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We investigate transformations of the modified Riccati differential equation and the obtained
results we apply in the investigation of oscillatory properties of perturbed half-linear Euler
differential equation. A perturbation is also allowed in the differential term.

1. Introduction

The half-linear Euler differential equation

(
Φ
(
x′))′ +

γp

tp
Φ(x) = 0, Φ(x) := |x|p−2x, p > 1, (1.1)

with the so-called oscillation constant γp := ((p − 1)/p)p−1 plays an important role in the
oscillation theory of the half-linear differential equation

(
r(t)Φ

(
x′))′ + c(t)Φ(x) = 0, (1.2)

with the continuous functions r, c, and r(t) > 0. The reason is that (1.1) represents a kind of
borderline between oscillation and nonoscillation in the half-linear oscillation theory. More
precisely, if r(t) = 1 in (1.2), then this equation is oscillatory provided

lim inf
t→∞

tpc(t) > γp, (1.3)
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and nonoscillatory if

lim sup
t→∞

tpc(t) < γp, (1.4)

see, for example, [1]. Formulas (1.3), (1.4) show what “borderline” means. The potential
c(t) = γp/t

p “separates” potentials c in (1.2)with r(t) ≡ 1 for which this equation is oscillatory
or nonoscillatory. Criteria (1.3), (1.4) can be extended to the general case r(t)/≡ 1. In this
general setting, the Kneser type criterion is formulated in terms of the lower and upper limit
of the expression

rq−1(t)

(∫ t

r1−q(s)ds

)p

c(t), (1.5)

if
∫∞

r1−q(t)dt = ∞, q = p/(p − 1) being the conjugate exponent of p, and of the expression

rq−1(t)
(∫∞

t

r1−q(s)ds
)p

c(t), (1.6)

if
∫∞

r1−q(t)dt < ∞. The constant γp in this criterion remains the same. In the linear case p = 2,
(1.3) and (1.4) are the classical Kneser (non)oscillation criteria, see [2].

Our investigation is mainly motivated by the papers [3–5]. In [4], perturbations of
(1.1) of the form,

(
Φ
(
x′))′ +

⎡

⎣
γp

tp
+

n∑

j=1

βj

tp Log2j t

⎤

⎦Φ(x) = 0, (1.7)

were investigated. Here, the notation

Logkt =
k∏

j=1

logj t, logkt = logk−1
(
log t

)
, log1t = log t (1.8)

is used. It was shown that the crucial role in (1.7) plays the constant μp := (1/2)((p − 1)/p)p−1.
In particular, if n = 1 in (1.7), that is, this equation reduces to the so-called Riemann-Weber
half-linear differential equation, then this equation is oscillatory if β1 > μp and nonoscillatory
in the opposite case. In general, if βj = μp for j = 1, . . . , n − 1, then (1.7) is oscillatory if and
only if βn > μp.

In [5], the perturbations of the linear Euler differential equation were investigated
and a perturbation was also allowed in the term-involving derivative. More precisely, the
differential equation

⎡

⎣

⎛

⎝1 +
n∑

j=1

αj

Log2j t

⎞

⎠x′

⎤

⎦

′

+

⎡

⎣ 1
4t2

+
n∑

j=1

βj

t2 Log2j t

⎤

⎦x = 0 (1.9)
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was considered. It was shown that if there exists k ∈ {1, . . . , n} such that βj − αj/4 = 1/4 for
j = 1, . . . , k − 1, and βk − αk /= 1/4, then (1.9) is oscillatory if and only if βk − αk/4 > 1/4. If
βj−αj = 1/4 for all j = 1, . . . , n, then (1.11) is nonoscillatory. This result was partially extended
to half-linear equations in [3]. There,

[(

1 +
α

log2t

)

Φ
(
x′)
]′

+

[
γp

tp
+

β

tp log2t

]

Φ(x) = 0 (1.10)

was investigated and it was shown that (1.10) is oscillatory if and only β−αγp > μp. For some
related results see also [6].

In this paper we deal with perturbations of the Euler half-liner differential equation in
full generality. We consider

⎡

⎣

⎛

⎝1 +
n∑

j=1

αj

Log2j t

⎞

⎠Φ
(
x′)
⎤

⎦

′

+

⎡

⎣
γp

tp
+

n∑

j=1

βj

tp Log2j t

⎤

⎦Φ(x) = 0, (1.11)

and we find an explicit formula for the relationship between constants αj , βj in (1.11) which
implies (non)oscillation of this equation. In the last section of the paper we explain why
perturbations are just in the above considered form. Our result is based on a new method
which consists in transformations of the modified Riccati equations associated with (1.2). The
main result along this line is established in Section 3, while its application to the perturbed
Euler equation is presented in Section 4. In the last section we present some remarks and
comments concerning the results of our paper. In the next section we recall some essentials of
the half-linear oscillation theory.

