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Let I be an open interval. We describe the general structure of groups of continuous self functions
on I which are disjoint, that is, the graphs of any two distinct elements of them do not intersect.
Initially the class of all disjoint groups of continuous functions is divided in three subclasses: cyclic
groups, groups the limit points of their orbits are Cantor-like sets, and finally those the limit points
of their orbits are the whole interval I. We will show that (1) each group of the second type is
conjugate, via a specific homeomorphism, to a piecewise linear group of the same type; (2) each
group of the third type is a subgroup of a continuous disjoint iteration group. We conclude the
Zdun’s result on the structure of disjoint iteration groups of continuous functions as special case
of our results.

1. Introduction

The problem of characterizing disjoint groups of continuous functions appears in connection
with the issues, such as, describing the solution of the simultaneous systems of Abel’s
functional equations (mainly in [1–3]) and systems of differential equations with several
deviations (see [1, 4]). In a recent paper on the simultaneous systems of Abel’s equations
([5]) this problem has been paid a new attention. Zdun in [6] has investigated the structure
of disjoint iteration groups of homeomorphism on an open interval, that is, disjoint groups
of the form G = {ft : t ∈ R} such that fs ◦ ft = fs+t for all reals s and t and each ft is a
homeomorphism of an open interval onto itself. This problem was studies earlier by Domsta
([7, Section 4.2]) but not so general. In the present paper we characterize not only disjoint
iteration groups but all the disjoint groups of continuous functions on an open interval in a
more general setting.

Throughout this paper I is an open interval in the real line; the topology of it is
considered to be the subspace topology it inherits from R. We say that a subset L of I is a
Cantor-like set fitted in I if L is a nowhere dense set, L′ = L, and L has no lower or upper
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bound in I (here L′ is the set of all limit points of L in I). We denote by L∗
−, L

∗
+, L

∗, and L∗∗ to
the set of all left sided, right sided, one sided, and two sided limit points of L, respectively.
Denote by Bi(I) the group of all increasing bijections from I onto itself, with composition
of functions as its binary operation. There exists a natural ordering relation on the set F(I)
of all self mappings as follows: given two functions f and g in F(I) define f < g provided
f /= g and f(x) ≤ g(x) for all x ∈ I. Define f ≤ g if f < g or f = g. With this, (F(I), <) is a
partial ordering set. A subset of F(I) is said to be disjoint if the graphs of any two distinct
elements of it do not intersect. If G is a disjoint group of continuous functions in F(I), then
G is a subgroup of Bi(I) and furthermore, (G, ◦, <) is an Archimedean ordered group (see [8,
Proposition 3]). Hence according to Hölder’s Theorem there exists an additive subgroup A
of R such that (G, ◦, <) is isomorphic to (A,+, <).

The following two theorems, which have been proved in [5], give an introductory
characterization of disjoint subgroups of Bi(I).

Theorem 1.1. Let G be a disjoint subgroup of Bi(I). Then

(a) for all x, y in I one has G(x)′ = G(y)′ where G(x) := {f(x) : f ∈ G} (we denote this set
by L(G));

(b) for all f ∈ G, f(L(G)) = L(G);
(c) L(G)′ = L(G).

(d) the set L(G) is either an empty set or a Cantor-like set fitted in I or L(G) = I.

Theorem 1.2. Let G be a disjoint subgroup of Bi(I). Then G is a cyclic group if and only if L(G) = ∅.

By virtue of these theorems one divides disjoint subgroups of Bi(I) in three classes:
The first class consists of the cyclic subgroups; the second one consists of the subgroups G of
Bi(I) for which L(G) is a Cantor-like set fitted in I. one names such a group a spoiled disjoint
group. Finally the third class consists of the subgroups G of Bi(I) for which L(G) = I. Such a
group is called a dense disjoint group. One calls a subgroup G of Bi(I)complete if G(x) = I for
all x ∈ I.

One uses as a tool classes of functions φ : I → R that occur as continuous solutions of
simultaneous systems of Abel equations

φ
(
f(x)

)
= φ(x) + λ

(
f
)
, f ∈ S, x ∈ I, (1.1)

where S is a nonempty subset of Bi(I) the group generated by which is noncyclic and disjoint
and λ : S → R is a given map. In view of Theorem 6 of [5] either φ is a homeomorphism or
a Cantor function which lives on L(G) in the following sense.

Definition 1.3. Given a Cantor-like set L fitted in I we say that φ : I → R is a Cantor function
which lives on L if

(i) φ is monotone;

(ii) φ(L) = R;

(iii) φ is strictly monotone on L∗∗.

Such a function φ is constant on the components of I − L∗∗, φ(L∗∗)
⋂
φ(I − L∗∗) = ∅ and

φ is continuous.
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Given a function φ : I → R, we say that a function f : I → I is in the realm of φ if
there exists a real number α such that φ(f(x)) = φ(x) + α for all x ∈ I. Clearly this α is unique
and we call it the index of f with respect to φ and denote it by indφ(f). Denote by Realm(φ) the
set of all functions f : I → I that are in the realm of φ. We say that two functions φ : I → R

and ψ : I → R are associate if ψ = rφ + s for some real constants r /= 0 and s. It is easy to
see that the associativity is an equivalence relation on the set of all functions from I into R.
Moreover, every two associate functions have the same realms. In particular if φ and ψ are
associate and φ is a Cantor function which lives on L (or a homeomorphism), then ψ is also a
Cantor function which lives on L (or a homeomorphism). By these notation the following is
an immediate consequence of Theorem 10 in [5].

