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For a fourth-order differential equation, we will establish some new Lyapunov-type inequalities,
which give lower bounds of the distance between zeros of a nontrivial solution and also lower
bounds of the distance between zeros of a solution and/or its derivatives. The main results will
be proved by making use of Hardy’s inequality and some generalizations of Opial-Wirtinger-type
inequalities involving higher-order derivatives. Some examples are considered to illustrate the
main results.

1. Introduction

In this paper, we are concerned with the lower bounds of the distance between zeros of a
nontrivial solution and also lower bounds of the distance between zeros of a solution and/or
its derivatives for the fourth-order differential equation

(
r(t)
(
x′′′(t)

)γ)′ + q(t)xγ(t) = 0, t ∈ I, (1.1)

where γ ≥ 1, r, q : I → R are continuous measurable functions and I is a nontrivial interval
of reals. By a solution of (1.1) on the interval J ⊆ I, we mean a nontrivial real-valued function
x ∈ C3(J), which has the property that r(t)(x′′′(t))γ ∈ C1(J) and satisfies (1.1) on J . We
assume that (1.1) possesses such a nontrivial solution on I.

The nontrivial solution x(t) of (1.1) is said to be oscillate or to be oscillatory if it
has arbitrarily large zeros. Equation (1.1) is oscillatory if one of its nontrivial solutions is
oscillatory. Equation (1.1) is said to be (i, j)-disconjugate if i and j are positive integers such
that i + j = 4 and no solution of (1.1) has an (i, j)-distribution of zeros, that is, no nontrivial
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solution has a pair of zeros of multiplicities i and j, respectively. In general, the differential
equation of nth-order

x(n)(t) + q(t)x(t) = 0 (1.2)

is said to be (k, n − k)-disconjugate on an interval I in case no nontrivial solution has a zero
of order k followed by a zero of order n − k. This means that, for every pair of points α, β ∈
I, α < β, a nontrivial solution of (1.1) that satisfies

x(i)(α) = 0, i = 0, . . . , k − 1,

x(j)(β
)
= 0, j = 0, . . . , n − k − 1

(1.3)

does not exist.
The least value of β such that there exists a nontrivial solution which satisfies (1.3) is

called the (k, n−k)-conjugate point of α. The differential equation (1.2) is said to disconjugate
on an interval I if one of its nontrivial solutions has at most n − 1 zeros. For our case, if no
nontrivial solution of (1.1) has more than three zeros, the equation is termed disconjugate.
Together with (k, n − k)-disconjugacy, we consider the related concept, which is (k, n − k)-
disfocality. The differential equation (1.2) is said to be disfocal on an interval I if for every
nontrivial solution x at least one of the functions x, x′, . . . , x(n−1) does not vanish on I. If the
equation is not disfocal on I, then there exists an integer k (1 ≤ k ≤ n − 1), a pair of points
α, β ∈ I, α < β and a nontrivial solution x such that k of the functions x, x′, . . . , x(n−1) vanishes
at α and the remaining n − k functions at β, that is,

x(i)(α) = 0, i = 0, . . . , k − 1,

x(j)(β
)
= 0, j = k, . . . , n − 1.

(1.4)

The equation (1.1) is said to be (2, 2)-disconjugate on [α, β] if there is no nontrivial solution
x(t) and c, d ∈ [α, β], c < d such that x(c) = x′(c) = x(d) = x′(d) = 0. Equation (1.1) is said to
be (k, 4−k)-disfocal on an interval I for some 1 ≤ k ≤ 3 in case there does not exist a solution x

with a zero of order k followed by a zero of x(j)
∗ of order 4−k, where x(j)

∗ = x(j) for j = 0, 1, 2, 3
and x

(4)
∗ = (r(x′′′)γ)′.
For nth-order differential equations, (k, n − k)-disconjugacy and disfocality are

connected by the result of Nehari [1], which states that, if (1.2) is (k, n−k)-disfocal on (α, β) it
is disconjugate on (α, β). For more details about disconjugacy and disfocality and the relation
between them, we refer the reader to the paper [2]. For related results to the present paper,
we refer the reader to the papers [3–14] and the references cited therein.

In [4, 15], the authors established some new Lyapunov-type inequalities for higher-
order differential equations. In the following, we present some of some special cases of their
results for fourth-order differential equations that serve and motivate the contents of this
paper. In [15], it is proved that if x(t) is a solution of the fourth-order differential equation

x(4)(t) + q(t)x(t) = 0, (1.5)
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which satisfies x(α) = x′(α) = x(β) = x′(β) = 0, then

∫β

α

∣
∣q(t)

∣
∣dt ≥ 192

(
β − α

)3 , (1.6)

and if x(t) satisfies x(α) = x′′(α) = x(β) = x′′(β) = 0, then

∫β

α

∣
∣q(t)

∣
∣dt ≥ 4

(
β − α

)2 . (1.7)

In [4], the author proved that if x(t) is a solution of (1.5), which satisfies x(α) = x(β) = x′′(α) =
x′′(β) = 0, then

∫β

α

∣∣q(t)
∣∣dt ≥ 16

(
β − α

)3 . (1.8)

In this paper, we are concerned with the following problems for the general equation (1.1):

(i) obtain lower bounds for the spacing β−α, where x is a solution of (1.1) that satisfies
x(i)(α) = 0 for i = 0, 1, 2 and x′′(β) = 0,

(ii) obtain lower bounds for the spacing β−α, where x is a solution of (1.1) that satisfies
x(i)(β) = 0 for i = 0, 1, 2 and x′′(α) = 0,

(iii) obtain lower bounds for the spacing β−α, where x is a solution of (1.1) that satisfies
x(i)(α) = 0 = x(i)(β) for i = 0, 1, 2.

The main results will be proved in Section 2 by making use of Hardy’s inequality and
some generalizations of Opial-Wirtinger-type inequalities involving higher-order derivatives.
The results yield conditions for disfocality and disconjugacy. In Section 3, we will discuss
some special cases of our results to derive some new results for (1.5) and give some
illustrative examples. To the best of the author knowledge, this technique has not been
employed before on (1.1). Of particular interest in this paper is when q is oscillatory and
r is a negative function.

