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A new hybrid projection algorithm is considered for a λ-strict asymptotically pseudocontractive
mapping. Using the metric projection, a strong convergence theorem is obtained in a uniformly
convex and 2-uniformly smooth Banach spaces. The result presented in this papermainly improves
and extends the corresponding results of Matsushita and Takahashi (2008), Dehghan (2011) Kang
and Wang (2011), and many others.

1. Introduction

Let E be a real Banach space and E∗ be the dual spaces of E. Assume that J is the normalized
duality mapping from E into 2E

∗
defined by

J(x) =
{
x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2

}
, ∀x ∈ E, (1.1)

where 〈·, ·〉 is the generalized duality pairing between E and E∗.
Let C be a nonempty closed convex subset of a real Banach space E.

Definition 1.1. Let T : C → C be a mapping:

(1) T is said to be nonexpansive if for all x, y ∈ C,

∥∥Tx − Ty
∥∥ ≤ ∥∥x − y

∥∥, (1.2)
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(2) T is said to be asymptotically nonexpansive if there exists a sequence {kn} ⊂ [1,∞)
with kn → 1 such that for all x, y ∈ C,

∥∥Tx − Ty
∥∥ ≤ kn

∥∥x − y
∥∥, (1.3)

(3) T is said to be λ-strictly pseudocontractive in the terminology of Browder-
Petryshyn [1] if there exists a constant λ ∈ (0, 1) such that for all x, y ∈ C,

〈
Tx − Ty, j

(
x − y

)〉 ≤ ∥∥x − y
∥∥2 − λ

∥∥(I − T)x − (I − T)y
∥∥2

, ∀j(x − y
) ∈ J

(
x − y

)
, (1.4)

(4) T is said to be (λ, {kn})-strict asymptotically pseudocontractive if there exist a
constant λ ∈ (0, 1) and a sequence {kn} ⊂ [1,∞) with kn → 1 such that for all
x, y ∈ C and for all j(x − y) ∈ J(x − y),

〈
Tnx − Tny, j

(
x − y

)〉 ≤ kn
∥∥x − y

∥∥2 − λ
∥∥(I − Tn)x − (I − Tn)y

∥∥2
, ∀n ≥ 1, (1.5)

(5) T is said to be uniformly L-Lipschitzian if there exists a constant L > 0 such that

∥∥Tnx − Tny
∥∥ ≤ L

∥∥x − y
∥∥, ∀n ≥ 1. (1.6)

It is wellknown that the class of (λ, {kn})-strictly asymptotically pseudocontractive
mappings was first introduced in Hilbert spaces by Liu [2]. In the case of Hilbert spaces, it is
shown by [2] that (1.5) is equivalent to the inequality

∥∥Tnx − Tny
∥∥2 ≤ kn

∥∥x − y
∥∥2 + λ

∥∥(I − Tn)x − (I − Tn)y
∥∥2

. (1.7)

Concerning the convergence problem of iterative sequences for strictly pseudocontractive
mappings has been studied by several authors (see [1, 3–20]). Concerning the class of strictly
asymptotically pseudocontractive mappings, Liu [2] proved the following results.

Theorem 1.2. Let H be a real Hilbert space, let C be a nonempty closed convex and bounded subset
of H, and let T : C → C be a completely continuous uniformly L-Lipschitzian (λ, {kn})-strictly
asymptotically pseudocontractive mapping such that

∑∞
n=1(k

2
n − 1) < ∞. Let {αn} ⊂ (0, 1) be a

sequence satisfying the following condition:

0 < ε ≤ αn ≤ 1 − λ − ε, ∀n ≥ 1 and some ε > 0. (1.8)

Then, the sequence {xn} generated from an arbitrary x1 ∈ C by

xn+1 = (1 − αn)xn + αnT
nxn, ∀n ≥ 1 (1.9)

converges strongly to a fixed point of T .

In 2007, Osilike et al. [21] proved the following theorem.
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Theorem 1.3. Let E be a real q-uniformly smooth Banach space which is also uniformly convex, let
C be a nonempty closed convex subset of E, let T : C → C be a (λ, {kn})-strictly asymptotically
pseudocontractive mapping such that

∑∞
n=1(k

2
n − 1) < ∞, and let F(T)/= ∅. Let {αn} ⊂ (0, 1) be a real

sequence satisfying the following condition:

0 < a ≤ αn ≤ b <
q(1 − k)

2cq
(1 + L)−(q−2), ∀n ≥ 1. (1.10)

Let {xn} be the sequence defined by (1.9). Then, {xn} converges weakly to a fixed point of T .