Theorem 1.4. Let G be a disjoint subgroup of Bi(I). Then G ⊆ Realm(φ) for some continuous
φ : I → R. If G is spoiled, then φ is a Cantor function which lives on L(G). If G is dense, then φ is a
homeomorphism.

Theorem 12 of [5] can be restate as follows.

Theorem 1.5. Let G be a noncyclic disjoint subgroup of Bi(I). If φ1 : I → R and φ2 : I → R

are two continuous functions such that G ⊆ Realm(φ1) and G ⊆ Realm(φ2), then φ1 and φ2 are
associate. In particular Realm(φ1) = Realm(φ2).

In Section 3we deal with the properties of the elements of Realm(φ)when φ is a Cantor
function.

2. Complete and Dense Disjoint Groups

Theorems 2.1 and 2.5 below describe the structure of complete disjoint subgroups of Bi(I).
While Theorem 2.3 describes dense disjoint groups.

Theorem 2.1. If φ : I → R is a homeomorphism, then Realm(φ) is a complete disjoint subgroup of
Bi(I). Moreover, if φ is increasing, indφ is an isomorphism of (Realm(φ), ◦, <) onto (R,+, <).

Conversely, to every complete disjoint subgroupG ofBi(I) there corresponds a homeomorphism
φ : I → R such that G = Realm(φ).

Proof. For the first part of the theorem (whose proof is straightforward) see [8]. So we prove
the converse part. Let G be a complete disjoint subgroup of Bi(I). By Theorem 1.4 one has
G ⊆ Realm(φ) for some homeomorphism φ : I → R. To show that Realm(φ) ⊆ G let f ∈
Realm(φ). Pick a point a in I. Then f(a) ∈ G(a) because G(a) = I. It follows that f(a) = g(a)
for some g ∈ G. But since G ⊆ Realm(φ), one has g ∈ Realm(φ). By the first part of the
theorem Realm(φ) is disjoint; so that f = g. Hence f ∈ G. And we are done.

Our next goal is to present a description of dense disjoint subgroups of Bi(I). But first
a proposition.

Proposition 2.2. LetG andH be two disjoint subgroups of Bi(I) andH ⊆ G. IfH is noncyclic, then
L(H) = L(G).

Proof. The proof we present is extracted from the proof of Theorem 3 of the Zdun’s paper [9]
with a little modification.
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Let x ∈ I. ThenH(x) ⊆ G(x). So that L(H) = H(x)′ ⊆ G(x)′ = L(G). On the other hand
by noticing that G is Abelian, for every f ∈ G

f(H(x)) =
{
f
(
g(x)

)
: g ∈ H}

=
{
g
(
f(x)

)
: g ∈ H}

= H
(
f(x)

)
. (2.1)

Since f is a homeomorphism,

f(L(H)) = f
(
H(x)′

)
=
(
f(H(x))

)′ =
(
H
(
f(x)

))′ = L(H). (2.2)

Fix an a in L(H). The by the preceding relation one has f(a) ∈ L(H) for all f ∈ G. Thus
G(a) ⊆ L(H). So L(G) = G(a)′ ⊆ L(H). Therefore, L(H) = L(G) and the proof is complete.

This proposition yields that if H is a noncyclic subgroup of the disjoint group G ⊆
Bi(I), then either both G andH are spoiled or they are both dense.

Theorem 2.3. Let G be a noncyclic disjoint subgroup of Bi(I). Then G is a dense group if and only if
G is embeddable in a complete disjoint subgroup of Bi(I). Moreover, this complete group is unique.

Proof. IfG is dense, then by Theorem 1.4,G ⊆ Realm(φ) for some homeomorphism φ : I → R.
By Theorem 2.1, Realm(φ) is complete. Conversely, suppose that G ⊆ P for some complete
disjoint subgroup P of Bi(I). By Proposition 2.2 one has L(G) = L(P) = I. Hence, G is dense.

The uniqueness part of the theorem follows from Theorems 1.5 and 2.1.

The following proposition will be used now and later.

Proposition 2.4. Let G be a spoiled disjoint subgroup of Bi(I), L := L(G) and f ∈ G. Then f(L∗
−) =

L∗
−, f(L

∗
+) = L

∗
+ and f(L∗∗) = L∗∗. Moreover, G is countable.

Proof. The first part of the proposition is in fact Proposition 5 of [5]. To prove the countability
of G pick a point a in L∗

−. Then G(a) ⊆ L∗
−. This implies that G(a) is countable since L∗

− is so.
On the other hand, G and G(a) have the same cardinality because G is disjoint. Therefore, G
is countable.

Theorem 2.5. Let G be a disjoint subgroup of Bi(I). Then G is complete if and only if (G, ◦, <) is
isomorphic to (R,+, <).

Proof. IfG is complete, then by Theorem 2.1 one hasG = Realm(φ) for some homeomorphism
φ : I → R. Since associate functions have the same realms, one can assume that φ is
increasing. Therefore indφ is an isomorphism of (G, ◦, <) onto (R,+, <).