2. Main Results

In this section, we will prove the main results by making use of Hardy’s inequality and some
Opial-Wirtinger-type inequalities. Throughout the paper, all the functions are assumed to be
measurable functions and all the integrals that will appear in the inequalities are finite.

The Hardy inequality [16, 17] of the differential form that we will need in this paper
states that, if y is absolutely continuous on (α,β), then the following inequality holds

(∫β

α

q(t)
∣∣y(t)

∣∣ndt

)1/n

≤ C

(∫β

α

r(t)
∣∣y′(t)

∣∣mdt

)1/m

, (2.1)
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where q, r the weighted functions are measurable positive functions in the interval (α, β) and
m,n are real parameters that satisfy 0 < n ≤ ∞ and 1 ≤ m ≤ ∞. The constant C satisfies

C ≤ k(m,n)α
(
α, β
)
, for 1 < m ≤ n, (2.2)

where

α
(
α, β
)
:= sup

α<t<β

(∫β

t

q(t)dt

)1/n(∫ t

α

r1−m
∗
(s)ds

)1/m∗

if y(α) = 0,

α
(
α, β
)
:= sup

α<t<β

(∫ t

α

q(t)dt

)1/n(∫β

t

r1−m
∗
(s)ds

)1/m∗

if y
(
β
)
= 0,

(2.3)

and m∗ = m/(m − 1). Note that the inequality (2.1) has an immediate application to the case
when y(α) = y(β) = 0. In this case, we see that (2.1) is satisfied if and only if

α
(
α, β
)
= sup

(c,d)⊂(α,β)

(∫d

c

q(t)dt

)1/n

×min

⎧
⎨

⎩

(∫ c

α

r1−m
∗
(s)ds

)1/m∗

,

(∫β

d

r1−m
∗
(s)ds

)1/m∗⎫⎬

⎭

(2.4)

exists and is finite. The constant k(m,n) in (2.2) appears in various forms. For example,

k(m,n) := m1/m(m∗)1/m
∗
,

k(m,n) :=
(
1 +

n

m∗

)1/n(
1 +

m∗

n

)1/m∗

,

(
u∗ =

u

u − 1

)

k(m,n) :=
[

Γ(n/s)
Γ(1 + (1/s))Γ((n − 1)/s)

]s/n
, s =

n

m − 1
.

(2.5)

In the following, we present the Opial-Wirtinger-type inequalities that we will need in the
proof of the main results.

Theorem 2.1 ([18, Theorem 3.9.1]). Assume that the functions ϑ and φ are nonnegative and
measurable on the interval (α, β), m, n are real numbers such that μ/m > 1, x(t) ∈ C(n−1)[α, β]
is such that x(i)(α) = 0, 0 ≤ k ≤ i ≤ n − 1 (n ≥ 1), and x(n−1)(t) absolutely continuous on (α, β).
Then

∫β

α

φ(t)
∣∣∣x(k)(t)

∣∣∣
l∣∣∣x(n)(t)

∣∣∣
m
dt ≤ K1

(
α, β
)
[∫β

α

ϑ(t)
∣∣∣x(n)(t)

∣∣∣
μ
dt

](l+m)/μ

, (2.6)
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where

K1
(
α, β
)
=

(m/(l +m))m/μ

(K!)l

[∫β

α

(
φμ(t)
ϑm(t)

)1/(μ−m)

(P1,k(t))l(μ−1)/(μ−m)dt

](μ−m)/μ

,

K = (n − k − 1), P1,k(t) :=
∫ t

α

(t − s)(n−k−1)μ/(μ−1)(ϑ(s))−1/(μ−1)ds.

(2.7)

If we replace x(i)(α) = 0 by x(i)(β) = 0, 0 ≤ k ≤ i ≤ n − 1 (n ≥ 1), then (2.6) holds where K1 is
replaced by K2, which is given by

K2
(
α, β
)
=

(m/(l +m))m/μ

(K!)l

[∫β

α

(
φμ(t)
ϑm(t)

)1/(μ−m)

(P2,k(t))l(μ−1)/(μ−m)dt

](μ−m)/μ

, (2.8)

where

P2,k(t) :=
∫β

t

(s − t)(n−k−1)μ/(μ−1)(ϑ(s))−1/(μ−1)ds. (2.9)

Note that the inequality (2.6) has an immediate application to the case when x(i)(α) =
x(i)(β) = 0 for 0 ≤ i ≤ n − 1. In this case, we will assume that there exists τ ∈ (α, β) such
that

∫ τ

α

(τ − s)(n−k−1)μ/(μ−1)(ϑ(s))−1/(μ−1)ds =
∫β

τ

(s − τ)(n−k−1)μ/(μ−1)(ϑ(s))−1/(μ−1)ds, (2.10)

and we denote by P(α, β). This gives us the following theorem.

Theorem 2.2. Assume that the functions ϑ and φ are nonnegative and measurable on the interval
(α, β), m, n are real numbers such that μ/m > 1, x(t) ∈ C(n−1)[α, β] is such that x(i)(α) = x(i)(β) =
0, 0 ≤ k ≤ i ≤ n − 1 (n ≥ 1), and x(n−1)(t) absolutely continuous on (α, β). Then

∫β

α

φ(t)
∣∣∣x(k)(t)

∣∣∣
l∣∣∣x(n)(t)

∣∣∣
m
dt ≤ K

(
α, β
)
[∫β

α

ϑ(t)
∣∣∣x(n)(t)

∣∣∣
μ
dt

](l+m)/μ

, (2.11)

where K(α, β) is defined by

K
(
α, β
)
=
(

m

l +m

)m/μ
[
P
(
α, β
)]l(μ−1)/μ

(K!)l

[∫β

α

(
φμ(t)
ϑm(t)

)1/(μ−m)

dt

](μ−m)/μ

. (2.12)

Theorem 2.3 ([18, Theorem 3.9.2]). Let rk, 0 ≤ k ≤ n − 1 (n ≥ 1) be nonnegative numbers such
that σ =