On the other hand, by using the metric projection, Nakajo and Takahashi [22]
introduced the following iterative algorithms for the nonexpansive mapping T in the
framework of Hilbert spaces:

x0 = x ∈ C,

yn = αnxn + (1 − αn)Txn,

Cn =
{
z ∈ C :

∥∥z − yn

∥∥} ≤ ‖z − xn‖,
Qn = {z ∈ C : 〈xn − z, x − xn〉 ≥ 0},
xn+1 = PCn∩Qnx, n = 0, 1, 2, . . . ,

(1.11)

where {αn} ⊂ [0, α], α ∈ [0, 1) and PCn∩Qn is the metric projection from a Hilbert spaceH onto
Cn ∩Qn. They proved that {xn} generated by (1.11) converges strongly to a fixed point of T .

In 2006, Xu [23] extended Nakajo and Takahashi’s theorem to Banach spaces by using
the generalized projection.

In 2008, Matsushita and Takahashi [24] presented the following iterative algorithms
for the nonexpansive mapping T in the framework of Banach spaces:

x0 = x ∈ C,

Cn = co{z ∈ C : ‖z − Tz‖ ≤ tn‖xn − Txn‖},
Dn = {z ∈ C : 〈xn − z, J(x − xn)〉 ≥ 0},

xn+1 = PCn∩Dnx, n = 0, 1, 2, . . . ,

(1.12)

where coC denotes the convex closure of the set C, J is normalized duality mapping, {tn} is a
sequence in (0, 1)with tn → 0, and PCn∩Dn is the metric projection from E onto Cn ∩Dn. Then,
they proved that {xn} generated by (1.12) converges strongly to a fixed point of nonexpansive
mapping T .

Recently, Dehghan [25] introduced the following hybrid projection algorithm for an
asymptotically nonexpansive mapping T in the framework of Banach spaces:

x0 = x ∈ C, C0 = D0 = C,

Cn = co{z ∈ Cn−1 : ‖z − Tnz‖ ≤ tn‖xn − Tnxn‖},
Dn = {z ∈ Dn−1 : 〈xn − z, J(x − xn)〉 ≥ 0},

xn+1 = PCn∩Dnx, n = 1, 2, . . . ,

(1.13)
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where coC denotes the convex closure of the set C, {tn} is a sequence in (0, 1) with tn → 0,
and PCn∩Dn is the metric projection from E onto Cn ∩Dn. Then, he proved that {xn} generated
by (1.13) converges strongly to a fixed point of an asymptotically nonexpansive mappings T .

Motivated by the research work going on in this direction, the purpose of this paper is
to introduce the following iteration for finding a fixed point of (λ, {kn})-strict asymptotically
pseudocontraction in a uniformly convex and 2-uniformly smooth Banach spaces:

x0 = x ∈ C, C0 = C,
Cn = co{z ∈ Cn−1 : ‖z − Tnz‖ ≤ tn‖xn − Tnxn‖},

xn+1 = PCnx, n = 1, 2, . . . ,
(1.14)

where coC denotes the convex closure of the set C, {tn} is a sequence in (0, 1) with tn →
0, and PCn is the metric projection from E onto Cn. Under suitable conditions some strong
convergence theorem for the sequence {xn} defined by (1.14) to converge a fixed point of an
asymptotically λ-strictly pseudocontraction. The result presented in the paper extends and
improves the main results of Matsushita and Takahashi [24], Dehghan [25], Kang and Wang
[26], and others.

2. Preliminaries

In this section, we recall the well-known concepts and results which will be needed to prove
our main results. Throughout this paper, we assume that E is a real Banach space and C is a
nonempty subset of E. When {xn} is a sequence in E, we denote strong convergence of {xn}
to x ∈ E by xn → x and weak convergence by xn ⇀ x.

A Banach space E is said to be strictly convex if ‖x + y‖/2 < 1 for all x, y ∈ U = {z ∈
E : ‖z‖ = 1} with x /=y. E is said to be uniformly convex if for each ε > 0 there is a δ > 0 such
that for x, y ∈ E with ||x||, ||y|| ≤ 1 and ||x − y|| ≥ ε, ||x + y|| ≤ 2(1 − δ) holds. The modulus of
convexity of E is defined by

δE(ε) = inf
{
1 −

∥∥∥∥
x + y

2

∥∥∥∥ : ‖x‖,∥∥y∥∥ ≤ 1,
∥∥x − y

∥∥ ≥ ε

}
, (2.1)

