
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2012, Article ID 731453, 21 pages
doi:10.1155/2012/731453

Research Article
Event-Triggered State Estimation for
a Class of Delayed Recurrent Neural Networks
with Sampled-Data Information

Hongjie Li

College of Mathematics, Physics and Information Engineering, Jiaxing University, Zhejiang 314001, China

Correspondence should be addressed to Hongjie Li, lhjymlly@163.com

Received 9 June 2012; Accepted 31 July 2012

Academic Editor: Sabri Arik

Copyright q 2012 Hongjie Li. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

The paper investigates the state estimation problem for a class of recurrent neural networks with
sampled-data information and time-varying delays. The main purpose is to estimate the neuron
states through output sampled measurement; a novel event-triggered scheme is proposed, which
can lead to a significant reduction of the information communication burden in the network;
the feature of this scheme is that whether or not the sampled data should be transmitted is
determined by the current sampled data and the error between the current sampled data and the
latest transmitted data. By using a delayed-input approach, the error dynamic system is equivalent
to a dynamic system with two different time-varying delays. Based on the Lyapunov-krasovskii
functional approach, a state estimator of the considered neural networks can be achieved by
solving some linear matrix inequalities, which can be easily facilitated by using the standard
numerical software. Finally, a numerical example is provided to show the effectiveness of the
proposed event-triggered scheme.

1. Introduction

The research of neural networks has been paid much attention during the past few years, due
to its potential application in various fields, such as image processing, pattern recognition,
and associative memory [1–5]. As a special class of nonlinear dynamical systems, the
dynamic behavior of recurrent neural networks has been one of the most important issues.
In particular, the analysis problems of stability and synchronization of recurrent neural
networks have received great attention and a number of profound results have been proposed
[6–12].

In many application, such as signal processing and control engineering, for large-scale
neural networks, it is quite common that only partial information can be accessible from the
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network outputs. Therefore, it is of great significance to estimate the neuron states through
available output measurements of the networks and then utilizes the estimated neuron states
to achieve certain design objectives; note that state estimation problem for neural networks
has been hot reach topics that have drawn considerable attention, andmany profound results
have been available in the literature [13–25]. The authors in [13] studied the problem of
state estimation for a class of delayed neural networks; the traditional monotonicity and
smoothness assumption on the activation function had been removed. The design problem
of state estimator for a class of neural networks with constant delays was investigated in
[14], where a delay-dependent criterion for existence of the estimator was proposed. As
an extension, The authors in [14, 15] further discussed state estimation for neural networks
with time-varying delays. In practice, sometimes a neural network has finite state modes and
modes may switch from one to another at different times. On the other hand, discrete-time
neural networks could be more suitable to model digitally transmitted signals in dynamical
way; based on the above reason, The authors in [16] investigated state estimation problem
for a new class of discrete-time neural networks with Markovian jumping parameters and
mode dependent mixed time-delays, where he discrete and distributed delays were mode-
dependent. Different from the stuelies in [16, 17] which considered state estimation for
Markovian jumping delayed continuous-time recurrent neural networks, where only matrix
parameters were mode-dependent. Similar to [16], for continuous-time recurrent neural
networks with discrete and distributed delays, state estimation was also investigated in [18].
In [19, 20], synchronization and state estimation had been studied for discrete-time complex
networks with distributed delays; it was noticed that in [20], a novel notion of bounded
H∞ synchronization had been first defined to characterize the transient performance of
synchronization. Some robust state estimation problems for uncertain neural networks with
time-varying delays had been investigated in [21–23], where the parameter uncertainties are
assumed to be norm bounded; some sufficient conditions were presented to guarantee the
existence of the desired state estimator. Taking into account the stochastic properties of time-
varying delays, the authors in [24] discussed state estimation problem for a class of discrete-
time stochastic neural networks with random delays; sufficient delay-distribution-dependent
conditions were established in terms of linear matrix inequalities (LMIs) that guarantee the
existence of the state estimator.

The sampled-data control theory had attracted much attention due to its effectiveness
in engineering applications. Especially, a new approach to deal with the sampled-data control
problems had been proposed in [26], where the sampling period had been converted into
time-varying delay. As its extension, the authors in [27] investigated the sampled-data state
estimation problem for a class of recurrent neural networks with time-varying delays, where
the sampled measurements had been used to estimate the neuron states. Using a similar
approach, where the sampled-data synchronization control problem was investigated in [28]
for a class of general delayed complex networks, the sampled-data feedback controllers were
designed in terms of the solution to certain linear matrix inequalities. But in the above
references, the sampling rate for each signal is the same; but in the actual system, it may
be varying from sample to sample owing to unpredictable perturbations; this factor was
considered in [29], the problem of robust H∞ control was investigated for sampled-data
systems with probabilistic sampling, where two different sampling periods were considered
whose occurrence probabilities were given constants and satisfied Bernoulli distribution. In
[30], stochastic sampled-data approach was used for studying the problem of distributedH∞
filtering in sensor networks, by converting the sampling periods into bounded time-delays,
the design problem of H∞ filters amounted to solving the H∞ filtering problem for a class
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of stochastic nonlinear systems with multiple bounded time delays. In [31], the sampled-
data synchronization control problem was addressed, where the sampling period was time
varying and switched between two different values in a random way. It is worth noting
that most of the above results were involved the traditional approach of sampling at pre-
specified time instances, which was called time-triggered sampling; this sampling method
may lead to an inherently periodic transmission and produce many useless messages if the
current sampled signal had not significantly changed in contrast to the previous sampled
signal, which led to a conservative usage of the communication resources. Recently, event-
triggered scheme provided an effective approach of determining; its main property was that
the signal was sampled and only some functions of the system state or output measurement
exceeded threshold. Compared with periodic sampling method, the event-triggered scheme
could reduce the burden of the communication and also preserve the desired properties of
the ideal continuous state feedback system, such as stability and convergence. The utilization
on event-triggered scheme could be found in many literatures such as [32–37]. The event-
triggered H∞ control design was investigated in [32] for networked control systems with
uncertainties and transmission delays, and a novel event-triggered scheme was proposed.
The study in [33] was concerned with the control problem of event-triggered networked
systems with both state and control input quantizations. In [34], the problems of exponential
stability and L2-gain analysis of event-triggered networked control systems were studied,
where the event-triggered conditions were proposed in the sensor side and controller side. In
[35–37], the consensus problems for multiagent systemswere investigated by event-triggered
control, where different trigger functions were proposed. Unfortunately, as far as we know,
up to now, no theoretical results are given for state estimation of recurrent neural networks
with time-varying delays based on event-triggered scheme. The purpose of our study is to
fill the gap.