∑n−1
k=0 rk > 0 and ϑ and φ are nonnegative and measurable on the interval (α, β). Further,
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let x(t) ∈ C(n−1)[α, β] be such that x(i)(α) = 0, 0 ≤ i ≤ n − 1 (n ≥ 1) and x(n−1)(t) absolutely
continuous on (α, β). Then

∫β

α

φ(t)
n∏

k=0

∣
∣
∣x(k)(t)

∣
∣
∣
rk
dt ≤ K∗

1

(
α, β
)
[∫β

α

ϑ(t)
∣
∣
∣x(n)(t)

∣
∣
∣
r
dt

](σ+rn)/r
, (2.13)

where

K∗
1

(
α, β
)
=

1
Ω

(
rn

σ + rn

)rn/r
[∫β

α

(
φr(t)
ϑrn(t)

)1/(r−rn) n−1∏

k=0

(
P ∗
1,k(t)

)rk(r−1)/(r−rn)
dt

](r−rn)/r
,

Ω =
n−1∏

k=0

((n − k − 1)!)rk , P ∗
1,k(t) :=

∫ t

α

(t − s)(n−k−1)r/(r−1)(ϑ(s))−1/(r−1)ds.

(2.14)

If we replace x(i)(α) = 0 by x(i)(β) = 0, 0 ≤ i ≤ n− 1 (n ≥ 1), then (2.13) holds whereK∗
1 is replaced

by K∗
2, which is given by

K∗
2
(
α, β
)
=

1
Ω

(
rn

σ + rn

)rn/r
[∫β

α

(
φr(t)
ϑrn(t)

)1/(r−rn) n−1∏

k=0

(
P ∗
2,k(t)

)rk(r−1)/(r−rn)
dt

](r−rn)/r
, (2.15)

where

P ∗
2,k(t) :=

∫β

t

(s − t)(n−k−1)r/(r−1)(ϑ(s))−1/(r−1)ds. (2.16)

Note that the inequality (2.13) has an immediate application to the case when x(i)(α) =
x(i)(β) = 0 for 0 ≤ i ≤ n − 1. In this case, we will assume that there exists τ ∈ (α, β) such
that

n−1∏

k=0

(
P ∗
1,k(τ)

)rk(r−1)/(r−rn)
=

n−1∏

k=0

(
P ∗
2,k(τ)

)rk(r−1)/(r−rn)
, (2.17)

denoted by P ∗(α, β). In this case the inequality (2.13) is satisfied but the constant K∗
1(α, β) is

replaced by K∗(α, β), which is defined by

K∗(α, β
)
=
(

rn
σ + rn

)rn/r
[
P ∗(α, β

)](r−rn)/r

Ω

[∫β

α

(
φr(t)
ϑrn(t)

)1/(r−rn)
dt

](r−rn)/r
. (2.18)

The Wirtinger-type inequality and its general forms have been studied in the
literature in various modifications both in the continuous and in the discrete setting. It
has an extensive applications on partial differential and difference equations, harmonic
analysis, approximations, number theory, optimization, convex geometry, spectral theory of
differential and difference operators, and others (see [19]).
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In the following, we present a special case of the Wirtinger-type inequality that has
been proved by Agarwal et al. in [20] and will be need in the proof the main results.

Theorem 2.4. For I = [α, β], γ ≥ 1 is a positive integer and a positive function λ ∈ C1(I) with either
λ′(t) > 0 or λ′(t) < 0 on I; we have

∫β

α

λγ+1(t)
|λ′(t)|γ

∣
∣y′(t)

∣
∣γ+1dt ≥ 1

(
γ + 1

)γ+1

∫β

α

∣
∣λ′(t)

∣
∣
∣
∣y(t)

∣
∣γ+1dt, (2.19)

for any y ∈ C1(I) with y(α) = 0 = y(β).

Remark 2.5. It is clear that Theorem 2.4 is satisfied for any function y that satisfies the
assumptions of theorem. So if y(t) = x′′(t) with x′′(α) = 0 = λ(β), x′′(β) = 0 = λ(α), or
x′′(α) = 0 = x′′(β) and p(t) = λ′(t), we have the following inequality, which gives a relation
between x′′(t) and x′′′(t) on the interval [α, β].

Corollary 2.6. For I = [α, β] and γ ≥ 1 being a positive integer, then we have

∫β

α

|r(t)|∣∣x′′′(t)
∣∣γ+1dt ≥ 1

(
γ + 1

)γ+1

∫β

α

∣∣p(t)
∣∣∣∣x′′(t)

∣∣γ+1dt, (2.20)

for any x ∈ C3(I) with x′′(α) = 0 = r(β), x′′(β) = 0 = r(α), or x′′(α) = 0 = x′′(β), where r(t) and
p(t) satisfy the equation

(
r(t)
(
λ′(t)

)γ)′ − (γ + 1
)
p(t)λγ(t) = 0, (2.21)

for any function λ(t) satisfing λ′(t)/= 0.

For illustration, we apply the inequality (2.20) with x′′(t) = sin t in the interval [0, π].
If p(t) = 1 and γ = 1 and by choosing r(t) = t2, we see that (2.21) is satisfied when λ(t) = t. So
one can see that

∫π

0
t2cos2t dt � 5.9531 > 0.39270 � 1

4

∫π

0
sin2t dt. (2.22)

Note also that (2.21) holds if one chooses r(t) = p(t) = 1, where in this case

λ(t) = exp
(
γ + 1
γ

)1/(γ+1)

t. (2.23)

Now, we are ready to state and prove the main results when r(t) > 0. For simplicity, we
introduce the following notations:

Φ1(Q, r, P1,0) := 2−γΛ

[∫β

α

|Q(t)|(γ+1)/γ
r1/γ(t)

P
γ

1,0(t)dt

]γ/(γ+1)
, (2.24)
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where Λ = (1/(γ + 1))1/(γ+1), P1,0(t) =
∫ t
α(t − s)2(γ+1)/γ r−1/γ(s)ds,

Φ2(Q, r, P2,0) := 2−γΛ

[∫β

α

|Q(t)|(γ+1)/γ
r1/γ(t)