E is said to be smooth if the limit

lim
t→ 0

∥∥x + ty
∥∥ − ‖x‖
t

(2.2)

exists for all x, y ∈ U. The modulus of smoothness of E is defined by

ρE(t) = sup
{
1
2
(∥∥x + y

∥∥ +
∥∥x − y

∥∥) − 1 : ‖x‖ ≤ 1,
∥∥y∥∥ ≤ t

}
. (2.3)

A Banach space E is said to be uniformly smooth if ρE(t)/t → 0 as t → 0. A Banach space E is
said to be q-uniformly smooth, if there exists a fixed constant c > 0 such that ρE(t) ≤ ctq.
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If E is a reflexive, strictly convex and smooth Banach space, then for any x ∈ E, there
exists a unique point x0 ∈ C such that

‖x0 − x‖ = min
y∈C

∥∥y − x
∥∥. (2.4)

The mapping PC : E → C defined by PCx = x0 is called the metric projection from E onto C.
Let x ∈ E and u ∈ C. Then it is known that u = PCx if and only if

〈
u − y, J(x − u)

〉 ≥ 0, ∀y ∈ C. (2.5)

For the details on the metric projection, refer to [27–30].
In the sequel, we make use of the following lemmas for our main results.

Lemma 2.1 (see [31]). Let E be a real Banach space, C a nonempty subset of E, and T : C → C a
(λ, {kn})-strictly asymptotically pseudocontractive mapping. Then T is uniformly L-Lipschitzian.

Lemma 2.2 (see [32]). Let E be a real 2-uniformly smooth Banach spaces with the best smooth
constant K. Then the following inequality holds:

∥∥x + y
∥∥2 ≤ ‖x‖2 + 2

〈
y, J(x)

〉
+ 2

∥∥Ky
∥∥2

, (2.6)

for any x, y ∈ E.

Lemma 2.3 (demiclosed principle [21]). Let E be a real q-uniformly smooth Banach space which
is also uniformly convex. Let C be a nonempty closed convex subset of E and T : C → C a (λ, {kn})-
strictly asymptotically pseudocontractive mapping with a nonempty fixed point set. Then I − T is
demiclosed at zero, where I is the identical mapping.

Lemma 2.4 (see [33]). Let C be a closed convex subset of a uniformly convex Banach space. Then for
each r > 0, there exists a strictly increasing convex continuous function γ : [0,∞) → [0,∞) such
that γ(0) = 0 and

γ

⎛
⎝

∥∥∥∥∥∥
T

⎛
⎝

m∑
j=0

μjzj

⎞
⎠ −

m∑
j=0

μjTzj

∥∥∥∥∥∥

⎞
⎠ ≤ max

0≤j<k≤m
(∥∥zj − zk

∥∥ − ∥∥Tzj − Tzk
∥∥), (2.7)

for all m ≥ 1, {μj}mj=0 ∈ Δm,{zj}mj=0 ⊂ C ∩ Br and T ∈ Lip (C, 1), where Δm = {{μ0, μ1, . . . , μm} :
0 ≤ μj(0 ≤ j ≤ m) and

∑m
j=0 μj = 1}, Br = {x ∈ E : ||x|| ≤ r} and Lip (C, 1) is the set of all

nonexpansive mappings from C into E.

3. Main Results

Now we are ready to give our main results in this paper.
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Lemma 3.1. Let C be a nonempty subset of a real 2-uniformly smooth Banach space E with the best
smooth constant K, and T : C → C be a (λ, {kn})-strict asymptotically pseudocontraction. For
α ∈ (0, 1) ∩ (0, λ/K2], one defines

Sn,αx =
1√

2α(kn − 1) + 1
[(1 − α)x + αTnx], (3.1)

for all x ∈ C and each n ≥ 1. Then Sn,α : C → E is a nonexpansive.

Proof. For any x, y ∈ C, put βn,α =
√
2α(kn − 1) + 1, we compute

∥∥Sn,αx − Sn,αy
∥∥2

=
∥∥∥∥

1
βn,α

[(1 − α)x + αTnx] − 1
βn,α

[
(1 − α)y + αTny

]∥∥∥∥
2

=
1

βn,α
2

∥∥(x − y
)
+ α

(
Tnx − Tny − (

x − y
))∥∥2

≤ 1

βn,α
2

(∥∥x − y
∥∥2 + 2α

〈
Tnx − Tny − (

x − y
)
, j
(
x − y

)〉

+ 2K2α2∥∥Tnx − Tny − (
x − y

)∥∥2
)

=
1

βn,α
2

(∥∥x − y
∥∥2 + 2α

〈
Tnx − Tny, j

(
x − y

)〉

− 2α
∥∥x − y

∥∥2 + 2K2α2∥∥Tnx − Tny − (
x − y

)∥∥2
)