2. Preliminaries

It is a well-known fact that many of the results of the linear oscillation theory can be directly
extended to half-linear equation (1.2), even if, in contrast to the case p = 2 (then (1.2) is a
linear equation), the additivity of the solution space is lost and only homogeneity remains. In
particular, the so-called Riccati technique, consisting in the relationship between (1.2) and its
associated Riccati type equation (related to (1.2) by the substitution w = rΦ(x′/x))

R[w](t) := w′ + c(t) +
(
p − 1

)
r1−q(t)|w|q = 0, q :=

p

p − 1 (2.1)

extends almost literally to (1.2). More precisely, the following statement holds (see [1,
Theorem 2.2.1]).

Proposition 2.1. Equation (1.2) is nonoscillatory if and only if there exists a differentiable function
w such that R[w](t) = 0 for large t.

The modified Riccati equation associated with (1.2) is introduced explicitly in [7], but
it can be found implicitly already in some earlier papers, for example, [8–10]. Suppose that
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(1.2) is nonoscillatory (i.e., every its nontrivial solution is eventually positive or negative)
and let h be a positive differentiable function. Consider the substitution

v = hp(t)w −G(t), G(t) := r(t)h(t)Φ
(
h′(t)

)
, (2.2)

where w is a solution of (2.1). Then v is a solution of the modified Riccati equation

v′ + c̃(t) +
(
p − 1

)
r1−q(t)h−q(t)H(v,G(t)) = 0, (2.3)

with

H(v,G) := |v +G|q − qΦ−1(G)v − |G|q, (2.4)

Φ−1(s) = |s|q−2s being the inverse function of Φ, and

c̃(t) = h(t)
[(
r(t)Φ

(
h′(t)

))′ + c(t)Φ(h(t))
]
. (2.5)

Note that the function H(v,G) satisfies H(v,G) ≥ 0 for every v,G ∈ R and H(v,G) = 0 =
Hv(v,G) if and only if v = 0. Observe also that Riccati equation (2.1) is a special case of (2.3)
with h(t) ≡ 1, that is, G(t) ≡ 0.

In the investigation of perturbations of the half-linear Euler equation we will need the
following criteria for (non)existence of a proper solution of (2.3). Recall that a solution v of
(2.3) is called proper if it exists on some interval [T,∞). Nonexistence of a proper solution
of (2.3) is equivalent to oscillation of (1.2) since it eliminates (via the transformation w =
h−p(v +G)) proper solutions of (2.1). For more details concerning this method, as well as the
proof of the next two propositions, we refer to [11].

For the sake of the later application, we will write (2.3) in the form

v′ + C(t) +
(
p − 1

)
R−1(t)H(v,G(t)) = 0, (2.6)

with continuous functions C, R, and R(t) > 0.

Proposition 2.2. (i) If C(t) ≤ 0 for large t, then (2.6) possesses a (nonnegative) proper solution.
In the remaining part of the proposition suppose that

lim inf
t→∞

|G(t)| > 0, C(t) ≥ 0, for large t. (2.7)

Denote

R(t) = R−1(t)|G(t)|q−2, (2.8)

and suppose that

∫∞
R(t)dt = ∞,

∫∞
C(t)dt < ∞. (2.9)
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(ii) If

lim sup
t→∞

(∫ t

R(s)ds
)(∫∞

t

C(s)ds
)

<
1
2q

, (2.10)

then (2.6) has a proper solution.
(iii) If

lim inf
t→∞

(∫ t

R(s)ds
)(∫∞

t

C(s)ds
)

>
1
2q

, (2.11)

then (2.6) possesses no proper solution.

Proposition 2.3. Together with (2.6) consider the equation of the same form

v′ +D(t) +
(
p − 1

)
R−1(t)H(v,G(t)) = 0, (2.12)

with the function D satisfying D(t) ≥ C(t) for large t. If the (majorant) equation (2.12) has a proper
solution, then (2.6) has a proper solution as well.

Next, we recall basic properties of solutions of the “critical” half-linear Euler and
Riemann-Weber differential equations as presented, for example, in [4]. Consider the half-
linear Euler differential equation

(
Φ
(
x′))′ +

γ

tp
Φ(x) = 0. (2.13)

This equation is nonoscillatory if and only if γ ≤ γp = ((p − 1)/p)p. In the critical case
γ = γp, (2.13) has the solution h(t) = t(p−1)/p, and every linearly independent solution is
asymptotically equivalent (up to a multiplicative factor) to the function x(t) = t(p−1)/p log2/pt.
The Riemann-Weber half-linear differential equation

(
Φ
(
x′))′ +

[
γp

tp
+

μ

tp log2t

]

Φ(x) = 0 (2.14)

is nonoscillatory if and only if μ ≤ μp = (1/2)((p − 1)/p)p−1. In the critical case μ = μp,
(2.14) has the (so-called principal) solution which is asymptotically equivalent (up to a
multiplicative factor) to the function h(t) = t(p−1)/p log1/pt, and every linearly independent
solution is asymptotically equivalent to the function x(t) = t(p−1)/plog1/ptlog2/p(log t), see [4].