P
γ

2,0(t)dt

]γ/(γ+1)
, (2.25)

where P2,0(t) =
∫β
t (s − t)2(γ+1)/γr−1/γ(s)ds,

Ψ1

(
Q, r, P ∗

1,0P
∗
1,1

)
:= Λ

[∫β

α

|Q(t)|(γ+1)/γ
r1/γ(t)

(
P ∗
1,0(t)

)γ−1
P ∗
1,1(t)dt

]γ/(γ+1)
, (2.26)

where P ∗
1,0(t) =

∫ t
α(t − s)(γ+1)/γ r−1/γ(s)ds, P ∗

1,1(t) =
∫ t
α r

−1/γ(s)ds, and

Ψ2

(
Q, r, P ∗

2,0P
∗
2,1

)
:= Λ

[∫β

α

|Q(t)|(γ+1)/γ
r1/γ(t)

(
P ∗
2,0(t)

)γ−1
P ∗
2,1(t)dt

]γ/(γ+1)
, (2.27)

where P ∗
2,0(t) =

∫β
t (s − t)(γ+1)/γ r−1/γ(s)ds, P ∗

2,1(t) =
∫β
t r

−1/γ(s)ds.

Remark 2.7. Note that when γ = 1, then Ψ1(Q, r, P ∗
1,0P

∗
1,1) and Ψ2(Q, r, P ∗

2,0P
∗
2,1) become

Ψ1(Q, r, P ∗
1,1) and Ψ2(Q, r, P ∗

2,1).

Theorem 2.8. Suppose that x is a nontrivial solution of (1.1). If x(i)(α) = 0, for i = 0, 1, 2 and
x′′(β) = 0, then

Φ1(Q, r, P1,0) + γ
(
γ + 1

)γ+1Ψ1

(
Q, r, P ∗

1,0P
∗
1,1

)
≥ 1, (2.28)

where Q(t) =
∫β
t q(s)ds. If x

(i)(β) = 0, for i = 0, 1, 2 and x′′(α) = 0, then

Φ2(Q, r, P2,0) + γ
(
γ + 1

)γ+1Ψ2

(
Q, r, P ∗

2,0P
∗
2,1

)
≥ 1, (2.29)

where Q(t) =
∫ t
α q(s)ds.

Proof. We prove (2.28). Multiplying (1.1) by x′′(t) and integrating by parts, we have

∫β

α

(
r(t)
(
x′′′(t)

)γ)′
x′′(t)dt = r(t)

(
x′′′(t)

)γ
x′′(t)

∣∣β
α −
∫β

α

r(t)
(
x′′′(t)

)γ+1
dt

= −
∫β

α

q(t)x′′(t)xγ(t)dt.

(2.30)
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Using the boundary conditions x′′(α) = x′′(β) = 0 and the assumption Q(t) =
∫β
t q(s)ds, we

have

∫β

α

r(t)
(
x′′′(t)

)γ+1
dt =

∫β

α

q(t)x′′(t)xγ(t)dt = −
∫β

α

Q′(t)x′′(t)xγ(t)dt. (2.31)

Integrating by parts the right-hand side, we see that

∫β

α

Q′(t)x′′(t)xγ(t)dt = Q(t)x′′(t)xγ(t)
∣
∣β
α − γ

∫β

α

Q(t)xγ−1(t)x′(t)x′′(t)dt

−
∫β

α

Q(t)xγ(t)x′′′(t)dt.

(2.32)

Using the boundary conditions x′′(β) = x′′(α) = 0, we have

∫β

α

Q′(t)x′′(t)xγ(t)dt = −γ
∫β

α

Q(t)xγ−1(t)x′(t)x′′(t)dt −
∫β

α

Q(t)xγ(t)x′′′(t)dt. (2.33)

Substituting (2.33) into (2.31), we obtain

∫β

α

r(t)
∣∣x′′′(t)

∣∣γ+1dt ≤ γ

∫β

α

|Q(t)||x(t)|γ−1∣∣x′(t)
∣∣∣∣x′′(t)

∣∣dt

+
∫β

α

|Q(t)||x(t)|γ ∣∣x′′′(t)
∣∣dt.

(2.34)

Applying the inequality (2.6) on the integral

∫β

α

|Q(t)||x(t)|γ ∣∣x′′′(t)
∣
∣dt, (2.35)

with φ(t) = |Q(t)|, ϑ(t) = r(t), m = 1, k = 0, l = γ, n = 3, and μ = γ + 1, we get (note that
x(i)(α) = 0, for i = 0, 1, 2) that

∫β

α

|Q(t)||x(t)|γ ∣∣x′′′(t)
∣∣dt ≤ Φ1(Q(t), r, P1,0)

∫β

α

r(t)
∣∣x′′′(t)

∣∣γ+1dt, (2.36)

where Φ1(Q, r, P1,0) is defined as in (2.24). Applying the inequality (2.13) on the integral

∫β

α

|Q(t)||x(t)|γ−1∣∣x′(t)
∣∣∣∣x′′(t)

∣∣dt, (2.37)
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with φ(t) = |Q(t)|, ϑ(t) = r(t), n = 2, r0 = γ − 1, r1 = 1, r2 = 1, σ + r2 = γ + 1, and r = γ + 1,
we see that

∫β

α

|Q(t)||x(t)|γ−1∣∣x′(t)
∣
∣
∣
∣x′′(t)

∣
∣dt ≤ Ψ∗

1

(
Q, r, P ∗

1,0P
∗
1,1

)∫β

α

r(t)
∣
∣x′′(t)

∣
∣γ+1dt, (2.38)

whereΨ1(Q, r, P ∗
1,0P

∗
1,1) is defined as in (2.26). Applying theWirtinger inequality (2.20) on the

integral

∫β

α

r(t)
∣
∣x′′(t)

∣
∣γ+1dt, (2.39)

where x′′(α) = 0 = x′′(β), we see that

∫β

α

r(t)
∣∣x′′(t)

∣∣γ+1dt ≤ (γ + 1
)γ+1

∫β

α

r(t)
∣∣x′′′(t)

∣∣γ+1dt, (2.40)

where r(t) satisfies (2.21) for any positive function λ(t) and p(t) is replaced by r(t).
Substituting (2.40) into (2.38), we have

∫β

α

|Q(t)||x(t)|γ−1∣∣x′(t)
∣∣∣∣x′′(t)