Motivated by the above discussion, the paper is concernedwith the sampled-data state
estimation problem for a class of recurrent neural networks with time-varying delays. The
main purpose is to estimate the neuron states through output sampled measurement, and a
novel event-triggered scheme is proposed, which can lead to a significant reduction of the
information communication burden in the network. By using a delayed-input approach, the
error dynamics system is equivalent to a dynamic system with two different time-varying
delays. Based on constructing a Lyapunov-Krasovskii functional and employing some
analysis techniques, a state estimator of the considered neural networks can be achieved by
solving some linear matrix inequalities, which can be easily facilitated by using the standard
numerical software. Finally, a numerical example is given to illustrate the effectiveness of the
proposed method.

The main contributions of this paper are highlighted as follows.

(1) The novel event-triggered scheme is proposed, compared with a time-triggered
periodic communication scheme, since the proposed communication scheme only
depends on the state at the sampled instant and the state error between the current
sampled instant and the latest transmitted state. Therefore, the number of the
transmitted state signals through the network could be reduced apparently.

(2) Sufficient conditions obtained are in the form of linearmatrix inequalities which can
be readily solved by using the LMI toolbox inMatlab, and the solvability of derived
conditions dependents on not only trigger parameters and sampling period but also
the size of the delay.
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Notation 1. The notation used here is fair standard except where otherwise stated. Rn denotes
the n-dimensional Euclidean space and R

n×m is the set of real n×mmatrices. The superscript T
represents the transpose of the matrix (or vector). I denotes the identity matrix of compatible
dimensions. The asterisk represents the symmetric block in one symmetric matrix. diag{· · · }
stands for a block-diagonal matrix. The notation X ≥ 0 (X > 0)means that X is positive semi-
definite (positive definite). ‖·‖ is the Euclidean norm in R

n. If they are not explicitly specified,
arguments of a function or a matrix will be omitted in the analysis when no confusion can
arise.

2. Preliminaries

Consider a class of recurrent neural networks with time-varying delays as follows:

ẋ(t) = −Ax(t) +W0g(x(t)) +W1g(x(t − τ(t)))

y(t) = Cx(t),
(2.1)

where x(t) = (x1(t), x2(t), . . . , xn(t))
T ∈ R

n is the state vector associated with n neurons; A =
diag{a1, a2, . . . , an} is a positive diagonal matrix;W0 ∈ R

n×n andW1 ∈ R
n×n are the connection

weight matrix and the delayed connection weight matrix, respectively; τ(t) ∈ [0, τ] is the
time-varying bound delay; C ∈ R

m×n is a constant matrix; y(t) = (y1(t), y2(t), . . . , ym(t))
T ∈

R
m denotes the output vector; g(x(t)) = [g1(x1(t)), g2(x2(t)), . . . , gn(xn(t))]

T ∈ R
n represents

the neuron activation function with g(0) = 0.
In this paper, the measurement output is sampled before it enters the estimator; based

on the sampling technique and zero-order hold, the actual output can be described as

y(t) = y(tk) = Cx(tk), t ∈ [tk, tk+1), (2.2)

where y(t) ∈ R
m is the actual output of the estimator, and tk denotes the sampling instant

satisfying limk→∞tk = ∞.

Remark 2.1. In practical systems, periodic sampling mechanism may often lead to sending
many unnecessary signals through the networks, which will increase the load of network
transmission and waste the network bandwidth; therefore, it is significant to introduce a
mechanism to determinewhich sampled signal should be sent out or not. As stated in [32, 33],
the event-trigger sampling scheme is effective way because they can reduce the traffic and the
power consumption.

The sampled data y(tk+j) is transmitted (or released) by the event generator only
when the current sampled value y(tk+j) and the previously transmitted one y(tk) satisfy the
following judgement algorithm:

[
y
(
tk+j

) − y(tk)
]T
W

[
y
(
tk+j

) − y(tk)
]
< σyT(tk+j

)
Wy

(
tk+j

)
, (2.3)

where W ∈ R
m×m is a positive matrix, and σ ∈ [0, 1) is a positive scalar. The sampled state

y(tk+j) satisfying the inequality (2.3) will not be transmitted; only the one that exceeds the
threshold in (2.3) will be sent to the estimator. Specially, when σ = 0, the inequality (2.3) is
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not satisfied for almost all the sampled state y(tk+j), and the event-triggered scheme reduces
to a periodic release scheme.

Remark 2.2. From event-triggered algorithm (2.3), it is easily seen that all the released signals
are subsequences of the sampled data, that is, the set of the release instants {t0, t1, t2 . . .} ⊆
{0, 1, 2, . . .}. The amount of {t0, t1, t2 . . .} depends on not only the value of σ but also the
variation of the system output.

Suppose that the time-varying delay in network communication is dk ∈ [0, d] (k =
1, 2, . . . ,+∞), the output y(t) in (2.2) can be rewritten as

y(t) = y(tk) = Cx(tk), t ∈ [tk + dk, tk+1 + dk+1). (2.4)

Substituting the output (2.4) into the judgement algorithm (2.3), we can obtain

[
x
(
tk+j

) − x(tk)
]T
CTWC

[
x
(
tk+j

) − x(tk)
]
< σxT(tk+j

)
CTWCx

(
tk+j

)
. (2.5)

For technical convenience, similar to [32, 33], consider the following two intervals:

[tk + dk, tk + h + d), [tk + lh + d, tk + lh + h + d), (2.6)

where l is a positive integer and h is a sampling period.

(1) if tk + h + d > tk+1 + dk+1, define a function d(t) as follows:

d(t) = t − tk, t ∈ [tk + dk, tk+1 + dk+1). (2.7)

It can easily be obtained that the following inequality holds:

dk ≤ d(t) ≤ tk+1 − tk + dk+1 ≤ h + d. (2.8)

(2) if tk + h + d < tk+1 + dk+1, there exists a positive integer m, such that

tk +mh + d < tk+1 + dk+1 < tk +mh + h + d. (2.9)

It can be easily shown that

[tk + dk, tk+1 + dk+1) = I1 ∪ I2 ∪ I3, (2.10)
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where

I1 = [tk + dk, tk + h + d)

I2 =
l−1⋃

m=1

{
Im2

}

Im2 = [tk +mh + d, tk +mh + h + d)

I3 = [tk + lh + d, tk+1 + dk+1).

(2.11)

Define a function d(t) as

d(t) =

⎧
⎪⎪⎨

⎪⎪⎩

t − tk t ∈ I1

t − tk −mh t ∈ Im2 (m = 1, 2, . . . , l − 1)
t − tk − lh t ∈ I3.