Finally, we recall the transformation method of the investigation of (1.9) which we
extend in a modified form to half-linear equations. The Sturm-Liouville differential equation

(
r(t)x′)′ + c(t)x = 0 (2.15)
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is the special case p = 2 in (1.2). The transformation x = f(t)y gives the identity (suppressing
the argument t)

f
[(
rx′)′ + cx

]
=
(
rf2y′

)′
+ f
[(
rf ′)′ + cf

]
y. (2.16)

In particular, if f(t)/= 0, then x is a solution of (2.15) if and only if y is a solution of the
equation

(
r(t)f2(t)y′

)′
+ f(t)

[(
r(t)f ′(t)

)′ + c(t)f(t)
]
y = 0. (2.17)

Let us emphasize at this moment that we have in disposal no half-linear version of
transformation identity (2.16).

Let us denote

r(t) = 1 +
n∑

j=1

αj

Log2j t
, c(t) =

1
4t2

+
n∑

j=1

βj

t2 Log2j t
. (2.18)

First we apply the transformation x =
√
ty to (1.9). Using (2.16) and the fact that f(t) =

√
t is

a solution of the critical Euler linear equation x′′ + (1/4t2)x = 0, we find that y is a solution of
the equation

(
tr(t)y′)′ +

⎡

⎣
n∑

j=1

βj − αj/4

tLog2j t

⎤

⎦y = 0. (2.19)

Now, we change the independent variable t 
→ et, the resulting equation is

(
r
(
et
)
y′)′ +

⎡

⎣
n∑

j=1

βj − αj/4

t2 Log2j−1t

⎤

⎦y = 0. (2.20)

Here we take Log0t = 1. Equation (2.20) is oscillatory by Kneser oscillation criterion if β1 −
α1/4 > 1/4 and nonoscillatory if β1 − α1/4 < 1/4. Indeed, since (r(et) ∼ 1 as t → ∞, we have
in (1.5) with p = 2

r
(
et
)
(∫ t

r−1(es)ds

)2

∼ t2, (2.21)

as t → ∞, and hence

lim
t→∞

r
(
et
)
(∫ t

r−1(es)ds

)2
⎡

⎣
∞∑

j=1

βj − αj/4

t2 Log2j−1t

⎤

⎦ =
β1 − α1

4
. (2.22)
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If β1 − α1/4 = 1/4, we can repeat the previous transformations and we obtain

(
r(e2(t))y′)′ +

[
β2 − α2/4

t2
+ · · · + βn − αn/4

t2 Log2n−2t

]

y = 0, (2.23)

here e2(t) := ee
t
. Now it should be clear how one can obtain the result of [5] concerning

oscillation of (1.9). We repeat the transformation of dependent variable y 
→ √
ty followed by

the change of independent variable t 
→ et as long as the condition βj −αj/4 = 1/4 is satisfied.
As we have emphasized above, we have no half-linear version of the linear

transformation identity (2.16). Consequently, the above procedure cannot be applied directly
to (1.2). However, as observed, for example, in [6, 11], the modified Riccati equation in the
linear case p = 2 is

v′ + h
[(
rh′)′ + ch

]
+

v2

rh2
= 0, (2.24)

which is just the Riccati equation associatedwith differential equation (2.17). Hence, modified
Riccati equation can be regarded, in a certain sense, as a half-linear substitution for the linear
transformation identity (2.16). This is just the idea which we develop in the next section and
apply it in the investigation of the perturbed Euler equation.

3. Transformation of Modified Riccati Equation

As a starting point of this section we consider the modified Riccati equation in the form

v′ + C(t) +
(
p − 1

)
R−1(t)H(v,G(t)) = 0, (3.1)

where the functionH is given by (2.4), the functions R, C are supposed to be continuous and
R(t) > 0. In this equation, we call the function C the absolute term (since this term does not
contain the unknown function v).

We consider the transformation

z = fp(t)v −U(t), (3.2)

with a positive differentiable function f and with a function U which we determine as
follows. We have (again suppressing the argument t, this argument we will suppress also
now and then in the next parts of the paper) the following:

z′ = p
f ′

f
(z +U)

+fp
{
−C − (p − 1

)
R−1

[
f−pq∣∣z +U + fpG

∣∣q

−qΦ−1(G)f−p(z +U) − |G|q
]}

−U′
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= −(p − 1
)
R−1f−q∣∣z +U + fpG

∣∣q + p

[
f ′

f
+ R−1Φ−1(G)

]
z

+ p

[
f ′

f
+ R−1Φ−1(G)

]
U − (p − 1

)
fpR−1|G|q −U′.

(3.3)

Next we determine the function U in such a way that the differential equation for z is again
an equation of the form (3.1) (in which H(0, G) = 0 = Hv(0, G)). Denote Ω := U + fpG. The
terms on the fourth line of the previous computation

−(p − 1
)
R−1f−q|z + Ω|q + p

[
f ′

f
+ R−1Φ−1(G)

]
z (3.4)

we will take as the first two terms in the function of the same form as H in (3.1).
Differentiating (3.4)with respect to z, substituting z = 0, and setting the obtained expression
equal to zero, we obtain

R−1f−qΦ−1(Ω) =
f ′

f
+ R−1Φ−1(G), (3.5)

hence

Ω = fΦ
(
Rf ′ + fΦ−1(G)

)
. (3.6)