∣∣dt ≤
Ψ1

(
Q, r, P ∗

1,0P
∗
1,1

)

(
γ + 1

)−(γ+1)

∫β

α

r(t)
∣∣x′′′(t)

∣∣γ+1dt. (2.41)

Substituting (2.36) and (2.41) into (2.34) and cancelling the term
∫β
α r(t)|x′′′(t)|γ+1dt, we have

Φ1(Q, r, P1,0) + γ
(
γ + 1

)γ+1Ψ1

(
Q, r, P ∗

1,0P
∗
1,1

)
≥ 1, (2.42)

which is the desired inequality (2.28). The proof of (2.29) is similar by using the integration
by parts and Φ1(Q, r, P1,0) is replaced by Φ2(Q, r, P2,0), which is defined as in (2.25), and
Ψ1(Q, r, P ∗

1,0P
∗
1,1) is replaced by Ψ2(Q, r, P ∗

2,0P
∗
2,1), which is defined as in (2.27). The proof is

complete.

In the following, we apply the Hardy inequality (2.1) on the term

∫β

α

r(t)
∣∣x′′(t)

∣∣γ+1dt, (2.43)

by replacing y(t) by x′′(t) and use the assumption x′′(α) = 0 = x′′(β). In this case, we see that

∫β

α

r(t)
∣∣x′′(t)

∣∣γ+1dt ≤ CΓα
(
α, β, r

)
∫β

α

r(t)
∣∣x′′′(t)

∣∣γ+1dt, (2.44)
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where

CΓ := Γ1/γ
(
γ
)
Γ−1/γ

(
1 +

γ

γ + 1

)
Γ−1/γ

(
γ2

γ + 1

)

, (2.45)

α
(
α, β, r

)
:= sup

(c,d)⊂(α,β)

(∫d

c

r(t)dt

)1/(γ+1)

×min

⎧
⎨

⎩

(∫ c

α

ds

r1/γ(s)

)γ/(γ+1)

,

(∫β

d

ds

r1/γ(s)

)γ/(γ+1)
⎫
⎬

⎭
.

(2.46)

This implies that

∫β

α

|Q(t)||x(t)|γ−1∣∣x′(t)
∣∣∣∣x′′(t)

∣∣dt ≤ CΓα
(
α, β, r

)
Ψ1

(
Q, r, P ∗

1,0P
∗
1,1

)

×
∫β

α

r(t)
∣∣x′′′(t)

∣∣γ+1dt.

(2.47)

Proceeding as in the proof of Theorem 2.8 and using (2.47) instead of (2.41), we have the
following result.

Theorem 2.9. Assume that Q′(t) = q(t) and x is a nontrivial solution of (1.1). If x(i)(α) = 0, for
i = 0, 1, 2 and x′′(β) = 0, then

Φ1(Q, r, P1,0) + γCΓα
(
α, β, r

)
Ψ1

(
Q, r, P ∗

1,0P
∗
1,1

)
≥ 1, (2.48)

where Q(t) =
∫β
t q(s)ds. If x

(i)(β) = 0, for i = 0, 1, 2 and x′′(α) = 0, then

Φ2(Q, r, P2,0) + γCΓα
(
α, β, r

)
Ψ2

(
Q, r, P ∗

2,0(t)P
∗
2,1

)
≥ 1, (2.49)

where Q(t) =
∫ t
α q(s)ds.

In the following, we will apply a new inequality to establish a new result but on the
interval [0, β]. The inequality that we will apply is given in the following theorem.

Theorem 2.10 ([18, Theorem 3.7.4]). Let rk, 0 ≤ k ≤ n − 1 (n ≥ 1) be nonnegative numbers and
ϑ and φ nonnegative and measurable on the interval (0, β). Let x(t) ∈ C(n−1)[0, β] be such that
x(i)(0) = 0, 0 ≤ i ≤ n − 1 (n ≥ 1), x(n−1)(t), is absolutely continuous on (0, β), and let s1, s2 be
constants greater than 1, 1/s1 + 1/s∗1 = 1, 1/s2 + 1/s∗2 = 1 and μ a constant such that μ > s2.
Further assume that

σ =
n−1∑

k=0

rk > 0, �
(
φ, ϑ
)
:=

(∫β

0

(
1

ϑ(t)

)s2/μ

dt

)σ/s∗2
(∫β

0
φs∗1(t)dt

)1/s∗1

. (2.50)
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Then the following inequality holds

∫β

0
φ(t)

n−1∏

k=0

∣∣
∣x(k)(t)

∣∣
∣
rk
dt ≤ Cβλ

[∫β

0
ϑ(t)
∣∣
∣x(n)(t)

∣∣
∣
μ
dt

]σ/μ
, (2.51)

where λ =
∑n−1

k=0(n − k − 1)rk + σδ + 1/s1, δ = (μ − s2)/μs2 and

C := �
(
φ, ϑ
) n−1∏

k=0

[K!]−rk[(n − k − 1/δ) + 1]−rkδ
[∑n−1

k=0 Krks1 + σs1δ + 1
]1/s1 . (2.52)

Now, by applying the inequality (2.51) on the term

γ

∫β

0
|Q(t)|

∣∣∣xγ−1(t)
∣∣∣
∣∣x′(t)

∣∣∣∣x′′(t)
∣∣dt, (2.53)

with φ(t) = |Q(t)|, ϑ(t) = r(t), n = 3, r0 = γ−1, r1 = 1, r2 = 1, σ = γ+1, μ = γ+1, s1 = s2 = γ ,
and α = 0, we obtain

γ

∫β

0
|Q(t)|

∣∣∣xγ−1(t)
∣∣∣
∣∣x′(t)

∣∣∣∣x′′(t)
∣∣dt ≤ γLγ�(r,Q)β2γ−1+2/γ

∫β

0
r(t)
∣∣x′′′(t)

∣∣γ+1dt, (2.54)

where

Lγ :=
1

2γ−1

[
γ

4γ + 1

]1/γ [2γ
(
γ + 1

)
+ 1
]−(γ−1)/γ(γ+1)

[
γ
(
γ + 1

)
+ 1
]1/γ(γ+1) ,

�(r,Q) :=

(∫β

0

(
1

r(t)

)γ/(γ+1)

dt

)(γ+1)(γ−1)/γ(∫β

0
|Q(t)|γ/γ−1dt

)(γ−1)/γ
.