≤ 1

βn,α
2

(∥∥x − y
∥∥2 + 2α

(
kn

∥∥x − y
∥∥2 − λ

∥∥Tnx − Tny − (
x − y

)∥∥2
)

− 2α
∥∥x − y

∥∥2 + 2K2α2∥∥Tnx − Tny − (
x − y

)∥∥2
)

=
1

βn,α
2

{
(1 + 2αkn − 2α)

∥∥x − y
∥∥2 − 2αλ

∥∥Tnx − Tny − (
x − y

)∥∥2

+ 2K2α2∥∥Tnx − Tny − (
x − y

)∥∥2
}

≤ ∥∥x − y
∥∥2
,

(3.2)

which shows that Sn,α is a nonexpansive mapping. This completes the proof.

Theorem 3.2. Let C be a nonempty bounded and closed convex subset of a uniformly convex and
2-uniformly smooth Banach spaces E with the best smooth constant K > 0, assume that T : C → C
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is a (λ, {kn})-strict asymptotically pseudocontraction such that F = F(T)/= ∅. Let {tn} be a sequence
in (0, 1) with tn → 0. Let {xn} be a sequence generated by (1.14), where

co{z ∈ Cn−1 : ‖z − Tnz‖ ≤ tn‖xn − Tnxn‖} (3.3)

denotes the convex closure of the set {z ∈ Cn−1 : ||z − Tnz|| ≤ tn||xn − Tnxn||} and PCn is the metric
projection from E onto Cn. Then {xn} converges strongly to PFx.

Proof. (I) First we prove that {xn} is well defined and bounded.
It is easy to check that Cn is closed and convex and F ⊂ Cn for all n ≥ 0. Therefore,

{xn} is well defined.
Put p = PFx. Since F ⊂ Cn and xn+1 = PCnx, we have that

‖xn+1 − x‖ ≤ ∥∥p − x
∥∥, (3.4)

for all n ≥ 0. Hence, {xn} is bounded.
(II)Nowwe prove that ||xn −Tn−kxn|| → 0 as n → ∞ for any k ∈ N (N denotes the set

of all positive integers).
Fix k ∈ N and put l = n−k, n > k. Since xn = PCn−1x, we have xn ∈ Cn−1 ⊂ · · · ⊂ Cl. Then

there exist some positive integer m ∈ N, {μi} ∈ Δm and {zi}mi=0{zi}mi=1 ⊂ Cl−1 such that

∥∥∥∥∥∥
xn −

m∑
j=0

μjzj

∥∥∥∥∥∥
< tl, (3.5)

∥∥∥zj − Tlzj
∥∥∥ ≤ tl

∥∥∥xl − Tlxl

∥∥∥, (3.6)

for all j ∈ {0, 1, . . . , m}. Take α ∈ (0, 1) ∩ (0, λ/K2]. Put M = supx∈C||x||, p = PFx, r0 =
supn≥1||xn − p|| and βl,α =

√
2α(kl − 1) + 1. we define

Sn,αx =
1√

2α(kn − 1) + 1
[(1 − α)x + αTnx], (3.7)

for all x ∈ C and each n ≥ 1, then Sl,αp = (1/βl,α)p. It follows from Lemma 3.1 and (3.5) that
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∥∥∥xl − Tlxl

∥∥∥ =
βl,α
α

∥∥∥∥
1
βl,α

(
αTlxl + (1 − α)xl

)
− 1
βl,α

xl

∥∥∥∥

=
βl,α
α

∥∥∥∥
(
Sl,αxl − Sl,αp

)
+

1
βl,α

(
p − xl

)∥∥∥∥

≤ βl,α + 1
α

r0,

∥∥∥∥∥∥
Tl

⎛
⎝

m∑
j=0

μjzj

⎞
⎠ − Tlxn

∥∥∥∥∥∥

≤ βl,α
α

⎛
⎝

∥∥∥∥∥∥
Sl,α

⎛
⎝

m∑
j=0

μjzj

⎞
⎠ − Sl,αxn

∥∥∥∥∥∥
+
1 − α

βl,α

∥∥∥∥∥∥
m∑
j=0

μjzj − xn

∥∥∥∥∥∥

⎞
⎠

≤
(
βl,α + 1

α
− 1

)∥∥∥∥∥∥
m∑
j=0

μjzj − xn

∥∥∥∥∥∥

≤
(
βl,α + 1

α
− 1

)
tl.