Consequently, we obtain the transformed modified Riccati equation

z′ + C̃ +
(
p − 1

)
R−1f−q

[
|z + Ω|q − qΦ−1(Ω)z − |Ω|q

]
= 0, (3.7)

where

C̃ = − p

(
f ′

f
+ R−1Φ−1(G)

)
U + fpC − (p − 1

)
R−1fp|G|q

+
(
p − 1

)
R−1f−q|Ω|q +U′,

(3.8)

U = −fpG + fΦ
(
Rf ′ + fΦ−1(G)

)
. (3.9)

4. Perturbations of Euler Differential Equation

Now we apply the results of the previous section to the perturbed Euler half-linear
differential equation

⎡

⎣

⎛

⎝
n∑

j=0

αj

Log2j t

⎞

⎠Φ
(
x′)
⎤

⎦

′

+

⎛

⎝
n∑

j=0

βj

tp Log2j t

⎞

⎠Φ(x) = 0, (4.1)
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where α0 = 1, β0 = γp := ((p − 1)/p)p and

Logj t =
j∏

i=1

logit, logj t = log
(
logj−1t

)
, (4.2)

with Log0t = 1.
To simplify the next computations, we denote

r(t) =
n∑

j=0

αj

Log2j t
, c(t) =

n∑

j=0

βj

tp Log2j t
. (4.3)

The Riccati equation associated with (4.1) is

w′ + c(t) +
(
p − 1

)
r1−q(t)|w|q = 0. (4.4)

In order to better understand the next transformation procedure, we recommend the
reader to compare it with the linear transformation idea described at the end of the previous
section. The transformation

v1 = tp−1w −U1, (4.5)

withU1 specified later, transforms (4.4) into

v′ +
c̃1(t)
t

+
p − 1
t

r1−q(t)H(v,Ω1(t)) = 0, (4.6)

with c̃1/t given by (3.8), that is, c̃1(t)/t = C̃(t) with f(t) = t(p−1)/p, R = rq−1, and G = 0. This
means that c̃1/t = X1 + Y1 + Z1 +U′

1 + fpc, where

U1 = −fpG + fΦ
(
Rf ′ + fΦ−1(G)

)
= rΓp, Γp :=

(
p − 1
p

)p−1
,

X1 = −p
(
f ′

f
+ R−1Φ−1(G)

)
U1 = −(p − 1

)
t−1rΓp,

Y1 = −(p − 1
)
R−1fp|G|q = 0,

Ω1 = fΦ
(
Rf ′ + fΦ−1(G)

)
= rΓp,

Z1 =
(
p − 1

)
R−1f−q|Ω1|q =

(
p − 1

)
r1−qt−1rqγp =

(
p − 1

)
rt−1γp.

(4.7)

Hence, by a direct computation we obtain

c̃1(t)
t

=
n∑

j=1

Bj

tLog2j t
+O

(
t−1log−3t

)
, (4.8)



10 Abstract and Applied Analysis

where

Bj = βj − αjγp. (4.9)

In (4.6), with the above given c̃1(t)/t, we change the independent variable t 
→ et and
the resulting equation is

v′
1 + c1(t) +

(
p − 1

)
r1−q

(
et
)[∣∣v1 + Ω1

(
et
)∣∣q − qΦ−1(Ω1

(
et
))
v −Ωq

1

(
et
)]

= 0, (4.10)

with

c1(t) := c̃1
(
et
)
=

B1

t2
+

B2

t2 log2t
+ · · · + Bn

t2 Log2n−1t
+O

(
t−3
)
. (4.11)

As the next step, we consider the modified Riccati equation

v′
1 +

B1

t2
+

B2

t2 log2t
+ · · · + Bn

t2 Log2n−1t
+O

(
t−3
)
+
(
p − 1

)
r̃
1−q
1 (t)H

(
v, Ω̃1(t)

)
= 0, (4.12)

where now

r̃1(t) := r
(
et
)
= 1 +

α1

t2
+

α2

t2 log2t
+ · · · + αn

t2 Log2n−1t
,

Ω̃1(t) := Ω1
(
et
)
= r
(
et
)
Γp = r̃1(t)Γp.

(4.13)

We apply the transformation v2 = tv1 − U2, the quantity U2 is again determined in
such a way that we obtain a modified Riccati equation containing H type function for v2.
Hence, using the results from formula (3.8), with f(t) = t1/p, G(t) = Ω̃1(t) = r̃1(t)Γp, and
R−1(t) = r̃

1−q
1 (t), we have

Ω2 = fΦ
(
Rf ′ + fΦ−1

(
Ω̃1

))
= t1/pΦ

(
1
p
r̃
q−1
1 t(1/p)−1 + t1/pΦ−1(r̃1Γp

)
)

= r̃1tΓp

(

1 +
1

(
p − 1

)
t

)p−1
,

(4.14)

and using the binomial expansion

U2 = −fpΩ̃1 + Ω2 = −tr̃1Γp + r̃1tΓp

(

1 +
1

(
p − 1

)
t

)p−1

= r̃1Γp

[

1 +
p − 2

2
(
p − 1

)
t
+O

(
t−2
)]

.