(2.55)

Proceeding as in the proof of Theorem 2.8 by using (2.54) instead of (2.38), we get the
following result.

Theorem 2.11. Assume that Q′(t) = q(t) and x is a nontrivial solution of (1.1). If x(i)(0) = 0, for
i = 0, 1, 2 and x′′(β) = 0, then

Φ1(Q, r, P1,0) + γLγ�(r,Q)β2γ−1+2/γ ≥ 1, (2.56)

where Q(t) =
∫β
t q(s)ds and Lγ , �(r,Q) are defined as in (2.55).

Remark 2.12. Note that in the proof of Theorem 2.11, we do not require additional inequalities
like the Hardy inequality or the Wirtinger inequality. So it will be interesting to extend the
proof of Theorem 2.10 to cover the boundary conditions x(i)(α) = x(i)(β) = 0 and replace the
interval [0, β] by [α, β].
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In the following, we will assume that (2.10) and (2.17) hold. First, we assume that
(2.10) holds and there exists τ ∈ (α, β) such that

∫ τ

α

(τ − s)2(γ+1)/γ

r1/γ(s)
ds =

∫β

τ

(s − τ)2(γ+1)/γ

r1/γ(s)
ds, (2.57)

denoted by P(α, β). In this case, we see that

Φ(Q, r) := Φ1(Q, r, P(t)) = Φ2(Q, r, P(t)), (2.58)

where in this case Φ(Q, r) is given by

Φ(Q, r) :=
Λ
2γ

[∫β

α

|Q(t)|(γ+1)/γ
r1/γ(t)

Pγ(α, β
)
dt

]γ/(γ+1)
. (2.59)

Second, we assume that (2.17) holds and there exists τ ∈ (α, β) such that

(
P ∗
1,0(α, τ)

)γ−1
P ∗
1,1(α, τ) =

(
P ∗
2,0
(
τ, β
))γ−1

P ∗
2,1

(
τ, β
)
, (2.60)

denoted by P ∗(α, β). In this case, we get that

Ψ(r,Q) = Ψ∗
1(r,Q) = Ψ∗

2(r,Q), (2.61)

where Ψ(r,Q) is given by

Ψ(r,Q) := Λ

[∫β

α

|Q(t)|(γ+1)/γ
r1/γ(t)

P ∗(α, β
)
dt

]γ/(γ+1)
. (2.62)

Note that when r(t) = 1, we have that the condition (2.57) is satisfied when (τ − α)(3γ+2)/γ =
(β − τ)(3γ+2)/γ . This in fact is satisfied when τ = (α + β)/2. In this case, we see that

P
(
α, β
)
:=

2−(3γ+2)/γγ
(
3γ + 2

)
(
β − α

)(3γ+2)/γ
. (2.63)

Also, when r(t) = 1, then P ∗(α, β) becomes

P ∗(α, β
)
:=
(

γ

2γ + 1

)γ−1(β − α

2

)((2γ+1)(γ−1)+γ)/γ
. (2.64)
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Theorem 2.13. Assume that Q′(t) = q(t) and x(t) is a nontrivial solution of (1.1). If x(i)(α) = 0 =
x(i)(β), for i = 0, 1, 2, then

Φ(Q, r) + γCΓα
(
α, β, r

)
Ψ(r,Q) ≥ 1, (2.65)

where CΓ and α(α, β, r) are defined as in (2.45) and (2.46) and Φ(Q, r) and Ψ(Q, r) are defined as
in (2.59) and (2.62).

Proof. Multiplying (1.1) by x′′(t) and integrating by parts, we have

∫β

α

(
r(t)
(
x′′′(t)

)γ)′
x′′(t)dt = r(t)

(
x′′′(t)

)γ
x′′(t)

∣∣β
α −
∫β

α

r(t)
(
x′′′(t)

)γ+1
dt

= −
∫β

α

q(t)xγ(t)x′′(t)dt.

(2.66)

Using the boundary conditions x′′(α) = x′′(β) = 0, we get that

∫β

α

r(t)
(
x′′′(t)

)γ+1
dt =

∫β

α

q(t)xγ(t)x′′(t)dt =
∫β

α

Q′(t)xγ(t)x′′(t)dt. (2.67)

Integrating by parts the right-hand side, we see that

∫β

α

Q′(t)x′′(t)xγ(t)dt = Q(t)x′′(t)xγ(t)
∣∣β
α − γ

∫β

α

Q(t)xγ−1(t)x′(t)x′′(t)dt

−
∫β

α

Q(t)xγ(t)x′′′(t)dt.

(2.68)

Using the boundary conditions x′′(β) = x′′(α) = 0, we see that

∫β

α

Q′(t)x′′(t)xγ(t)dt = −γ
∫β

α

Q(t)xγ−1(t)x′(t)x′′(t)dt

−
∫β

α

Q(t)xγ(t)x′′′(t)dt.

(2.69)

Substituting (2.69) into (2.67), we have

∫β

α

r(t)
∣∣x′′′(t)

∣∣γ+1dt ≤ γ

∫β

α

|Q(t)||x(t)|γ−1∣∣x′(t)
∣∣∣∣x′′(t)

∣∣dt

+
∫β

α

|Q(t)||x(t)|γ ∣∣x′′′(t)
∣∣dt.