Conversely, suppose that (G, ◦, <) is isomorphic to (R,+, <). Then G is uncountable.
Since every spoiled group is countable, G must be dense. Then by Theorem 2.3 there exists
a complete disjoint subgroup P of Bi(I) containing G. Since by the first part of the theorem
P is isomorphic to the additive group R, G is isomorphic to an additive subgroup of R via
the same isomorphism. But R cannot be isomorphic to a strict subgroup of itself. Therefore,
G = P and G is complete.
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3. The Realm of Cantor Functions

Through this section L is a Cantor-like set fitted in I and φ : I → R is an increasing Cantor
function which lives on L.

Proposition 3.1. (Realm(φ), ◦) is a monoid and indφ is a monoid homomorphism from
(Realm(φ), ◦) onto (R,+).

If f is an invertible function in Realm(φ), then f−1 ∈ Realm(φ) and indφ(f−1) = −indφ(f).
If f and g are in Realm(φ) and f(a) ≤ g(a) for some a ∈ I, then indφ(f) ≤ indφ(g).

Proof. It is clear that i, the identity functions on I, is in Realm(φ) and indφ(i) = 0. Let f and g
be in Realm(φ). Then for all x ∈ I

φ
(
f ◦ g(x)) = φ

(
f
(
g(x)

))
= φ

(
g(x)

)
+ indφ

(
f
)
= φ(x) + indφ

(
g
)
+ indφ

(
f
)
. (3.1)

This means that f ◦g ∈ Realm(φ) and indφ(f ◦g) = indφ(f)+indφ(g). That is, indφ : Realm(φ)
→ R is a monoid homomorphism.

To show that indφ : Realm(φ) → R is surjective let α ∈ R. Define f : I → I by

f(x) := minφ−1({φ(x) + α
})
. (3.2)

Note that for each t ∈ R, the set φ−1({t}) is either a component of I − L∗∗ (which is a closed
interval) or a singleton {x} where x ∈ L∗∗. So the definition of f is meaningful. Since f(x) ∈
φ−1({φ(x) + α}) for every x ∈ R, one has φ(f(x)) = φ(x) + α. Therefore, f ∈ Realm(φ) and
indφ(f) = α. This proves (a).

For every x ∈ I one has

φ(x) = φ
(
f
(
f−1(x)

))
= φ

(
f−1(x)

)
+ indφ

(
f
)
, (3.3)

thus

φ
(
f−1(x)

)
= φ(x) − indφ

(
f
)
. (3.4)

This means that f−1 ∈ Realm(φ) and indφ(f−1) = −indφ(f).
Let f and g be in Realm(φ) and f(a) ≤ g(a) for some a ∈ I. Then

φ(a) + indφ
(
f
)
= φ

(
f(a)

) ≤ φ(g(a)) = φ(a) + indφ
(
g
)
, (3.5)

since φ is increasing. Therefore, indφ(f) ≤ indφ(g).

For each x ∈ I put [x] := {x} provided x ∈ L∗∗ and let [x] be the component of
I − L∗∗ containing x provided x ∈ I − L∗∗. Set Î := {[x] : x ∈ I}, C := {[x] : x ∈ I − L∗∗}.
The following relation makes Î into a linearly ordered set: given two elements J and K of Î
define J < K whenever x < y for all x ∈ J , y ∈ K. The topology of Î is understood to be
the order topology. An elementary analysis shows that (C, <) is a countable dense linearly
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ordered structure with no minimum or maximum; in other words (C, <) is of order type η
(see [10, Chapter 8, Exercises 17 and 18]). In particular C is dense in Î. Since Q is also of order
type η, there exists an order preserving bijection θ of (C, <) onto (Q, <). The set C is dense in Î
and Q is dense in R; therefore θ extends uniquely to an order preserving bijection θ of Î onto
R. This shows that Î is a linear continuum.

By this notation one can restate the properties of a Cantor function as follows: If ψ :
I → R is an increasing Cantor function which lives on L, then

(i) ψ is constant on every J ∈ Î;
(ii) if x and y are in I, then [x] < [y] if and only if ψ(x) < ψ(y).

We define the canonical map π : I → Î by π(x) = [x]. Since π is an increasing
surjection and both I and Î are linear continuums, π is continuous.

The following illustrates general properties of the elements of Realm(φ) in the
language of the preceding notation.

Proposition 3.2. Let f ∈ Realm(φ). Then

(a) if x and y are in I and [x] < [y], then [f(x)] < [f(y)];

(b) for every x ∈ I one has f([x]) ⊆ [f(x)];

(c) for each K ∈ Î there exists a J ∈ Î such that f(J) ⊆ K.

Proof. Put α := indφ(f).

(a) From [x] < [y] we conclude that φ(x) < φ(y). Then

φ
(
f(x)

)
= φ(x) + α < φ

(
y
)
+ α = φ

(
f
(
y
))
. (3.6)

Therefore, [f(x)] < [f(y)].

(b) Let y ∈ [x]. Then φ(y) = φ(x). Thus φ(f(y)) = φ(y) + α = φ(x) + α = φ(f(x)). This
implies that f(y) ∈ [f(x)].