(4.15)
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Futher,

X2 = −p
(
f ′

f
+ R−1Φ−1

(
Ω̃1

))
U2

= −p
(
1
p
t1/p−1t1/p + r̃

1−q
1 Φ−1(r̃1Γ)

)
r̃1Γ

(

1 +
p − 2

2
(
p − 1

)
t
+O

(
t−2
))

= r̃1Γ

(

−1
t
− p − 2
2
(
p − 1

)
t2

− (p − 1
) − p − 2

2t
+O

(
t−2
))

,

Y2 = −(p − 1
)
R−1fp

∣
∣
∣Ω̃1

∣
∣
∣
q
= −(p − 1

)
r̃
1−q
1 tr̃

q

1γ = −t(p − 1
)
γr̃1,

Z2 =
(
p − 1

)
R−1f−q|Ω2|q =

(
p − 1

)
r̃
1−q
1 t−q/pr̃q1γt

q

(

1 +
1

(
p − 1

)
t

)p

=
(
p − 1

)
γr̃1t + pγr̃1 +

p

2t
γ r̃1 +O

(
t−2
)
.

(4.16)

Hence, the absolute term in the resulting modified Riccati equation is

c̃2(t)
t

:= X2 + Y2 + Z2 +U′
2 + t

⎛

⎝
n∑

j=1

Bj

t2 Log2j−1

⎞

⎠

= r̃1

{
t
[−(p − 1

)
γ +

(
p − 1

)
γ
]
+
[−(p − 1

)
Γ + pγ

]

+
1
t

[
−Γ − p − 2

2
Γ +

p

2
γ

]
+O

(
t−2
)}

+
n∑

j=1

Bj

tLog2j−1t

= r̃1

[
−μp

t
+O

(
t−2
)]

+
B1

t
+ · · · + Bn

tLog2n−1t

=
1
t

(−μp + B1
)
+

B2

t log2t
+ · · · + Bn

tLog2n−1t
+O

(
t−2
)
.

(4.17)

Observe that theO term inU2 and later in otherUj can be differentiated because of its special
form. Hence, if B1 = μp, we obtain

v′
2 +

B2

t log2t
+ · · · + Bn

tLog2n−1t
+O

(
t−2
)
+
(
p − 1

)
r̃
q−1
1 (t)t1−qH(v2,Ω2) = 0. (4.18)

In this equation we apply again the change of independent variable t 
→ et and the resulting
equation is

v′
2 + c2(t) +

(
p − 1

)
r̃
1−q
1

(
et
)
e(2−q)tH

(
v2, Ω̃2

)
= 0 (4.19)
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with c2(t) = c̃1(et), Ω̃2(t) = Ω2(et), and

c2(t) =
B2

t2
+ · · · + Bn

t2 Log2n−2t
+O

(
e−t
)
. (4.20)

We use the notation

r̃2(t) = r̃1
(
et
)
et, . . . , r̃k(t) = r̃k−1

(
et
)
et, (4.21)

in the next computations. With this notation, we have

v′
2 +

B2

t2
+ · · · Bn

t2 Log2n−2t
+O

(
e−t
)
+
(
p − 1

)
r̃
1−q
2 etH

(
v2, Ω̃2

)
= 0. (4.22)

We apply the transformation v3 = tv2 −U3 to (4.22). We obtain

v′
3 +

c̃3(t)
t

+
(
p − 1

)
r̃
1−q
2 ett1−qH(v3,Ω3) = 0, (4.23)

where, with f(t) = t1/p and R−1(t) = r̃
1−q
2 et,

Ω3 = fΦ
(
Rf ′ + Φ−1

(
Ω̃2

))
= r̃2tΓp

(

1 +
1

(
p − 1

)
et

+
1

(
p − 1

)
tet

)p−1
, (4.24)

c̃3(t)
t

:= X3 + Y3 + Z3 +U′
3 + tc2(t), (4.25)

with

U3 = −tΩ̃2 + Ω3 = tr̃2Γp

⎧
⎨

⎩
−
(

1 +
1

(
p − 1

)
et

)p−1
+

(

1 +
1

(
p − 1

)
et

+
1

(
p − 1

)
tet

)p−1⎫⎬

⎭

= tr̃2Γp

{

−
(

1 +
1
et

+
p − 2

2
(
p − 1

)
e2t

+O
(
e−3t

))

+1 +
1
et

+
1
tet

+
p − 2

2
(
p − 1

)
e2t

(
1 +

1
t

)2

+O
(
e−3t

)}

= r̃2Γp

{
1
et

+
p − 2

(
p − 1

)
e2t

+
p − 2

2
(
p − 1

)
te2t

+O
(
te−3t

)}

,
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X3 = −p
(
f ′

f
+ R−1Φ−1

(
Ω̃2

))
U3 = −

[
1
t
+
(
p − 1

)
et
(

1 +
1

(
p − 1

)
et

)]

r̃2Γp

×
[
1
et

+
p − 2

(
p − 1

)
e2t

+
p − 2

2
(
p − 1

)
te2t

+O
(
te−3t

)]