(2.70)
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Applying the inequality (2.6) on the integral

∫β

α

|Q(t)||x(t)|γ ∣∣x′′′(t)
∣
∣dt, (2.71)

with φ(t) = |Q(t)|, ϑ(t) = r(t), m = 1, k = 0, l = γ, n = 3, and μ = γ + 1, we get (noting that
x(i)(α) = x(i)(β) = 0, for i = 0, 1, 2) that

∫β

α

|Q(t)||x(t)|γ ∣∣x′′′(t)
∣
∣dt ≤ Φ(Q, r)

∫β

α

r(t)
∣
∣x′′′(t)

∣
∣γ+1dt, (2.72)

where Φ(Q, r) is defined as in (2.59). Applying the inequality (2.13) on the integral

∫β

α

|Q(t)||x(t)|γ−1∣∣x′(t)
∣∣∣∣x′′(t)

∣∣dt, (2.73)

with φ(t) = |Q(t)|, ϑ(t) = r(t), n = 2, r0 = γ − 1, r1 = 1, r2 = 1, σ + r2 = γ + 1, and r = γ + 1,
we see that

∫β

α

|Q(t)||x(t)|γ−1∣∣x′(t)
∣∣∣∣x′′(t)

∣∣dt ≤ Ψ(Q, r)
∫β

α

r(t)
∣∣x′′(t)

∣∣γ+1dt, (2.74)

where Ψ(Q, r) is defined as in (2.62). Applying the Hardy inequality (2.1) on the term

∫β

α

r(t)
∣∣x′′(t)

∣∣γ+1dt (2.75)

with y(t) = x′′(t) where x′′(α) = 0 = x′′(β), we see that

∫β

α

r(t)
∣∣x′′(t)

∣∣γ+1dt ≤ CΓα
(
α, β, r

)
∫β

α

r(t)
∣∣x′′′(t)

∣∣γ+1dt, (2.76)

where CΓ and α(α, β, r) are defined as in (2.45) and (2.46). Substituting (2.76) into (2.74), we
have

∫β

α

|Q(t)||x(t)|γ−1∣∣x′(t)
∣∣∣∣x′′(t)

∣∣dt ≤ γCΓα
(
α, β, r

)
Ψ(Q, r)

∫β

α

r(t)
∣∣x′′′(t)

∣∣γ+1dt. (2.77)

Substituting (2.72) and (2.77) into (2.70) and cancelling the term
∫β
α r(t)|x′′′(t)|γ+1dt, we have

Φ(Q, r) + γCΓα
(
α, β, r

)
Ψ(Q, r)Ψ(Q, r) ≥ 1, (2.78)

which is the desired inequality (2.28). The proof is complete.
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In the proof of Theorem 2.13 if we apply the Wirtinger inequality (2.20) instead of the
Hardy inequality (2.1), then we have the following result.

Theorem 2.14. Assume that rQ′(t) = q(t) and x(t) is a nontrivial solution of (1.1). If x(i)(α) = 0 =
x(i)(β), for i = 0, 1, 2, then

Φ(Q, r) + γ
(
γ + 1

)γ+1Ψ(Q, r) ≥ 1, (2.79)

where Φ(Q, r) and Ψ(Q, r) are defined as in (2.59) and (2.62).

Next, in the following, we establish some results which allow us to consider the case
when r(t) < 0. For simplicity, we denote

α1

(
α, β, r2

)
:= sup

(c,d)⊂(α,β)

(∫d

c

r2(t)dt

)1/(γ+1)

×min

⎧
⎨

⎩

(∫ c

α

ds

r2/γ(s)

)γ/(γ+1)

,

(∫β

d

ds

r2/γ(s)

)γ/(γ+1)
⎫
⎬

⎭
,

(2.80)

K∗
1 :=

(
γ

γ + 1

)γ/(γ+1)
[∫β

α

|r(t)r ′(t)|γ+1
r2γ(t)

P
γ

1,2(t)dt

]1/(γ+1)
,

K∗
2 :=

(
γ

γ + 1

)γ/(γ+1)
[∫β

α

|r(t)r ′(t)|γ+1
r2γ(t)

P
γ

2,2(t)dt

]1/(γ+1)
,

(2.81)

where

P1,1(t) :=
∫ t

α

(t − s)γ+1/γ
(

1
r2(s)

)1/γ

ds, P1,2(t) :=
∫ t

α

ds

r2/γ(s)
,

P2,1(t) :=
∫β

t

(t − s)γ+1/γ
(

1
r2(s)

)1/γ

ds, P2,2(t) :=
∫β

t

ds

r2/γ(s)
.

(2.82)

Theorem 2.15. Suppose that x is a nontrivial solution of (1.1). If x(i)(α) = 0, for i = 0, 1, 2 and
x′′(β) = 0, then

Φ1

(
Q1, r

2, P1,0

)
+ γCΓα1

(
α, β, r2

)
Ψ1

(
Q1, r

2, P ∗
1,0P

∗
1,1

)
+K∗

1 ≥ 1, (2.83)

where Q1(t) =
∫β
t r(s)q(s)ds. If x

(i)(β) = 0, for i = 0, 1, 2 and x′′(α) = 0, then

Φ2

(
Q1, r

2, P2,0

)
+ γCΓα1

(
α, β, r2

)
Ψ2

(
Q1, r

2, P ∗
2,0P

∗
2,1

)
+K∗

2 ≥ 1, (2.84)

where Q1(t) =
∫ t
α r(s)q(s)ds.
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Proof. We prove (2.83). Multiplying (1.1) by r(t)x′′(t) and integrating by parts, we have

∫β

α

(
r(t)
(
x′′′(t)

)γ)′
r(t)x′′(t)dt = r2(t)

(
x′′′(t)

)γ
x′′(t)

∣
∣
∣
β

α
−
∫β

α

r2(t)
(
x′′′(t)

)γ+1
dt

−
∫β

α

r(t)r ′(t)x′′(t)
(
x′′′(t)

)γ
dt = −

∫β

α

r(t)q(t)x′′(t)xγ(t)dt.

(2.85)

Using the boundary conditions x′′(α) = x′′(β) = 0 and the assumption Q1(t) =
∫β
t r(s)q(s)ds,

we have

∫β

α

r2(t)
(
x′′′(t)

)γ+1
dt = −

∫β

α

r(t)r ′(t)x′′(t)
(
x′′′(t)

)γ
dt +

∫β

α

q(t)x(t)x′′(t)dt

= −
∫β

α

r(t)r ′(t)x′′(t)
(
x′′′(t)

)γ
dt −

∫β

α

Q′
1(t)x

γ(t)x′′(t)dt.