(c) Part (c) is equivalent to saying that for every y ∈ I there exists an x ∈ I such that
f([x]) ⊆ [y]. To prove this equivalent statement suppose that y ∈ I. Put t = φ(y)−α.
Since φ(I) = R there exists an x ∈ I such that φ(x) = t = φ(y) − α. thus φ(f(x)) =
φ(x) + α = φ(y). So [f(x)] = [y]. Now by part (b)

f([x]) ⊆ [
f(x)

]
=
[
y
]
. (3.7)

A particular subset of Realm(φ) is of special importance for us since it is useful for
constructing spoiled disjoint groups. To indicate it we need the following.

Proposition 3.3. Let f ∈ Realm(φ). The following are equivalent.

(a) φ(L∗) + indφ(f) = φ(L∗).

(b) φ(L∗∗) + indφ(f) = φ(L∗∗).

(c) f(L∗∗) = L∗∗.
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(d) f maps each component of I − L∗∗ into another one; moreover for every K ∈ C there exists
J ∈ C such that f(J) ⊆ K.

This proposition suggests some notation:

ρ
(
φ
)
:=

{
f ∈ Realm

(
φ
)
: f(L∗∗) = L∗∗},

Ind
(
φ
)
:=

{
indφ

(
f
)
: f ∈ ρ(φ)} = indφ

(
ρ
(
φ
))
.

(3.8)

The equivalency of parts (a) and (c) of Proposition 3.3 yields the following.

Corollary 3.4. With φ and L as above one has

Ind
(
φ
)
=
{
α ∈ R : α + φ(L∗) = φ(L∗)

}
. (3.9)

Proof. Let α ∈ Ind(φ). Then α = indφ(f) for some f ∈ ρ(φ). By Proposition 3.3 we have

α + φ(L∗) = indφ
(
f
)
+ φ(L∗) = φ(L∗). (3.10)

Conversely, suppose that α is a real number such that α+φ(L∗) = φ(L∗). By Proposition 3.1(a)
there exists an f ∈ Realm(φ) such that α = indφ(f). Proposition 3.3 and the definition of ρ(φ)
imply that f ∈ ρ(φ). Therefore α ∈ Ind(φ).

This completes the proof.

In general if G is an Abelian group and E a nonempty subset of G, we denote

LasG(E) := {x ∈ G : xE = E}. (3.11)

By this notation Corollary 3.4 is restated as Ind(φ) = LasR(φ(L∗)). It turns out that LasG(E) is
a subgroup ofG; we name it the subgroup laterally generated by E. In fact we have the following.

Proposition 3.5. Let G be an Abelian group and E be a nonempty subset of G. Then

(a) LasG(E) is a subgroup of G.

(b) E is a subgroup of G if and only if LasG(E) = E.

(c) LasG(E) = LasG(Ec) (where Ec = G − E).

Proof. Clearly e ∈ LasG(E). If x and y are in LasG(E), then

(
xy

)
E = x

(
yE

)
= xE = E. (3.12)

Thus, xy ∈ LasG(E). Moreover, from xE = E one concludes E = x−1E. Hence x−1 ∈ LasG(E).
This proves (a).

If LasG(E) = E, then by (a), E is a subgroup of G. Conversely, suppose that E is a
subgroup of G. To show that LasG(E) ⊆ E let x ∈ LasG(E). Since e ∈ E one has xe ∈ xE. So
that x ∈ E.To show that E ⊆ LasG(E) let x ∈ E. Since E is a group, xE = E. Hence x ∈ LasG(E).
This proves (b).
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First we show that LasG(E) ⊆ LasG(Ec). Let a ∈ LasG(E). Then aE = E. We want to
show that aEc ⊆ Ec. To do this let x ∈ Ec. If ax was in E, a−1(ax) would be in a−1E. Since
a−1 ∈ LasG(E), a−1E = E. Hence x would be in E which is a contradiction. So we must have
ax ∈ Ec. This shows that aEc ⊆ Ec.

To show that Ec ⊆ aEc let a ∈ LasG(E). Since a−1 ∈ LasG(E), one has a−1Ec ⊆ Ec by
applying the preceding discussion on a−1 in place of a. Multiplying both sides of this relation
by a it follows that Ec ⊆ aEc. We have therefore shown that aEc = Ec. Or a ∈ LasG(Ec). This
shows that LasG(E) ⊆ LasG(Ec).

Next we show that LasG(Ec) ⊆ LasG(E). Plugging Ec in the relation LasG(E) ⊆
LasG(Ec) in place of E one gets

LasG(Ec) ⊆ LasG
(
(Ec)c

)
= LasG(E). (3.13)

Proof of Proposition 3.3. We proceed as follows: (a)⇒(d)⇒(c)⇒(b)⇒(a).
Put α := indφ(f).
(a)⇒(d): suppose that J is a component of I − L∗∗. Pick x in J . In this case J = [x]. By

Proposition 3.2, we have f([x]) ⊆ [f(x)]. We must show that [f(x)] is a component of I −L∗∗.
To do this it suffices to show f(x) ∈ I − L∗∗. By (a) one has

φ
(
f(x)

)
= φ(x) + α ∈ φ(L∗) + α = φ(L∗), (3.14)

so f(x) ∈ I − L∗∗.
Now let K ∈ C. By Proposition 3.2 there exists J ∈ Î such that f(J) ⊆ K. We seek to

show that J ∈ C. Pick x in J . Then J = [x] andK = [f(x)]. So f(x) ∈ I −L∗∗. Hence, φ(x)+α =
φ(f(x)) ∈ φ(L∗). Or φ(x) ∈ φ(L∗) − α. Since −α ∈ LasR(φ(L∗)), we have φ(L∗) − α = φ(L∗) and
φ(x) ∈ φ(L∗). Therefore x ∈ I − L∗∗. This shows that J ∈ C.