= −r̃2Γp
[

1
tet

+
p − 2

(
p − 1

)
te2t

+
p − 2

2
(
p − 1

)
t2e2t

+
(
p − 1

)
+
p − 2
et

+
p − 2
2tet

+
1
et

+
p − 2

(
p − 1

)
e2t

+
p − 2

2
(
p − 1

)
te2t

+O
(
te−2t

)]

= −r̃2Γp
[
(
p − 1

)
+
p − 1
et

+
p

2tet
+O

(
te−2t

)]
,

Y3 = −(p − 1
)
r̃
1−q
2 ett1−qΩ̃q

2

= −(p − 1
)
r̃
1−q
2 ett1−qr̃q2Γ

q
pt

q

[

1 +
1

(
p − 1

)
et

]p

= −(p − 1
)
γpr̃2e

tt

[

1 +
p

(
p − 1

)
et

+
p

2
(
p − 1

)
e2t

+O
(
e−2t

)]

= r̃2

[
−(p − 1

)
γpte

t − pγpt −
p

2
γp

t

et
+O

(
te−2t

)]
,

Z3 =
(
p − 1

)
r̃
1−q
2 ett1−qΩq

3

=
(
p − 1

)
r̃
1−q
2 ett1−qtqr̃q2γp

[

1 +
1

(
p − 1

)
et

+
1

(
p − 1

)
tet

]p

=
(
p − 1

)
tr̃2γpe

t

[

1 +
p

(
p − 1

)
et

+
p

(
p − 1

)
tet

+
p

2
(
p − 1

)
e2t

(
1 +

1
t

)2

+O
(
e−3t

)]

= r̃2

[
(
p − 1

)
γpe

tt + pγpt + pγp +
pt

2et
γp + pγp

1
et

+
p

2
γp

1
tet

+O
(
te−2t

)]
.

(4.26)

Substituting into (4.25) the above computed quantities, we have

c̃3(t)
t

=
B2 − μp

t
+

B3

t log2t
+ · · · + Bn

tLog2n−2t
+O

(
te−t

)
. (4.27)

Consequently, if B2 = μp = (1/2)((p − 1)/p)p−1, we obtain

v′
3 +

n∑

j=3

Bj

tLog2j−2t
+O

(
te−t

)
+
(
p − 1

)
r̃
1−q
2 (t)ett1−qH(v3,Ω3(t)) = 0. (4.28)
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In this equation, the change of independent variable t 
→ et results

v′
3 + c3(t) +

(
p − 1

)
r̃
1−q
3 (t)E2(t)H

(
v3, Ω̃3(t)

)
= 0, c3(t) := c̃3

(
et
)
. (4.29)

Here, and also in the sequel, we use the notation

e1(t) := et, . . . , en(t) := en−1
(
et
)
, En(t) := en(t) · · · e1(t), (4.30)

where n is the integer in (4.1).
Now we are already in a position to make the induction step in transformations of

modified Riccati equations. We suppose that Bj = μp for j = 1, . . . , k−2 for some k ∈ {3, . . . , n},
so we have

v′
k−1 + ck−1(t) +

(
p − 1

)
r̃
1−q
k−1(t)Ek−2(t)H

(
vk−1, Ω̃k−1(t)

)
= 0, (4.31)

with

Ω̃k−1(t) = Γpr̃k−1(t)
(
1 +

1 + E1(t) + · · · + Ek−3(t)
Ek−2(t)

)p−1
, (4.32)

ck−1(t) =
Bk−1
t2

+ · · · + Bn

t2 Log2n−k+1t
+O

(
tE3

k−3(t)
Ek−2(t)

)

, (4.33)

where r̃k is given by (4.21). We will also use the notation

rk(t) := rk−1
(
et
)
, r1(t) := r̃1(t) = r

(
et
)
. (4.34)

Then r̃k(t) = rk(t)Ek−1(t) and rk(t) = r(ek(t))with r given by (4.3).
We put vk = tvk−1 −Uk. We have

Uk = −tΩ̃k−1 + Ωk

= tr̃k−1Γp

⎧
⎨

⎩
−
[

1 +
1 + · · · + Ek−3(
p − 1

)
Ek−2

]p−1
+

[

1 +
1 + · · · + Ek−3(
p − 1

)
Ek−2

+
1

(
p − 1

)
tEk−2

]p−1⎫⎬

⎭

= rk−1Γp

[

1 +

(
p − 2

)
(1 + · · · + Ek−3)

(
p − 1

)
Ek−2

+
p − 2

2
(
p − 1

)
tEk−2

+O

(
tE3

k−3
E2
k−2

)]

,

(4.35)
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and with f(t) = t1/p, R−1 = r̃
1−q
k−1Ek−2 and Ω̃k−1 given by (4.32)

Xk = −p
(
f ′

f
+ R−1Φ−1

(
Ω̃k−1

))
Uk

= −r̃k−1Γp
[
1
t
+
(
p − 1

)
Ek−2 + (1 + · · · + Ek−3)

]

×
[

1
Ek−2

+

(
p − 2

)
(1 + · · · + Ek−3)

(
p − 1

)
E2
k−2

+
p − 2

2
(
p − 1

)
tE2

k−2
+O

(
tE3

k−3
E2
k−2

)]