(2.12)

From the definition of d(t) defined in (2.12), we can derive

0 ≤ dk ≤ d(t) < h + d, t ∈ I1

0 ≤ dk ≤ d ≤ d(t) < h + d, t ∈ Im2 (m = 1, 2, . . . , l − 1)

0 ≤ dk ≤ d ≤ d(t) < h + d, t ∈ I3.

(2.13)

From (2.13), it can be derived that 0 ≤ d(t) < dM, where dM = h+d. For t ∈ [tk+dk, tk+1+dk+1),
we define

ek(t) =

⎧
⎪⎪⎨

⎪⎪⎩

0 t ∈ I1

x(tk +mh) − x(tk) t ∈ Im2 (m = 1, 2, . . . , l − 1)
x(tk + lh) − x(tk) t ∈ I3.

(2.14)

Combining the above definitions of d(t) and ek(t), the algorithm (2.5) can be rewritten
as

eTk (t)C
TWCek(t) < σxT (t − d(t))CTWCx(t − d(t)). (2.15)

Based on the available sampled measurement y(t), the following state estimator is
adopted:

˙̂x(t) = −Ax̂(t) +K
(
y(t) − Cx̂(t)

)
, (2.16)

where K is feedback gain matrix to be designed, and x̂(t) = (x̂1(t), x̂2(t), . . . , x̂n(t))
T ∈ R

n is
estimator state vector.
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Setting e(t) = x(t)− x̂(t), the estimation error dynamics can be obtained from (2.1) and
(2.16), and it follows that

ė(t) = −(A +KC)e(t) +KCx(t) −KCx(t − d(t)) +KCek(t) +W0g(x(t)) +W1g(x(t − τ(t))).
(2.17)

Let x(t) = (xT (t), eT (t))T , we can get the following augmented system from (2.1) and
(2.17)

ẋ(t) = Ax(t) + Bx(t − d(t)) +W0g(Hx(t)) +W1g(Hx(t − τ(t))) + Cek(t), (2.18)

where

A =
[−A 0
KC −A −KC

]
B =

[
0 0

−KC 0

]
W0 =

[
W0

W0

]

W1 =
[
W1

W1

]
HT =

[
I
0

]
C =

[
0

KC

]
.

(2.19)

Before giving the main results, the following assumption, definition, and lemma are
essential in establishing our main results.

Assumption 2.3 (see, [27]). The activation function g(·) satisfies the following sector-bounded
condition:

[
g(x) −U1x

]T[
g(x) −U2x

] ≤ 0, (2.20)

where U1 andU2 are two real constant matrices withU2 −U1 ≥ 0.

Definition 2.4 (see, [27]). The augmented system (2.18) is exponentially stable, if there exist
two constants α > 0 and β > 0, such that

‖x(t)‖2 ≤ αe−βt sup
−r≤θ≤0

∥∥φ(θ)
∥∥2

, (2.21)

where φ(·) is in the initial function system (2.18) as φ(t) = x(t), t ∈ [−r, 0].
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Lemma 2.5 (see, [38, 39]). Suppose τ(t) ∈ [τm, τM], Qi (i = 1, 2, 3) are some constant matrices
with appropriate dimensions, then

Q1 + (τM − τ(t))Q2 + (τ(t) − τm)Q3 < 0, (2.22)

if the following inequalities hold

Q1 + (τM − τm)Q2 < 0

Q1 + (τM − τm)Q3 < 0.
(2.23)

Lemma 2.6 (see, [40]). For any constant positive matrix T ∈ R
n×n, scalar τ1 ≤ τ(t) < τ2 and vector

function ẋ(t) : [−τ2, τ1] → R
n such that the following integration is well defined, then it holds that

−(τ2 − τ1)
∫ t−τ1

t−τ2
ẋT (v)Tẋ(v)dv ≤

⎡

⎣
x(t − τ1)
x(t − τ(t))
x(t − τ2)

⎤

⎦

T⎡

⎣
−T T 0
∗ −2T T
∗ ∗ −T

⎤

⎦

⎡

⎣
x(t − τ1)
x(t − τ(t))
x(t − τ2)

⎤

⎦. (2.24)

3. Main Results

In this section, we design a sampled-date estimator with form (2.18) for recurrent neural
networks with time-varying delay based event-triggered control.

The system (2.18) can be rewritten as

ẋ(t) = Aξ(t), (3.1)

where

ξ(t)=
[
xT (t), xT (t−d(t)), xT (t−dM), xT (t−τ(t)), xT (t−τ), gT (Hx(t)), gT (Hx(t−τ(t))), eTk (t)

]T

A =
[
A,B, 0, 0, 0,W0,W1, C

]
.

(3.2)

Theorem 3.1. Suppose that Assumption 2.3 holds, for given estimator gain matrixK, the augmented
system (3.1) is exponentially stable, if there exist some positive definite matrices P > 0,Qi > 0, Ri > 0
and Si, Ti (i = 1, 2) with appropriate dimension, and two positive scalars α > 0, β > 0, such that the
following linear matrix inequalities hold:

Πi =

⎡

⎢⎢⎢
⎣

Π Φ1 Φ2 Φ(i)
3

∗ −dMR1 0 0
∗ ∗ −τR2 0
∗ ∗ ∗ −τR2

⎤

⎥⎥⎥
⎦

< 0 (i = 1, 2), (3.3)
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where

Π =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Π11 Π12 0 Π13 0 Π14 PW1 PC

∗ Π22
1
dM

R1 0 0 0 0 0

∗ ∗ Π33 0 0 0 0 0

∗ ∗ ∗ Π44 Π45 0 −βU2 0
∗ ∗ ∗ ∗ Π55 0 0 0
∗ ∗ ∗ ∗ ∗ −αI 0 0
∗ ∗ ∗ ∗ ∗ ∗ −βI 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −CTWC

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

Φ1 =
[
dMR1A dMR1B 0 0 0 dMR1W0 dMR1W1 dMR1C

]T

Φ2 =
[
τR2A τR2B 0 0 0 τR2W0 τR2W1 τR2C

]T

Φ(1)
3 =

[
τST

1 0 0 τST
2 0 0 0 0

]T

Φ(2)
3 =

[
0 0 0 τTT

1 τTT
2 0 0 0

]T

Π11 = PA +A
T
P +Q1 +Q2 − 1

dM
R1 + S1 + ST

1 − αU1

Π12 = PB +
1
dM

R1

Π13 = ST
2 − S1

Π14 = PW0 − αU2

Π22 = − 2
dM

R1 + σΩ

Π33 = −Q1 − 1
dM

R1

Π44 = −S2 − ST
2 + T1 + TT

1 − βU1

Π45 = −T1 + TT
2

Π55 = −Q2 − T2 − TT
2

Ω =
[
CTWC 0

0 0

]
.