(d)⇒(c): to show that f(L∗∗) ⊆ L∗∗, let x ∈ L∗∗. Assume to get a contradiction that
f(x) ∈ I − L∗∗. In this case [f(x)] ∈ C. By (d) one has f(J) ⊆ [f(x)] for some J ∈ C. On
the other hand, f([x]) ⊆ [f(x)]. Part (a) of Proposition 3.2 implies J = [x] = {x}. But this is
impossible because J ⊆ I − L∗∗ and x ∈ L∗∗.

Now we show that L∗∗ ⊆ f(L∗∗). Let y ∈ L∗∗. By Proposition 3.2 there exists J ∈ Î such
that f(J) ⊆ [y]. So that f(J) ⊆ L∗∗. Hence by (d), J cannot be a component of I − L∗∗. That is,
J = [x] = {x} for some x ∈ L∗∗. Clearly y = f(x). Thus y ∈ f(L∗∗).

(c)⇒(b): To show that φ(L∗∗) + α ⊆ φ(L∗∗) let x ∈ L∗∗. Then f(x) ∈ L∗∗. So

φ(x) + α = φ
(
f(x)

) ∈ φ(L∗∗). (3.15)

We now show that φ(L∗∗) ⊆ φ(L∗∗) +α. Let y ∈ φ(L∗∗). Then y = φ(x) for some x ∈ L∗∗.
Since f(L∗∗) = L∗∗, x = f(a) for some a ∈ L∗∗. Thus

y = φ(x) = φ
(
f(a)

)
= φ(a) + α ∈ φ(L∗∗) + α. (3.16)

This proves (b).
(b)⇒(a): noticing that φ(L∗) = R − φ(L∗∗), this follows from part (c) of Proposition 3.5.
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Lemma 3.6. Let L andM be two Cantor-like sets fitted in I. If there exists a Cantor function ψ : I →
R which lives on both L andM, then L =M.

Proof. Let x ∈ I − L. Then x lies in the interior of a component J of I − L∗∗. Since ψ lives on
L, it is constant on J . On the other hand, ψ lives also onM. So J is included in a component
of I −M∗∗. Hence x ∈ I −M. This shows that M ⊆ L. By the symmetry we conclude that
L =M.

Proposition 3.7. (a) If f is a continuous function in ρ(φ), then the image under f of every component
of I − L∗∗ is another one. Moreover, f is surjective.

(b) If G is a noncyclic disjoint subgroup of Bi(I) such that G ⊆ Realm(φ), then G ⊆ ρ(φ) and
L(G) = L. Moreover, indφ establishes an isomorphism of (G, ◦, <) onto (indφ(G),+, <).

Proof. (a) First we show that f is surjective. By Proposition 3.3 we have L∗∗ = f(L∗∗) ⊆ f(I).
Since supL∗∗ = sup I and infL∗∗ = inf I, we have sup f(I) = sup I and inf f(I) = inf I. On the
other hand, since f is continuous, f(I) is connected. Therefore, f(I) = I and f is surjective.

Now let J a component of I − L∗∗. According to Proposition 3.3, f(J) ⊆ K for some
component K of I − L∗∗. Since f is surjective and since by Proposition 3.2(a) the function f
does not map any point of I − J into K, one concludes f(J) = K.

(b) By Theorems 1.4 and 1.5 the function φ lives on L(G). On the other hand by the
hypothesis φ lives on L. So by Lemma 3.6, L(G) = L. Proposition 2.4 now gives G ⊆ ρ(φ).

Finally, we turn to the map indφ. By Proposition 3.1(a), indφ is a homomorphism of
(G, ◦) onto (indφ(G),+). Let f and g be in G and f < g. Pick a point a in L∗∗. Noticing that
f(a) and g(a) are in L∗∗ we have

φ(a) + indφ
(
f
)
= φ

(
f(a)

)
< φ

(
g(a)

)
= φ(a) + indφ

(
g
)
. (3.17)

Therefore indφ(f) < indφ(g). This completes the proof.

4. Spoiled Disjoint Groups

In this section we use Cantor functions to determine the structure of spoiled disjoint
(iteration) subgroups of Bi(I).

Proposition 4.1. Let G and H be two spoiled disjoint subgroups of Bi(I). If there exists a Cantor
function φ : I → R such thatG andH are both contained in the realm of φ and indφ(G) = indφ(H),
then L(G) = L(H) andH = γ ◦G ◦ γ−1 for some γ ∈ Bi(I) which is identity on L(G).

Proof. Since G ⊆ Realm(φ) andH ⊆ Realm(φ), we conclude by Proposition 3.7(b) that φ lives
on both L(G) and L(H). By Lemma 3.6 we have L(G) = L(H). Put L := L(G) and suppose
that Î and C are as in Section 3. On C define J ∼ K provided f(J) = K for some f ∈ G (note
that in view of Proposition 3.7 relation ∼ is well defined). Clearly ∼ is an equivalence relation.
Form a set A by choosing one element in each equivalence class modulo ∼.