,

=−rk−1Γp
[
(
p−1)Ek−2+

(
p−1)(1+· · ·+Ek−3)+

p

2t
+

(
p−2)(1+· · ·+Ek−3)2
(
p − 1

)
Ek−2

+O

(
tE3

k−3
Ek−2

)]

,

Yk = −(p − 1
)
R−1fpΩ̃q

k−1 = −(p − 1
)
r̃
1−q
k−1Ek−2tr̃

q

k−1γp

(

1 +
1 + · · · + Ek−3(
p − 1

)
Ek−2

)p

=−rk−1
[
(
p−1)γptE2

k−2−pγptEk−2(1+· · ·+Ek−3)+
pγp

2
t(1+· · ·+Ek−3)2+O

(
tE3

k−3
Ek−2

)]

,

Zk =
(
p − 1

)
R−1f−qΩ̃q

k−1 =
(
p − 1

)
r̃k−1Ek−2tγp

[

1 +
(1 + · · · + Ek−3)(

p − 1
)
Ek−2

+
1

(
p − 1

)
tEk−2

]p

= rk−1

[
(
p − 1

)
γptE

2
k−2 + pγptEk−2(1 + · · · + Ek−3) + pγpEk−2

+
pγp

2
t(1 + · · · + Ek−3)2 + pγp(1 + · · · + Ek−3) +

pγp

2t
+O

(
tE3

k−3
Ek−2

)]

.

(4.36)

Then, using that (p − 1)Γp = pγp and

p

2
(
γp − Γp

)
= −1

2

(
p − 1
p

)p−1
= −μp, (4.37)

we have

Xk + Yk + Zk = −μp

t
+O

(
tE3

k−3
Ek−2

)

. (4.38)

The last formula is the result of a direct computation where one needs to show that all terms
with the faster growth than t−1 vanish. Further, again by a direct computation

U′
k =

{

rk−1Γp

[

1 +

(
p − 2

)
(1 + · · · + Ek−3)

(
p − 1

)
Ek−2

+
p − 2

2
(
p − 1

)
tEk−2

+O

(
tE3

k−3
E2
k−2

)]}′

= O

(
tE2

k−3
Ek−2

)

.

(4.39)
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Consequently, in the resulting modified Riccati equation for vk

v′
k +

c̃k(t)
t

+
(
p − 1

)
R−1(t)H(vk,Ωk(t)) = 0, (4.40)

with R−1(t) = r̃−1k−1(t)Ek−2(t)t1−q we have

c̃k(t)
t

:= Xk + Yk + Zk +U′
k + tck−1 =

Bk−1 − μp

t
+

n∑

j=k

Bj

tLog2j+1−k
+O

(
tE3

k−3
Ek−2

)

, (4.41)

as t → ∞.
Now we can summarize the previous computations as follows.

Theorem 4.1. Suppose that there exists k ∈ {2, . . . , n} such that

βj − γpαj = μp, μp =
1
2

(
p − 1
p

)p−1
, j = 1, . . . , k − 1, (4.42)

and βk − γpαk /= 0. Then (1.11) is oscillatory if βk − γpαk > μp and nonoscillatory if βk − γpαk < μp. If
(4.42) holds for all j = 1, . . . , n, (1.11) is nonoscillatory.

Proof. We apply Proposition 2.2 to themodified Riccati equation (4.40) for vk. In this equation,
with the notation from Proposition 2.2,

R = R−1|Ωk|q−2 ∼ tq−2r̃q−2k−1Γ
q−2
p r̃

1−q
k−1Ek−2t1−q

= rk−1t−1qp−2 ∼ qp−2t−1,
(4.43)

hence
∫ t R(s)ds ∼ qp−2 log t and

∫∞

t

ck(s)ds ∼ Bk

log t
, Bk = βk − αkγp. (4.44)

Here (and also earlier), f ∼ g for a pair of functions f , g means limt→∞(f(t)/g(t)) = 1.
Consequently, if Bkq

p−2 > 1/(2q), what happens if and only if Bk > μp, modified Riccati
equation (4.40) for vk has no proper solution in view of Proposition 2.2 (iii). Now, via the
“back” transformations

vj−1 = −Uj +
vj

t
, j = 2, . . . , k, w = −U1 + t(1−p)/pv1, (4.45)

the same holds for the Riccati equation associated with (1.11) and hence this equation is
oscillatory by Proposition 2.1.

If Bk < μp, nonoscillation of (1.11) follows from parts (i) (when Bk < 0) and (ii) (when
0 ≤ Bk < μp) of Proposition 2.2 since the existence of a proper solution of the modified
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Riccati equation for vk+1 implies the existence of a proper solution for the Riccati equation
(4.4) associated with (1.11), hence this equation is nonoscillatory by Proposition 2.1.