(3.4)

Proof. Construct the following Lyapunov-Krasovskii functional candidate:

V (t, x(t)) = V1(t, x(t)) + V2(t, x(t)) + V3(t, x(t)) + V4(t, x(t)), (3.5)
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where

V1(t, x(t)) = xT (t)Px(t)

V2(t, x(t)) =
∫ t

t−dM

xT (s)Q1x(s)ds +
∫ t

t−τ
xT (s)Q2x(s)ds

V3(t, x(t)) =
∫ t

t−dM

∫ t

θ

ẋ
T
(s)R1ẋ(s)dsdθ

V4(t, x(t)) =
∫ t

t−τ

∫ t

θ

ẋ
T
(s)R2ẋ(s)dsdθ,

(3.6)

and P > 0, Qi > 0 and Ri > 0 (i = 1, 2) are matrices to be determined.
The derivative of Vi(t, x(t)) (i = 1, 2, 3, 4) along the trajectory of system (3.1) can be

shown as follows:

V̇1(t, x(t)) = 2xT (t)PAξ(t) (3.7)

V̇2(t, x(t)) = xT (t)(Q1 +Q2)x(t) − xT (t − dM)Q1x(t − dM) − xT (t − τ)Q2x(t − τ) (3.8)

V̇3(t, x(t)) = dMẋ
T
(t)R1ẋ(t) −

∫ t

t−dM

ẋ
T
(s)R1ẋ(s)ds

= dMξT (t)ATR1Aξ(t) −
∫ t

t−dM

ẋ
T
(s)R1ẋ(s)ds

(3.9)

V̇4(t, x(t)) = τẋ
T
(t)R2ẋ(t) −

∫ t

t−τ
ẋ
T
(s)R2ẋ(s)ds

= τξT (t)ATR2Aξ(t) −
∫ t

t−τ
ẋ
T
(s)R2ẋ(s)ds.

(3.10)

Noting that (3.9), it follows from Lemma 2.6 that

−
∫ t

t−dM

ẋ
T
(s)R1ẋ(s)ds ≤ 1

dM

⎡

⎣
x(t)

x(t − d(t))
x(t − dM)

⎤

⎦

T⎡

⎣
−R1 R1 0
∗ −2R1 R1

∗ ∗ −R1

⎤

⎦

⎡

⎣
x(t)

x(t − d(t))
x(t − dM)

⎤

⎦. (3.11)

Employing the free matrix method [38, 39], it is easily derived that

2ξT (t)S

[

x(t) − x(t − τ(t)) −
∫ t

t−τ(t)
ẋ(s)ds

]

= 0,

2ξT (t)T

[

x(t − τ(t)) − x(t − τ) −
∫ t−τ(t)

t−τ
ẋ(s)ds

]

= 0,

(3.12)
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where

S =
[
ST
1 0 0 ST

2 0 0 0 0
]T
,

T =
[
0 0 0 TT

1 TT
2 0 0 0

]T
.

(3.13)

It follows that from (3.12) that

−2ξT (t)S
∫ t

t−τ(t)
ẋ(s)ds ≤ τ(t)ξT (t)SR−1

2 STξ(t) +
∫ t

t−τ(t)
ẋ
T
(s)R2ẋ(s)ds

−2ξT (t)T
∫ t−τ(t)

t−τ
ẋ(s)ds ≤ (τ − τ(t))ξT (t)TR−1

2 TTξ(t) +
∫ t−τ(t)

t−τ
ẋ
T
(s)R2ẋ(s)ds.

(3.14)

By Assumption 2.3, the following inequality holds:

[
x(t)

g(Hx(t))

]T[U1 U2

U
T

2 I

][
x(t)

g(Hx(t))

]
≤ 0, (3.15)

where

U1 = HTÛ1H, U2 = HTÛ2

Û1 =
UT

1U2 +UT
2U1

2
, Û2 =

UT
1 +UT

2

2
.

(3.16)

For all α, β > 0, it can be derived from (3.15) that

−α
[

x(t)
g(Hx(t))

]T[U1 U2

U
T

2 I

][
x(t)

g(Hx(t))

]
≥ 0

−β
[

x(t − τ(t))
g(Hx(t − τ(t)))

]T[U1 U2

U
T

2 I

][
x(t − τ(t))

g(Hx(t − τ(t)))

]
≥ 0.

(3.17)

Then, (2.15) can be rewritten as

σxT (t − d(t))Ωx(t − d(t)) −
[
eT
k (t)C

TWCek(t) 0
0 0

]
> 0, (3.18)

where

Ω =
[
CTWC 0

0 0

]
. (3.19)
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It follows from (3.7)–(3.18) that

V̇ (t, x(t)) ≤ 2xT (t)PAξ(t) + xT (t)(Q1 +Q2)x(t) − xT (t − dM)Q1x(t − dM)

− xT (t − τ)Q2x(t − τ) + dMξT (t)ATR1Aξ(t) + τξT (t)ATR2Aξ(t)

+ 2ξT (t)S(x(t) − x(t − τ(t))) + 2ξT (t)T(x(t − τ(t)) − x(t − τ))

+
1
dM

⎡

⎣
x(t)

x(t − d(t))
x(t − dM)

⎤

⎦

T⎡

⎣
−R1 R1 0
∗ −2R1 R1

∗ ∗ −R1

⎤

⎦

⎡

⎣
x(t)

x(t − d(t))
x(t − dM)

⎤

⎦

− α

[
x(t)

g(Hx(t))

]T[U1 U2

U
T

2 I

][
x(t)

g(Hx(t))

]

− β

[
x(t − τ(t))

g(Hx(t − τ(t)))

]T[U1 U2

U
T

2 I

][
x(t − τ(t))

g(Hx(t − τ(t)))

]

+ σxT (t − d(t))Ωx(t − d(t)) −
[
eT
k (t)C

TWCek(t) 0
0 0

]

+ τ(t)ξT (t)SR−1
2 STξ(t) + (τ − τ(t))ξT (t)TR−1

2 TTξ(t)

= ξT (t)
(
Π + dMATR1A + τATR2A

)
ξ(t) + τ(t)ξT (t)SR−1

2 STξ(t)

+ (τ − τ(t))ξT (t)TR−1
2 TTξ(t).