Let λ1 and λ2 be the restrictions of the map indφ to G and H, respectively.
Proposition 3.7(b) now implies that the maps λ1 and λ2 are monotone isomorphisms. For
each f ∈ G there exists a unique f0 ∈ H such that indφ(f) = indφ(f0); in fact f0 = λ−12 ◦ λ1(f).
Note that the map f �→ f0 is therefore an isomorphism of G onto H. It is easy to see that for



10 Abstract and Applied Analysis

each x ∈ I, f(x) and f0(x) belong to the same element of Î. In particular the functions f and
f0 agree on L. Define the map γ as follows:

the definition of γ on L∗∗: For each x ∈ L∗∗ define γ(x) = x;
the definition of γ on I −L∗∗: LetK ∈ C. Then there exists a unique element J ∈ A such

that J ∼ K. We denote by fJ,K the unique function in G that maps J onto K. Now for every
x ∈ J define

γ
(
fJ,K(x)

)
=
(
fJ,K

)
0(x). (4.1)

This implies that γ(y) = (fJ,K)0 ◦ (fJ,K)−1(y) for all y ∈ K. It follows that γ mapsK in a strictly
increasing manner onto itself.

We claim that γ satisfies the conditions of the theorem. First we show that γ is strictly
increasing. Let x and y be in I and x < y. If [x] = [y], then since γ is strictly increasing on
[x], one has γ(x) < γ(y). If [x] < [y], then noticing that γ(x) ∈ [x] and γ(y) ∈ [y], we get
γ(x) < γ(y).

Since γ maps each element of Î onto itself, it follows that γ is surjective.
We now show that γ ◦G ◦ γ−1 = H. It suffices to show that γ ◦ f ◦ γ−1(y) = f0(y) for all

f ∈ G, y ∈ I. Or equivalently γ ◦ f(y) = f0 ◦ γ(y) for all f ∈ G, y ∈ I. To do this let f ∈ G and
y ∈ I. First suppose that y ∈ L∗∗. Then f(y) ∈ L∗∗. So

γ ◦ f(y) = γ
(
f
(
y
))

= f
(
y
)
= f0

(
y
)
= f0

(
γ
(
y
))

= f0 ◦ γ
(
y
)
. (4.2)

Next suppose that y ∈ I −L∗∗. PutK = [y] andM = f(K). There exists a unique J ∈ A
such that J ∼ K. Moreover, y = fJ,K(x) for some x ∈ J . We have

γ ◦ f(y) = γ ◦ f ◦ fJ,K(x) = γ ◦ fJ,M(x) =
(
fJ,M

)
0(x) =

(
f ◦ fJ,K

)
0(x)

= f0 ◦
(
fJ,K

)
0(x) = f0 ◦ γ

(
fJ,K(x)

)
= f0 ◦ γ

(
y
)
.

(4.3)

Therefore γ ◦ f(y) = f0 ◦ γ(y) for all f ∈ G, y ∈ I as asserted.

We continue with introducing the piecewise linear group generated by a Cantor
function. Let φ : I → R be an increasing Cantor function which lives on a Cantor-like set
L fitted in I. Let α ∈ Ind(φ). To this α we correspond the piecewise linear function δφ,α
as follows. By the definition of Ind(φ) there exists an f ∈ ρ(φ) such that indφ(f) = α.
If x ∈ L∗∗, put δφ,α(x) = f(x). If x ∈ I − L∗∗ let δφ,α be the line which maps the closed
interval [x] increasingly onto the closed interval [f(x)]. We claim that δφ,α ∈ ρ(φ)

⋂
Bi(I)

and indφ(δφ,α) = α.
First we must show that the definition of δφ,α does not depend on the choice of f with

indφ(f) = α. To see this let g be another element of ρ(φ) such that indφ(g) = α. In this case for
every x ∈ I one has

φ
(
f(x)

)
= φ(x) + α = φ

(
g(x)

)
, (4.4)

hence [f(x)] = [g(x)]. In particular f and g agree on L∗∗ since being elements of ρ(φ), for
every x ∈ L∗∗ we have {f(x)} = [f(x)] = [g(x)] = {g(x)}. Thus δφ,α is well defined.
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Clearly [δφ,α(x)] = [f(x)] for every x ∈ I. Hence

φ
(
δφ,α(x)

)
= φ

(
f(x)

)
= φ(x) + α. (4.5)

So that δφ,α ∈ Realm(φ) and indφ(δφ,α) = α.
That δφ,α is surjective is clear by Proposition 3.2(c).
To show that δφ,α is strictly increasing, let x and y be in I and x < y. If [x] = [y],

then δφ,α(x) < δφ,α(y) by the definition of δφ,α. If [x] < [y], then [δφ,α(x)] < [δφ,α(y)] by
Proposition 3.2(a). So that δφ,α(x) < δφ,α(y).

Finally, δφ,α(L∗∗) = f(L∗∗) = L∗∗. Therefore δφ,α ∈ ρ(φ)
⋂
Bi(I) as asserted.

Now put Δ(φ) := {δφ,α : α ∈ Ind(φ)}. We claim that Δ(φ) is a disjoint group and call it
the piecewise linear group generated by φ.

Theorem 4.2. With φ as above,Δ(φ) is a disjoint subgroup of Bi(I)which is isomorphic to Ind(φ) as
an ordered group. Moreover, if Δ(φ) is noncyclic, it is a spoiled disjoint group such that L(Δ(φ)) = L
and in particular Δ(φ) is a maximal element in the set of all disjoint subgroups of Bi(I).