(3.8)

Moreover, from Lemmas 2.4 and 3.1, we have
∥∥∥∥∥∥
Tl

⎛
⎝

m∑
j=0

μjzj

⎞
⎠ −

m∑
j=0

μjT
lzj

∥∥∥∥∥∥

=
βl,α
α

∥∥∥∥∥∥
Sl,α

⎛
⎝

m∑
j=0

μjzj

⎞
⎠ −

m∑
j=0

μjSl,αzj

∥∥∥∥∥∥

≤ βl,α
α

γ−1
[

max
0≤j<k≤m

(∥∥zj − zk
∥∥ − ∥∥Sl,αzj − Sl,αzk

∥∥)
]

≤ βl,α
α

γ−1
[

max
0≤j<k≤m

(∥∥zj − Sl,αzj
∥∥ + ‖zk − Sl,αzk‖

)]

≤ βl,α
α

γ−1
{

max
0≤j<k≤m

[
α

βl,α

(∥∥∥zj − Tlzj
∥∥∥ +

∥∥∥zk − Tlzk
∥∥∥
)

+
(
1 − 1

βl,α

)(∥∥zj
∥∥ + ‖zk‖

)]}

≤ βl,α
α

γ−1
{
2αtl
βl,α

∥∥∥xl − Tlxl

∥∥∥ + 2
(
1 − 1

βl,α

)
M

}

≤ βl,α
α

γ−1
{
2αtl
βl,α

{
βl,α + 1

α
r0

}
+ 2

(
1 − 1

βl,α

)
M

}

=
βl,α
α

γ−1
{
2
(
1 +

1
βl,α

)
r0tl + 2

(
1 − 1

βl,α

)
M

}
.

(3.9)
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Observe that βl,α → 1 as n → ∞, it follows from (3.5)–(3.9) that

∥∥∥xn − Tlxn

∥∥∥ ≤
∥∥∥∥∥∥
xn −

m∑
j=0

μjzj

∥∥∥∥∥∥
+

∥∥∥∥∥∥
m∑
j=0

μj

(
zj − Tlzj

)
∥∥∥∥∥∥

+

∥∥∥∥∥∥
m∑
j=0

μjT
lzj − Tl

⎛
⎝

m∑
j=0

μjzj

⎞
⎠

∥∥∥∥∥∥
+

∥∥∥∥∥∥
Tl

⎛
⎝

m∑
j=0

μjzj

⎞
⎠ − Tlxn

∥∥∥∥∥∥

≤ tl + tl
∥∥∥xl − Tlxl

∥∥∥ +
βl,α
α

γ−1
{
2
(
1 +

1
βl,α

)
r0tl + 2

(
1 − 1

βl,α

)
M

}

+
(
βl,α + 1

α
− 1

)
tl

≤ tl +
βl,α + 1

α
r0tl +

βl,α
α

γ−1
{
2
(
1 +

1
βl,α

)
r0tl + 2

(
1 − 1

βl,α

)
M

}

+
(
βl,α + 1

α
− 1

)
tl −→ 0 as n −→ ∞.

(3.10)

This shows that

∥∥∥xn − Tlxn

∥∥∥ −→ 0 as n −→ ∞. (3.11)

(III)we prove that ||xn − Txn|| → 0 as n → ∞.
Since T is a uniformly L-Lipschitzian, we have

‖xn − Txn‖ ≤
∥∥∥xn − Tn−1xn

∥∥∥ +
∥∥∥Tn−1xn − Txn

∥∥∥

≤
∥∥∥xn − Tn−1xn

∥∥∥ + L
∥∥∥Tn−2xn − xn

∥∥∥ −→ 0 as n → ∞.

(3.12)

(IV) Finally, we prove that xn → p = PFx.
It follows from the boundedness of {xn} that for each subsequence {xni} ⊂ {xn} there

exists a subsequence (without loss of generality we can still denote it by) {xni} such that
xni ⇀ v as i → ∞. Since T : C → C is a uniformly L-Lipschitzian and (λ, {kn})-strict
asymptotically pseudocontraction, from Lemma 2.3, we know that T is demiclosed. Hence
we have v ∈ F.

From the weakly lower semicontinuity of the norm and (3.4), it follows that

∥∥p − x
∥∥ ≤ ‖v − x‖ ≤ lim inf

i→∞
‖xni − x‖

≤ lim sup
i→∞

‖xni − x‖ ≤ ∥∥p − x
∥∥.

(3.13)
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This shows p = v and hence xni ⇀ p as i → ∞. By the arbitrariness of {xni} ⊂ {xn}, we obtain
xn ⇀ p. Further, it follows from (3.13) that

lim
n→∞

‖xn − x‖ =
∥∥p − x

∥∥. (3.14)

Since E is uniformly convex, it has the Kadec-Klee property. Hence, we have xn − x → p − x,
that is, xn → p. This completes the proof.
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