(3.20)

By using Schur complement and Lemma 2.5, it can be seen that (3.3) is equivalent to

Π + dMATR1A + τATR2A + τ(t)SR−1
2 ST + (τ − τ(t))TR−1

2 TT < 0 (3.21)

which implies V̇ (t, x(t)) < −ε‖x(t)‖2; then similar to [41], we can obtain the exponential
stability of system (3.1). The proof is completed.

Remark 3.2. From Theorem 3.1, it can be seen that the trigger parameters σ,W and the upper
bound of time delay τ are involved in (3.3); for given σ, the corresponding trigger parameter
W and the upper bound of τ can be obtained by using LMI toolbox in Matlab. From the
simulation example, it can be derived that the larger the σ, the small the τ ; the larger average
release period, which means the load of network transmission will be reduced.

Remark 3.3. When the estimator gain matrix K is given, the conditions (3.3) are in the form
of linear matrix inequalities, which can be readily solved by using the standard numerical
software. The conditions (3.3) are not linear matrix inequalities when the estimator gain
matrix K is a matrix variable to be designed, and thus Theorem 3.1 cannot be used to design
K directly, a design method will be provided in the following Theorem.
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After establishing analysis results in Theorem 3.1, the design problem of state
estimator is to be considered and the following results can be readily derived from
Theorem 3.1.

Theorem 3.4. Suppose that Assumption 2.3 holds, the augmented system (3.1) is exponentially
stable, if there exist P = diag{P1,P2} > 0, Qi = diag{Qi,Qi} > 0, Ri = diag{Ri,Ri} > 0 and
Si = diag{Si,Si}, Ti = diag{Ti,Ti} (i = 1, 2) and V with appropriate dimension, and two positive
scalars α > 0, β > 0, such that the following linear matrix inequalities hold:

Πi =

⎡

⎢⎢⎢
⎣

Π Φ1 Φ2 Φ
(i)
3

∗ Φ4 0 0
∗ ∗ Φ5 0
∗ ∗ ∗ −τR2

⎤

⎥⎥⎥
⎦

< 0 (i = 1, 2), (3.22)

where

Π =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Π11 Π12 0 Π13 0 Π14 Π15 Π16

∗ Π22 Π23 0 0 0 0 0
∗ ∗ Π33 0 0 0 0 0
∗ ∗ ∗ Π44 Π45 0 Π46 0
∗ ∗ ∗ ∗ Π55 0 0 0
∗ ∗ ∗ ∗ ∗ Π66 0 0
∗ ∗ ∗ ∗ ∗ ∗ Π77 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Π88

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

Φ1 =
[
Π

T

17 Π
T

24 0 0 0 Π
T

67 Π
T

78 Π
T

89

]T

Φ2 =
[
Π

T

18 Π
T

25 0 0 0 Π
T

68 Π
T

79 Π
T

8,10

]T

Φ
(1)
3 =

[
Π

T

19 0 0 Π
T

47 0 0 0 0
]T

Φ(2)
3 =

[
0 0 0 Π̂T

19 Π̂T
47 0 0 0

]T

Φ4 =
[
2dMP1 + dMR1 0

0 2dMP2 + dMR1

]

Φ5 =
[
2τP1 + τR2 0

0 2τP2 + τR2

]

Π11 =

[
−P1A −ATP1 − αÛ1 CTV T

VC −P2A −ATP2 − VC − CTV T

]

+

⎡

⎢
⎣
Q1 +Q2 − 1

dM
R1 + S1 + ST

1 0

0 Q1 +Q2 − 1
dM

R1 + S1 + ST
1

⎤

⎥
⎦

(3.23)
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Π12 =

⎡

⎢
⎣

1
dM

R1 0

VC
1
dM

R1

⎤

⎥
⎦, Π13 =

[
ST
2 − S1 0
0 ST

2 − S1

]

Π14 =

[
P1W0 − αÛ2

P2W0

]

, Π15 =
[
P1W1

P2W1

]

Π16 =
[

0
VC

]
, Π17 =

[−dMATP1 dMCTV T

0 −dMATP2 − dMCTV T

]

Π18 =
[−τATP1 τCTV T

0 −τATP2 − τCTV T

]
, Π19 =

[
τS1 0
0 τS1

]

Π̂19 =
[
τT1 0
0 τT1

]
, Π22 =

⎡

⎢
⎣
− 2
dM

R1 + σCTWC 0

0 − 2
dM

R1

⎤

⎥
⎦

Π23 =

⎡

⎢
⎣

1
dM

R1 0

0
1
dM

R1

⎤

⎥
⎦, Π24 =

[
0 −dMCTV T

0 0

]

Π25 =
[
0 τCTV T

0 0

]
, Π33 =

⎡

⎢
⎣
−Q1 − 1

dM
R1 0

0 −Q1 − 1
dM

R1

⎤

⎥
⎦

Π44 =

[
−S2 − ST

2 + T1 + TT
1 − βÛ1 0

0 −S2 − ST
2 + T1 + TT

1

]

, Π45 =
[
TT
2 − T1 0
0 TT

2 − T1

]

Π46 =

[
−βÛ2

0

]

, Π47 =
[
τS2 0
0 τS2

]
, Π̂47 =

[
τT2 0
0 τT2

]

Π55 =
[−Q2 − T2 − TT

2 0
0 −Q2 − T2 − TT

2

]
, Π66 = −αI

Π67 =
[
dMWT

0 P1 dMWT
0 P2

]
, Π68 =

[
τWT

0 P1 τWT
0 P2

]
, Π77 = −βI

Π78 =
[
dMWT

1 P1 dMWT
1 P2

]
, Π79 =

[
τWT

1 P1 τWT
1 P2

]
, Π88 = −CTWC

Π89 =
[
0 −dMCTV T

]
, Π8,10 =

[
0 −τCTV T

]
,

(3.24)

then the desired estimator gain matrix is given as K = P−1
2 V .

Proof. By using Schur complement in Theorem 3.1,Πi < 0 (i = 1, 2) can be rewritten as

Π + dMATR1A + τATR2A + τSR−1
2 ST < 0

Π + dMATR1A + τATR2A + τTR−1
2 TT < 0.

