalent to Φ̃ij < 0 in (2.11), then we can obtain the following:

V̇ (xt) ≤ −
m∑

i=1

m∑

j=1

ηi(z(t))ηj(z(t))xT (t)
(
S1 +KT

j S2Kj

)
x(t)

= −
(
xT (t) · S1 · x(t) + u(t) · S2 · u(t)

)
< 0.

(2.15)

From the inequality (2.15), V̇ (xt) < 0, we conclude that system (2.6) with (2.8) is
asymptotically stable. Integrating (2.12) from 0 to∞, we have

∫∞

0
V̇ (xs)ds = lim

t→∞
V (xt) − V (x0) ≤ −

∫∞

0

[
xT (s) · S1 · x(s) + uT (s) · S2 · u(s)

]
ds. (2.16)

Since that the system (2.6) with (2.8) is asymptotically stable, we can obtain the following
results:

lim
t→∞

V (xt) = 0. (2.17)

Consequently, J =
∫∞
0 [xT (s) · S1 · x(s) + uT (s) · S2 · u(s)]ds ≤ xT (0)Px(0) = V (x0) = J∗.

This completes the proof.

3. Numerical Simulation and Analysis

In this section, a numerical example is presented to demonstrate and verify the performance
of the proposed results. Consider a PMSM as given in (2.1) with the following parameters
[23]: Ld = Lq = L = 14.25mH, R1 = 0.9Ω, ψr = 0.031Nm/A, np = 1, J = 4.7 × 10−5 kgm2,
β = 0.0162N/rad, γ = 20, and σ = 5.46.

From the simulation result, we can get that x3(t) is bounded in interval [−12 12]. By
solving the equation,M1 andM2 are obtained as follows:

M1(x3(t)) =
1
2

(
1 +

x3(t)
d

)
, M2(x3(t)) = 1 −M1(x3(t)) =

1
2

(
1 − x3(t)

d

)
. (3.1)

M1 andM2 can be interpreted as membership functions of fuzzy sets. Using these fuzzy sets,
the nonlinear system with time-varying delays can be expressed by the following T-S fuzzy
models.

Rule 1. IF x3(t) isM1, then

ẋ(t) = A1x(t) + B1u(t). (3.2)



Abstract and Applied Analysis 7

0 5 10 15 20 25 30 35
05

10
15

20

0

5

10

15

−15
−10

−5
x1

x2

x3

−15

−10

−5

Figure 1: The chaotic attractor of the PMSM system.

Rule 2. IF x3(t) isM2, then

ẋ(t) = A2x(t) + B2u(t), (3.3)

where

x(t) = [x1(t) x2(t) x3(t)]T , A1 =

⎡

⎣
−1 −12 0
12 −1 20
5.46 0 −5.46

⎤

⎦, (3.4)

A2 =

⎡

⎣
−1 12 0
−12 −1 20
5.46 0 −5.46

⎤

⎦, B1 = B2 =

⎡

⎣
0
0
1

⎤

⎦. (3.5)

By the theorem, the stabilizing fuzzy control gains are given by K1 = K2 =
[3.968 19.902 77.990].

Consequently, the minimal guaranteed cost is J∗ = 5.443 × 10−11. The simulation was
done with a four-order Runge-Kutta integration algorithm in MATLAB 7 with a step size of
0.0001. The simulation results with initial conditions x(0) = [13.5 − 5 − 5]T are shown in
Figures 1-2. The chaotic attractor of PMSM system is given in Figure 1. The frequency power
spectrum of the PMSM system variables is illustrated in Figure 2. The system state responses
trajectory of controller design is shown in Figure 3. Figure 4 depicts the time responses of
the control input of u(t). When t = 20 sec, it is obvious that the feedback control gain can
guarantee stability of PMSM systems. From the simulation results, it is shown that the
proposed controller works well to guarantee stability.

4. Conclusion

We have presented the solutions to the guaranteed cost control of chaos problem via the
Takagi-Sugeno fuzzy control for PMSM system. Based on Lyapunov stability theory and
LMI technique, the guaranteed cost control gains can be easily obtained through a convex
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Figure 2: Power spectrum of the state variables x1(t), x2(t), and x3(t) of the PMSM system.
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Figure 3: The state responses of the controlled PMSM system.
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Figure 4: Time response of control input u(t).

optimization problem. Finally, a numerical example shows the validity and superiority of
the developed result. The future work will extend the proposed method to the underlying
systems with noise and disturbances effects, like noise or disturbances, uncertainties effects,
and robustness to time-varying delays. Also, the future application in the experiment will be
included.
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