Proof. First we show that Δ(φ) is a group. Clearly δφ,0 = i ∈ Δ(φ). Let α and β be in Ind(φ).
Proposition 3.1 gives

indφ
(
δφ,α ◦ δ−1φ,β

)
= α − β = indφ

(
δφ,α−β

)
. (4.6)

In other words δφ,α ◦ δ−1φ,β and δφ,α−β are two piecewise linear functions in Realm(φ) whose
indices with respect to φ are the same. Since such a function is unique,

δφ,α ◦ δ−1φ,β = δφ,α−β ∈ Δ
(
φ
)
. (4.7)

Therefore Δ(φ) is a subgroup of Bi(I).
To show that Δ(φ) is disjoint, let α and β be in Ind(φ) and δφ,α(a) = δφ,β(a) for some

a ∈ I. Then

φ(a) + α = φ
(
δφ,α(a)

)
= φ

(
δφ,β(a)

)
= φ(a) + β, (4.8)

hence α = β. So that δφ,α = δφ,β. It follows that Δ(φ) is disjoint.
Suppose that Δ(φ) is not cyclic. By Proposition 3.7(b) we get L(Δ(φ)) = L. The same

Proposition implies that indφ is an isomorphism of (Δ(φ), ◦, <) onto (Ind(φ),+, <).
To show the maximality of Δ(φ) when it is noncyclic, suppose to get a contradiction

that there exists a disjoint subgroup G of Bi(I) which strictly contains Δ(φ). So G is spoiled
by Proposition 2.2. Thus G ⊆ Realm(ψ) for some increasing Cantor function ψ : I → R.
Accordingly Δ(φ) is contained in both Realm(φ) and Realm(ψ). Since Δ(φ) is noncyclic,
Realm(φ) = Realm(ψ) by Theorem 1.5. Thus Realm(φ) = Realm(ψ) and indφ = indψ . Hence
Ind(φ) is a strict subset of indφ(G) because Ind(φ) = indφ(Δ(φ)). But on the other hand
by Proposition 3.7, we have indφ(G) ⊆ Ind(φ). This gives a contradiction and confirms the
maximality of Δ(φ).
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4.1. The Structure of Spoiled Disjoint Subgroups of Bi(I)

Let L be a Cantor-like set fitted in I and C be the set of all components of I − L∗∗. Let E be a
countable dense subset of R and θ an order preserving bijection of C onto E (such a θ exists
for both structures (C, <) and (E, <) are of order type η). Since C is dense in Î = {[x] : x ∈ I},
θ extends to an order preserving bijection θ : Î → R. Put φ = θ ◦ π . Then φ is an increasing
Cantor function which lives on L and φ(L∗) = E. Define

Δ(L, E, θ) := Δ
(
φ
)
. (4.9)

Note that by Corollary 3.4 we have

indφ
(
Δ
(
φ
))

= Ind
(
φ
)
= LasR

(
φ(L∗)

)
= LasR(E), (4.10)

so (Δ(φ), ◦, <) is isomorphic to (LasR(E),+ <) via indφ.
If E is an additive subgroup of R, then LasR(E) = E; therefore (Δ(φ), ◦, <) is

isomorphic to (E,+, <). Combining this fact with Theorem 4.2 the following existence theorem
is concluded.

Theorem 4.3. For every Cantor-like set L fitted in I and every countable dense subgroup A of (R,+)
there exists a maximal spoiled disjoint subgroup G of Bi(I) such that G is (as an ordered group)
isomorphic to A and L(G) = L.

Now one is ready to determine the structure of spoiled disjoint subgroups of Bi(I).

Theorem 4.4. Let L be a Cantor-like set fitted in I and C be the set of all components of I − L∗∗. The
general form of all spoiled disjoint subgroups of Bi(I) such that L(G) = L is given by G = γ ◦Δ ◦ γ−1
where γ is a homeomorphism of I onto itself such that γ(x) = x for every x ∈ L and Δ is a noncyclic
subgroup of Δ(L, E, θ) for some countable dense subset E of R for which LasR(E) is noncyclic and
some order preserving bijection θ of C onto E.

Proof. Part 1

Let G be a spoiled disjoint subgroup of Bi(I) such that L(G) = L. Then by Theorem 1.4,
G ⊆ Realm(φ) for some Cantor function φ : I → R which lives on L. Put E := φ(L∗) and
define θ : C → E by θ([x]) = φ(x). This θ is an order preserving bijection (see Section 3). Put
Δ := {δφ,α : α ∈ indφ(G)}. Then Δ is a subgroup of Δ(L, E, θ) such that indφ(G) = indφ(Δ).
In particular Δ is noncyclic. By Proposition 4.1 there exists a γ ∈ Bi(I) which is identity on L
and such that G = γ ◦Δ ◦ γ−1.