(3.25)
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By using Lemma 2.5, (3.25) are equivalent to the following matrix inequalities

⎡

⎢⎢⎢
⎣

Π Φ̂1 Φ̂2 Φ(i)
3

∗ −dMR−1
1 0 0

∗ ∗ −τR−1
2 0

∗ ∗ ∗ −τR2

⎤

⎥⎥⎥
⎦

< 0 (i = 1, 2), (3.26)

where

Π =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

Π11 Π12 0 Π13 0 Π14 Π15 Π16

∗ Π22 Π23 0 0 0 0 0
∗ ∗ Π33 0 0 0 0 0
∗ ∗ ∗ Π44 Π45 0 Π46 0
∗ ∗ ∗ ∗ Π55 0 0 0
∗ ∗ ∗ ∗ ∗ Π66 0 0
∗ ∗ ∗ ∗ ∗ ∗ Π77 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Π88

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

Φ̂1 =
[
dMA dMB 0 0 0 dMW0 dMW1 dMC

]T

Φ̂2 =
[
τA τB 0 0 0 τW0 τW1 τC

]T
.

(3.27)

Then performing a congruence transformation of diag{I, P, P, I} to (3.26), it can be
derived that

⎡

⎢⎢⎢
⎣

Π Φ̃1 Φ̃2 Φ(i)
3

∗ −dMPR−1
1 P 0 0

∗ ∗ −τPR−1
2 P 0

∗ ∗ ∗ −τR2

⎤

⎥⎥⎥
⎦

< 0 (i = 1, 2), (3.28)

where

Φ̃1 =
[
dMPA dMPB 0 0 0 dMPW0 dMPW1 dMPC

]T

Φ̃2 =
[
τPA τPB 0 0 0 τPW0 τPW1 τPC

]T
.

(3.29)

Setting P2K = V in (3.28) and considering the following inequality:

−PR−1
i P ≤ −2P + Ri (i = 1, 2). (3.30)
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By using (3.30), we can obtain

⎡

⎢⎢⎢
⎣

Π Φ̃1 Φ̃2 Φ(i)
3

∗ −dMPR−1
1 P 0 0

∗ ∗ −τPR−1
2 P 0

∗ ∗ ∗ −τR2

⎤

⎥⎥⎥
⎦

<

⎡

⎢⎢⎢
⎣

Π Φ̃1 Φ̃2 Φ(i)
3

∗ −2dMP + dMR1 0 0
∗ ∗ −2τP + τR2 0
∗ ∗ ∗ −τR2

⎤

⎥⎥⎥
⎦
. (3.31)

Substitute A, B, W0, H,W1, C, P , Qi, Ri, Si, Ti (i = 1, 2) into the right of (3.31),
combining (3.22), we can obtain

⎡

⎢⎢⎢
⎣

Π Φ̃1 Φ̃2 Φ(i)
3

∗ −2dMP + dMR1 0 0
∗ ∗ −2τP + τR2 0
∗ ∗ ∗ −τR2

⎤

⎥⎥⎥
⎦

< 0 (i = 1, 2). (3.32)

The rest of the proof follows directly from Theorem 3.1.

Remark 3.5. When the estimator gain matrix K is a matrix variable to be designed, in order
to transform the conditions (3.3) to linear matrix inequalities, and meanwhile reduce the
computational complexity (i.e., reduce the number of matrix variables), in Theorem 3.4,
matrix variables in Theorem 3.1 are replaced by some diagonal matrices. Then setting P2K =
V , we can obtain (3.22), which is in the form of linear matrix inequalities, which are easy to
be verified by LMI toolbox.

Remark 3.6. It is noticed that dM = h + d, if dM is solved, we can select a sampling period
h < dM. For given d, the maximal allowable sampling period hmax can be obtained by the
following two-step procedure.

(1) For given τ and d, setting hmax = h0 and step size STEP = STEP0, where h0 and
STEP0 are two specified positive constants.

(2) If LMIs (3.22) are feasible, set hmax = h0 + STEP0 and return to step (2): otherwise, h
is the maximal allowable sampling period.

4. Numerical Results

In this section, a numerical example is given to verify the effectiveness of the proposed control
techniques for estimation of recurrent neural networks with time-varying delays.

Example 4.1. Consider recurrent neural networks (2.1)with the following parameters

A =
[
1.5 0
0 2

]
, W0 =

[
0.3 −0.4
−0.4 0.3

]
, W1 =

[
0.3 0.3
0.3 0.3

]
, C =

[
0.9 0.8
0.7 0.5

]
. (4.1)

The neuron activation function is described as follows:

g(x) =
[
0.5x1(t) − tanh(0.2x1(t)) + 0.2x2(t)

0.95x2(t) − tanh(0.75x2(t))

]
. (4.2)
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Table 1: dM = 0.01.

σ 0 0.01 0.1 0.2 0.3 0.4 0.5
τ 1.2134 1.1966 1.1572 1.1570 1.1569 1.1569 1.1569

Table 2: τ = 1, d = 0.01.

σ 0 0.01 0.1 0.15 0.2 0.3 0.99
hmax 0.2244 0.2106 0.1998 0.1998 0.1998 0.1998 0.1998

It is easy to verify that the nonlinear function f(·) satisfies Assumption 2.3; by some
simple calculations, we can obtain

U1 =
[
0.3 0.2
0 0.2

]
U2 =

[
0.5 0.2
0 0.95

]
. (4.3)

Setting dM = 0.01 and σ = 0.1, by applying Theorem 3.4, it can be obtained the
maximum allowable delay τ = 1.1572. More detailed calculation results for different values
of σ are given in Table 1. It can be shown that the larger σ, the smaller τ . For given τ = 1 and
d = 0.01, based on Remark 3.6, we can obtain the maximal allowable sampling period hmax,
which are shown in Table 2. For given τ = 1, σ = 0.1 and dM = 0.01, by using LMI Toolbox in
LMIs (3.22), the feasible solution can be obtained as follows:

P1 =
[
5.4676 −0.1329
−0.1329 5.4000

]
, P2 =

[
5.0204 −0.1155
−0.1155 4.2212

]
, Q1 =

[
2.7863 −0.0955
−0.0955 2.0982

]

Q2 =
[
3.2539 −0.0133
−0.0133 2.8910

]
, R1 =

[
0.0222 0.0010
0.0010 0.0234

]
, R2 =

[
2.2237 −0.0246
−0.0246 1.4752

]

S1 =
[−0.5503 0.0195
0.0478 −0.4156

]
, S2 =

[
1.0185 0.0674
0.1378 1.1920

]
, T1 =

[−1.0844 −0.0634
−0.0902 −1.2378

]

T2 =
[
0.3511 −0.0221
−0.0195 0.3384

]
, V =

[−0.0792 −0.1282
−0.1755 −0.0863

]
, α = 6.4604, β = 5.7723.