Finally, if (4.42) holds for all j = 1, . . . , n, then the absolute term in the modified Riccati
equation for vn+1 is d(t) := c̃n+1(t)/t = O(tE3

n−2(t)/En−1(t)) and replacing d by its nonnegative
part d+ = max{0, d}, we get a majorant of the modified Riccati equation for vn+1 (in the sense
of Proposition 2.3). The function d+ satisfies the same asymptotic estimate as d. To estimate
the integral

∫∞
t d+(s)ds we proceed as follows. We have, via the substitution en−2(s) = u,

En−2(s) ds = du, using the inequality logj u ≤ u, and followed by integration by parts,

∫∞

t

sE3
n−2(s)

En−1(s)
ds =

∫∞

t

s(e1(s) · · · en−2(s))3
en−1(s) · · · e1(t) ds

=
∫∞

en−2(t)

logn−2 ulogn−3 u · · · logu · u
eu

du

≤
∫∞

en−2(u)

un−1

eu
du

∼ −un−1e−u
∣∣∣
∞

en−2(u)
=

en−1n−2(u)
en−1(u)

.

(4.46)

Consequently,

lim
t→∞

log t
∫∞

t

d+(s)ds = 0, (4.47)

hence the modified Riccati equation with for vn+1 with d+ instead of c̃n+1(t)/t possesses a
proper solution by Proposition 2.2 and, by Proposition 2.3, the Riccati equation for vn+1 has
the same property. This implies that (1.11) is nonoscillatory using the same argument as in
the previous part of the proof.

5. Remarks and Comments

(i) In the previous section, we applied successively the transformation vk = tvk−1 − Uk

to the modified Riccati equation, followed by the change of independent variable t 
→ et.
This change of the independent variable was motivated by the linear case and also by
the fact that upon this transformation the modified Riccati equation simplifies. Without
this change of independent variable, the transformation procedure can be “reformulated”
as follows. As shown at the beginning of the previous section, the transformation (2.2),
that is, v = hp(t)w − G(t), G(t) = r(t)h(t)Φ(h′(t)), transforms the Riccati equation (2.1)
associated with (1.2) into the modified Riccati equation (2.3). The transformation (3.2), that
is, z = fp(t)v − U(t), transforms (2.3) into an equation of the same form, with the function
C̃ given by a relatively complicated formula (3.8). The composition of these transformations
gives

z =
(
f(t)h(t)

)p
w − (fp(t)G(t) +U(t)

)
, (5.1)



18 Abstract and Applied Analysis

and by a direct computation, using (3.9), we have fpG +U = rfhΦ((fh)′). So, the resulting
modified Riccati equation for z is just the modified Riccati equation resulting from (2.1) via
(2.2) with h replaced by fh. In this equation, the function c̃ is given by (2.5) with h replaced
by fh, that is, c̃ = fh[(rΦ((fh)′)′ + cΦ(fh)].

Now, consider the function

h(t) = t(p−1)/p
(
Lognt

)1/p = t(p−1)/p log1/pt · · · log1/pn t. (5.2)

In view of the previous consideration, the application of transformation (2.2) with this h
can be decomposed into the successive transformations v1 = tp−1w − G, vj = logj−1tvj − Uj ,
j = 2, . . . , k. Hence, the successive transformations treated in the previous section can be
replaced by just one transformation, with the transformation function (5.2).

This idea has been used in [3] in the case that n = 1 in (1.11) and in (5.2). However,
as shown in the computations of that paper (where also substantially the results of [12] have
been used), this method is technically complicated even in this relatively simple case. This
is also the reason why we developed the method of successive transformations of modified
Riccati equation presented in the previous section.

(ii) The reason why the perturbation terms in (1.11) are just αj/Log2j t in the differential

term and βj/t
pLog2j t byΦ(x) is motivated by the fact that in this form they “match together”.

More precisely if we replace some of them by a term with a faster asymptotic growth, then
this term “overrules” the remaining terms and the equation becomes (non)oscillatory for any
positive value of the corresponding parameter αj or βj . On the other hand, functions with
slower asymptotic growth have no influence on the oscillatory behavior. These considerations
are closely related to concepts of strong (non)oscillation of half-linear equations as treated for
example in [13].

(iii) In [6], and partially also in [11], we have considered

[
(r(t) + λr̃(t))Φ

(
x′)]′ +

[
c(t) + μc̃(t)

]
Φ(x) = 0 (5.3)

as a perturbation of (1.2). We found assumptions of the functions r, r̃, c, c̃ (which are satisfied
in case of the perturbed Euler equation) which guarantee that there exists a constant γ such
that (5.3) is oscillatory if μ − λ > γ and nonoscillatory if μ − λ < γ . The limiting case μ −
λ = γ remained undecided, mainly because of technical computational problems. In view of
perturbations of Euler equation with n = 1 r(t) = 1, r̃(t) = γp log

−2t, c(t) = t−p, and c̃(t) =
t−p log−2t (then γ = μp) we hope to prove that (5.3) is nonoscillatory also in the limiting case
μ − λ = γ . We also hope that the method of transformations of modified Riccati equation
elaborated in this paper can be applied to treat the “multiparametric” general case, not only
for perturbations of Euler equation.
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[1] O. Došlý and P. Řehák,Half-Linear Differential Equations, vol. 202 of North-Holland Mathematics Studies,
Elsevier Science, Amsterdam, The Netherlands, 2005.

[2] P. Hartman, Ordinary Differential Equations, John Wiley & Sons, New York, NY, USA, 1964.
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