Part 2

Suppose that γ ,Δ, L, E, and θ are as in the statement of the theorem and assumeG = γ◦Δ◦γ−1.
Since C is dense in Î and E is dense in R, the map θ extends uniquely to an order preserving
bijection θ : Î → R. Put φ = θ ◦ π . Then φ is an increasing Cantor function which lives on L
and Δ(L, E, θ) = Δ(φ) ⊆ Realm(φ). Since both γ and γ−1 are in Realm(φ) and Realm(φ) is a
monoid, one has G ⊆ Realm(φ).
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To show that G is disjoint suppose that f and g are in G and f(a) = g(a) for some
a ∈ I. Then

φ(a) + indφ
(
f
)
= φ

(
f(a)

)
= φ

(
g(a)

)
= φ(a) + indφ

(
g
)
, (4.11)

thus indφ(f) = indφ(g). The functions γ−1 ◦ f ◦ γ and γ−1 ◦ g ◦ γ are in Δ and we have

indφ
(
γ−1 ◦ f ◦ γ

)
= −indφ

(
γ
)
+ indφ

(
f
)
+ indφ

(
γ
)
= indφ

(
f
)
= indφ

(
g
)

= −indφ
(
γ
)
+ indφ

(
g
)
+ indφ

(
γ
)
= indφ

(
γ−1 ◦ g ◦ γ

)
.

(4.12)

By the definition of Δ(φ) for every α ∈ Ind(φ) only one element of Δ(φ) has index α with
respect to φ. Hence γ−1 ◦ f ◦ γ = γ−1 ◦ g ◦ γ . Canceling γ and γ−1 we get f = g. Therefore, G is
disjoint.

Since G is noncyclic and G ⊆ Realm(φ), Proposition 3.7(b) implies L(G) = L.
This completes the proof.

4.2. The Structure of Spoiled Disjoint Iteration Subgroups of Bi(I)

Let L be a Cantor-like set fitted in I, E be a countable dense subset of R, and c : R → R be
an additive function such that E + Im(c) = E. Let θ : C → E be an order preserving bijection
and θ : Î → R be its extension. Put φ = θ ◦ π . Then φ is an increasing Cantor function which
lives on L(G) and φ(L∗) = E. So that Im(c) ⊆ LasR(E) = Ind(φ). This implies that for all t ∈ R,
c(t) ∈ Ind(φ). This allows us to set δt: = δφ,c(t) for every t ∈ R. Put

Δ(L, E, θ, c) :=
{
δt : t ∈ R

}
. (4.13)

The group Δ := Δ(L, E, θ, c) is a spoiled disjoint iteration subgroup of Bi(I) such that L(Δ) =
L: because for all reals s and t

δs ◦ δt = δφ,c(s) ◦ δφ,c(t) = δφ,c(s)+c(t) = δs+t. (4.14)

If E is in addition a divisible additive subgroup of R, then there exists an additive
function c : R → R such that Im(c) = E. We have E = Im(c) = LasR(E) = Ind(φ). So
Δ(L, E, θ, c) is isomorphic, as an ordered group, to E. This yields the following existence
theorem.

Theorem 4.5. For every Cantor-like set L fitted in I and every countable divisible subgroup A of
(R,+) there exists a spoiled disjoint iteration subgroup G = {ft : t ∈ R} of Bi(I) such that G is (as an
ordered group) isomorphic to A and L(G) = L.

The next theorem determines the structure of spoiled disjoint iteration subgroups of
Bi(I). It was already stated and proved by Zdun in [6, Theorem 4]. Here is given a new proof
as well as a little modification in the statement.
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Theorem 4.6. Let L be a Cantor-like set fitted in I and C be the set of all components of I − L∗∗. The
general form of all spoiled disjoint iteration subgroups G = {ft : t ∈ R} of Bi(I) such that L(G) = L
is given by the relation ft = γ ◦ δt ◦ γ−1(t ∈ R) where γ is a homeomorphism of I onto itself such that
γ(x) = x for all x ∈ L and {δt : t ∈ R} = Δ(L, E, θ, c) for some countable dense subset E of R, an
order preserving bijection θ : C → E and an additive function c : R → R such that E + Im(c) = E.

Proof. Part 1

Let G = {ft : t ∈ R} be a spoiled disjoint iteration subgroup of Bi(I) such that L(G) = L. By
Theorem 4.4, G = γ ◦Δ ◦ γ−1 where γ is a homeomorphism in F(I) such that γ |L = i|L, andΔ is
a noncyclic subgroup of Δ(L, E, θ) for some countable dense subset E of R such that LasR(E)
is noncyclic and some order preserving bijection θ : C → E. Then

Δ = γ−1 ◦G ◦ γ =
{
γ−1 ◦ ft ◦ γ : t ∈ R

}
. (4.15)

For every t ∈ R define δt := γ−1 ◦ ft ◦ γ . It is straightforward to see that Δ = {δt : t ∈ R}
is an iteration group. Put φ := θ ◦ π . Then the map indφ is in isomorphism of (Δ, ◦, <) onto
an additive subgroup of LasR(E). Define c : R → R by c(t) := indφ(δt). Then δt = δφ,c(t).
Moreover, c is an additive function such that Im(c) is an additive subgroup of LasR(E). So
E + Im(c) = E.

Part 2

Suppose that G = γ ◦Δ ◦ γ−1 where Δ = Δ(L, E, θ, c) and γ , E, θ, and c are as in the statement
of the theorem. Then by Theorem 4.4, G is a spoiled disjoint subgroup of G and L(G) = L.
For every t ∈ R put ft := γ ◦ δt ◦ γ−1. Then for all reals s and t, fs ◦ ft = fs+t. Furthermore,
G = {ft : t ∈ R}.

This completes the proof.
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