(4.4)

Then the triggered matrix and the desired estimator can be obtained as follows:

W =
[
4.6153 −2.7354
−2.7354 6.5131

]
, K =

[−0.0165 −0.0308
−0.0354 −0.0214

]
. (4.5)

For giving the sampling period h = 0.005, Table 3 gives the relation of the
trigger parameter σ, trigger times, the average release period, and the percentage of data
transmissions; it can be seen that the larger the σ, the smaller trigger times; the larger average
release period, the smaller percentage of data transmission, which are reasonable results. In
the following, we provide some simulation results: when σ = 0, the time varying delay τ(t)
obeys uniform distribution over [0, 1], and the curves of the error dynamics of the neural
networks ei(t) (i = 1, 2) are depicted in Figure 1, from which we can see the errors converge
to zero asymptotically. If setting σ = 0.1, The response of the error dynamics for the delayed
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Figure 1: The error curves ei(t) (i = 1, 2) with trigger parameter σ = 0 (time-triggered scheme).

Table 3: h = 0.005, dM = 0.01, τ = 0.1, t = 10.

σ 0 0.01 0.1

Trigger times 2000 188 74

Trigger matrix W

⎡

⎣ 0.7582 −0.2843
−0.2843 0.9490

⎤

⎦

⎡

⎣ 0.7504 −0.2881
−0.2881 0.9444

⎤

⎦

⎡

⎣ 4.6153 −2.7354
−2.7354 6.5131

⎤

⎦

Estimator matrix K

⎡

⎣−0.0070 −0.0553
−0.0398 −0.0257

⎤

⎦

⎡

⎣−0.0068 −0.0552
−0.0394 −0.0255

⎤

⎦

⎡

⎣−0.0165 −0.0308
−0.0354 −0.0214

⎤

⎦

Average release period 0.0050 0.0531 0.1348

Data transmission 100% 9.42% 3.71%

neural networks (2.17)which converge to zero asymptotically in the mean square is given in
Figure 2. Figure 3 shows the event-triggered release instants and intervals. It can be seen from
Figures 1 and 2 that the simulation results are almost the same, but the percentage of data
transmission under even-triggered scheme used much small number than time-triggering
scheme. To make this clear, seen the computation results lists in Table 2, from which we can
see that data transmission rate with even-triggered scheme (σ = 0.1) is only 3.71% of sampled
measurement output with time-triggered scheme (σ = 0); from these results, we can draw
a conclusion that event-triggered scheme has advantage over the time-triggered scheme in
improving the resource utilization.

5. Conclusions

This paper has provided a novel event-triggered scheme to investigate the sampled-data state
estimation problem for a class of recurrent neural networks with time-varying delays. This
scheme can lead to a significant reduction of the information communication burden in the
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Figure 2: The error curves ei(t) (i = 1, 2) with trigger parameter σ = 0.1 (event-triggered scheme).
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Figure 3: Release instants and release interval by event-triggered scheme.

network. By using a delayed-input approach, the error dynamics system is equivalently to a
dynamic system with two different time-varying delays. Based on the Lyapunov-krasovskii
functional approach, a state estimator of the considered neural networks can be achieved by
solving some linear matrix inequalities, which can be readily solved by using the standard
numerical software. Finally, an illustrative example is exploited to show the effectiveness of
the event-triggered scheme.



20 Abstract and Applied Analysis

Acknowledgments

This work was in part jointly supported by the National Science Foundation of China (under
Grant 61074024, 60874113), the Natural Science Foundation of Jiangsu Province of China
(under Grant BK2010543), the Education Department Research Project of Zhejiang Province
of China (under Grant Y201019013), and the Outstanding Young Teacher Project of Zhejiang
Province.

References

[1] S. S. Young, P. D. Scott, and N. M. Nasrabadi, “Object recognition using multilayer Hopfield neural
network,” IEEE Transactions on Image Processing, vol. 6, no. 3, pp. 357–372, 1997.

[2] A. N. Michel, J. A. Farrell, and H.-F. Sun, “Analysis and synthesis techniques for Hopfield type
synchronous discrete time neural networks with application to associative memory,” Institute of
Electrical and Electronics Engineers, vol. 37, no. 11, pp. 1356–1366, 1990.

[3] C. K. Ahn, “Robust stability of recurrent neural networks with ISS learning algorithm,” Nonlinear
Dynamics, vol. 65, no. 4, pp. 413–419, 2011.

[4] J. Liang and J. Cao, “Global output convergence of recurrent neural networks with distributed
delays,” Nonlinear Analysis: Real World Applications, vol. 8, no. 1, pp. 187–197, 2007.

[5] J. Cao and J. Wang, “Global asymptotic stability of a general class of recurrent neural networks with
time-varying delays,” IEEE Transactions on Circuits and Systems, vol. 50, no. 1, pp. 34–44, 2003.

[6] H. Zhang, Z. Liu, G. B. Huang, and Z. Wang, “Novel weighting-delay-based stability criteria for
recurrent neural networks with time-varying delay,” IEEE Transactions on Neural Networks, vol. 21, no.
1, pp. 91–106, 2010.

[7] J. Cao and L. Li, “Cluster synchronization in an array of hybrid coupled neural networks with delay,”
Neural Networks, vol. 22, no. 4, pp. 335–342, 2009.

[8] J. Cao, G. Chen, and P. Li, “Global synchronization in an array of delayed neural networkswith hybrid
coupling,” IEEE Transactions on Systems, Man, and Cybernetics B, vol. 38, no. 2, pp. 488–498, 2008.

[9] P. Balasubramaniam, R. Krishnasamy, and R. Rakkiyappan, “Delay-dependent stability of neutral
systems with time-varying delays using delay-decomposition approach,” Applied Mathematical
Modelling, vol. 36, no. 5, pp. 2253–2261, 2012.

[10] Z. Liu, H. Zhang, and Q. Zhang, “Novel stability analysis for recurrent neural networks with multiple
delays via line integral-type L-K functional,” IEEE Transactions on Neural Networks, vol. 21, no. 11, pp.
1710–1718, 2010.

[11] J. H. Park and O. M. Kwon, “Global stability for neural networks of neutral-type with interval time-
varying delays,” Chaos, Solitons and Fractals, vol. 41, no. 3, pp. 1174–1181, 2009.

[12] J. H. Park, “On global stability criterion of neural networks with continuously distributed delays,”
Chaos, Solitons and Fractals, vol. 37, no. 2, pp. 444–449, 2008.

[13] Z. Wang, D. W. C. Ho, and X. Liu, “State estimation for delayed neural networks,” IEEE Transactions
on Neural Networks, vol. 16, no. 1, pp. 279–284, 2005.

[14] J. H. Park and O. M. Kwon, “Design of state estimator for neural networks of neutral-type,” Applied
Mathematics and Computation, vol. 202, no. 1, pp. 360–369, 2008.

[15] J. H. Park and O. M. Kwon, “Further results on state estimation for neural networks of neutral-type
with time-varying delay,” Applied Mathematics and Computation, vol. 208, no. 1, pp. 69–75, 2009.

[16] Y. Liu, Z. Wang, and X. Liu, “State estimation for discrete-time Markovian jumping neural networks
with mixed mode-dependent delays,” Physics Letters A, vol. 372, no. 48, pp. 7147–7155, 2008.

[17] P. Balasubramaniam, S. Lakshmanan, and S. Jeeva Sathya Theesar, “State estimation for Markovian
jumping recurrent neural networks with interval time-varying delays,” Nonlinear Dynamics, vol. 60,
no. 4, pp. 661–675, 2010.

[18] Z. Wang, Y. Liu, and X. Liu, “State estimation for jumping recurrent neural networks with discrete
and distributed delays,” Neural Networks, vol. 22, no. 1, pp. 41–48, 2009.

[19] Y. Liu, Z. Wang, J. Liang, and X. Liu, “Synchronization and state estimation for discrete-time complex
networks with distributed delays,” IEEE Transactions on Systems, Man, and Cybernetics B, vol. 38, no. 5,
pp. 1314–1325, 2008.



Abstract and Applied Analysis 21

[20] B. Shen, Z. Wang, and X. Liu, “Bounded H∞ synchronization and state estimation for discrete time-
varying stochastic complex networks over a finite horizon,” IEEE Transactions on Neural Networks, vol.
22, no. 1, pp. 145–157, 2011.

[21] H. Huang, G. Feng, and J. Cao, “Robust state estimation for uncertain neural networks with time-
varying delay,” IEEE Transactions on Neural Networks, vol. 19, no. 8, pp. 1329–1339, 2008.

[22] X. Liu and J. Cao, “Robust state estimation for neural networks with discontinuous activations,” IEEE
Transactions on Systems, Man, and Cybernetics B, vol. 40, no. 6, pp. 1425–1437, 2010.

[23] H. Bao and J. Cao, “Robust state estimation for uncertain stochastic bidirectional associative memory
networks with time-varying delays,” Physica Scripta, vol. 83, no. 6, Article ID 065004, 2011.

[24] H. Bao and J. Cao, “Delay-distribution-dependent state estimation for discrete-time stochastic neural
networks with random delay,” Neural Networks, vol. 24, no. 1, pp. 19–28, 2011.

[25] H. Huang, G. Feng, and J. Cao, “Guaranteed performance state estimation of static neural networks
with time-varying delay,” Neurocomputing, vol. 74, no. 4, pp. 606–616, 2011.

[26] E. Fridman, U. Shaked, and V. Suplin, “Input/output delay approach to robust sampled-data H∞
control,” Systems & Control Letters, vol. 54, no. 3, pp. 271–282, 2005.

[27] N. Li, J. Hu, J. Hu, and L. Li, “Exponential state estimation for delayed recurrent neural networks
with sampled-data,” Nonlinear Dynamics, vol. 69, pp. 555–564, 2012.

[28] N. Li, Y. Zhang, J. Hu, and Z. Nie, “Synchronization for general complex dynamical networks with
sampled-data,” Neurocomputing, vol. 74, no. 5, pp. 805–811, 2011.

[29] H. Gao, J. Wu, and P. Shi, “Robust sampled-data H∞ control with stochastic sampling,” Automatica,
vol. 45, no. 7, pp. 1729–1736, 2009.

[30] B. Shen, Z. Wang, and X. Liu, “A stochastic sampled-data approach to distributed H∞ filtering in
sensor networks,” IEEE Transactions on Circuits and Systems, vol. 58, no. 9, pp. 2237–2246, 2011.

[31] B. Shen, Z. Wang, and X. Liu, “Sampled-data synchronization control of dynamical networks with
stochastic sampling,” . In press.

[32] D. Yue, E. Tian, and Q. Han, “A delay system method to design of event-triggered control of
networked control systems,” in Proceedings of the 50th IEEE Conference on Decision and Control and
European Control Conference (CDC-ECC ’11), pp. 1668–1673, Institute of Electrical and Electronics
Engineers, Orlando, Fla, USA, December 2011.

[33] S. Hu and D. Yue, “Event-triggered control design of linear networked systems with quantizations,”
ISA Transactions, vol. 51, pp. 153–162, 2012.

[34] S. Hu and D. Yue, “L2-gain analysis of event-triggered networked control systems: a discontinuous
lyapunov functionalapproach,” International Journal of Robust and Nonlinear Control. In press.

[35] Z. Liu and Z. Chen, “Event-triggered average-consensus for multi-agent systems,” in Proceedings of
the 29th Chinese Control Conference (CCC ’10), pp. 4506–4511, July 2010.

[36] D. V. Dimarogonas and K. H. Johansson, “Event-triggered control for multi-agent systems,” in
Proceedings of the 48th IEEE Conference on Decision and Control Held Jointly with 28th Chinese Control
Conference (CDC/CCC ’09), pp. 7131–7136, Shanghai, China, December 2009.

[37] D. V. Dimarogonas and E. Frazzoli, “Distributed event-triggered control strategies for multi-
agent systems,” in Proceedings of the 47th Annual Allerton Conference on Communication, Control, and
Computing (Allerton ’09), pp. 906–910, Monticello, Ill, USA, October 2009.

[38] D. Yue, E. Tian, and Y. Zhang, “A piecewise analysis method to stability analysis of linear
continuous/discrete systems with time-varying delay,” International Journal of Robust and Nonlinear
Control, vol. 19, no. 13, pp. 1493–1518, 2009.

[39] D. Yue, E. Tian, Y. Zhang, and C. Peng, “Delay-distribution-dependent stability and stabilization of T-
S fuzzy systems with probabilistic interval delay,” IEEE Transactions on Systems, Man, and Cybernetics
B, vol. 39, no. 2, pp. 503–516, 2009.

[40] C. Peng and Y.-C. Tian, “Delay-dependent robust stability criteria for uncertain systems with interval
time-varying delay,” Journal of Computational and Applied Mathematics, vol. 214, no. 2, pp. 480–494,
2008.

[41] Y. Liu, Z. Wang, and X. Liu, “Global exponential stability of generalized recurrent neural networks
with discrete and distributed delays,” Neural Networks, vol. 19, no. 5, pp. 667–675, 2006.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