(2.86)

Integrating by parts the last term in the right-hand side, we see that

∫β

α

Q′
1(t)x

′′(t)xγ(t)dt = Q1(t)x′′(t)xγ(t)
∣∣β
α

− γ

∫β

α

Q1(t)xγ−1(t)x′(t)x′′(t)dt

−
∫β

α

Q1(t)xγ(t)x′′′(t)dt.

(2.87)

Using the boundary conditions x′′(β) = x′′(α) = 0, we see that

∫β

α

Q′
1(t)x(t)x

′′(t)dt = −γ
∫β

α

Q1(t)xγ−1(t)x′(t)x′′(t)dt

−
∫β

α

Q1(t)xγ(t)x′′′(t)dt.

(2.88)

Substituting (2.88) into (2.86), we have

∫β

α

r2(t)
∣∣x′′′(t)

∣∣γ+1dt ≤
∫β

α

|Q1(t)||x(t)|γ
∣∣x′′′(t)

∣∣dt

+ γ

∫β

α

|Q1(t)||x(t)|γ−1
∣∣x′(t)

∣∣∣∣x′′(t)
∣∣dt

+
∫β

α

∣∣r(t)r ′(t)
∣∣∣∣x′′(t)

∣∣∣∣x′′′(t)
∣∣γdt.

(2.89)
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Applying the inequality (2.6) on the integral

∫β

α

|Q1(t)||x(t)|γ
∣
∣x′′′(t)

∣
∣dt, (2.90)

with φ(t) = |Q(t)|, ϑ(t) = r(t), m = 1, k = 0, l = γ, n = 3, and μ = γ + 1, we get (note that
x(i)(α) = 0, for i = 0, 1, 2) that

∫β

α

|Q1(t)||x(t)|γ
∣
∣x′′′(t)

∣
∣dt ≤ Φ1

(
|Q1(t)|, r2, P1,0

)[∫β

α

r2(t)
∣
∣x′′′(t)

∣
∣2dt

]

, (2.91)

where Φ1(Q1, r
2, P1,0) is defined as in (2.24) by replacing Q by Q1 and r by r2. Applying the

inequality (2.13) on the integral

∫β

α

|Q1(t)||x(t)|γ−1
∣∣x′(t)

∣∣∣∣x′′(t)
∣∣dt, (2.92)

with φ(t) = |Q1(t)|, ϑ(t) = r2(t), n = 2, r0 = γ − 1, r1 = 1, r2 = 1, σ + r2 = γ + 1, and r = γ + 1,
we see that

∫β

α

|Q1(t)||x(t)|γ−1
∣∣x′(t)

∣∣∣∣x′′(t)
∣∣dt ≤ Ψ1

(
Q1, r

2, P ∗
1,0P

∗
1,1

)∫β

α

r2(t)
∣∣x′′(t)

∣∣γ+1dt, (2.93)

whereΨ1(Q1, r
2, P ∗

1,0P
∗
1,1) is defined as in (2.26) after replacingQ byQ1 and r by r2. Applying

the Hardy inequality (2.1) on the term

∫β

α

r2(t)
∣∣x′′(t)

∣∣γ+1dt, (2.94)

with y(t) = x′′(t) where x′′(α) = 0 = x′′(β), we see that

∫β

α

r2(t)
∣∣x′′(t)

∣∣γ+1dt ≤ CΓα1

(
α, β, r2

)∫β

α

r2(t)
∣∣x′′′(t)

∣∣γ+1dt, (2.95)

where CΓ and α1(α, β, r2) are defined as in (2.45) and (2.80). Substituting (2.95) into (2.93),
we have

∫β

α

|Q(t)||x(t)|γ−1∣∣x′(t)
∣∣∣∣x′′(t)

∣∣dt ≤ CΓα1

(
α, β, r2

)
Ψ1

(
Q, r2, P ∗

1,0P
∗
1,1

)

×
∫β

α

r(t)
∣∣x′′′(t)

∣∣γ+1dt.

(2.96)
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Applying the inequality (2.6) on the integral

∫β

α

∣
∣r(t)r ′(t)

∣
∣
∣
∣x′′(t)

∣
∣
∣
∣x′′′(t)

∣
∣γdt, (2.97)

with φ(t) = |r(t)r ′(t)|, ϑ(t) = r2(t), m = γ, k = 2, l = 1, n = 3, and μ = γ + 1, we get (note
that x(i)(α) = 0, for i = 0, 1, 2) that

∫β

α

∣
∣r(t)r ′(t)

∣
∣
∣
∣x′′(t)

∣
∣
∣
∣x′′′(t)

∣
∣γdt ≤ K∗

1

[∫β

α

r2(t)
∣
∣x′′′(t)

∣
∣γ+1dt

]

, (2.98)

where K∗
1 is defined as in (2.81). Substituting (2.91), (2.96), and (2.98) into (2.89) and

cancelling the term
∫β
α r

2(t)|x′′′(t)|γ+1dt, we have

Φ1

(
Q1, r

2, P1,0

)
+ γCΓα1

(
α, β, r2

)
Ψ1

(
Q1, r

2, P ∗
1,0P

∗
1,1

)
+K∗

1 ≥ 1, (2.99)

which is the desired inequality (2.83). The proof of (2.84) is similar to (2.83) by
using the integration by parts and Φ1(Q1, r

2, P1,0),Ψ1(Q1, r
2, P ∗

1,0P
∗
1,1); K

∗
1 are replaced by

Φ2(Q1, r
2, P2,0), Ψ2(Q1, r

2, P ∗
2,0P

∗
2,1); K

∗
2 are defined by (2.25), (2.27), and (2.81) by replacing r

by r2. The proof is complete.

In the following, we assume that there exists τ ∈ (α, β) such that

∫ t

α

ds

r2/γ(s)
=
∫β

t

ds

r2/γ(s)
, (2.100)

denoted by Pαβ. In this case, we denote

K∗
(
r2
)
= K∗

1 = K∗
2, (2.101)

where

K∗
(
r2
)
:=

(
γPαβ

γ + 1

)γ/(γ+1)[∫β

α

|r(t)r ′(t)|γ+1
r2γ(t)

dt

]1/(γ+1)
. (2.102)

We also assume that there exists τ ∈ (α, β) such that

∫ τ

α

(τ − s)2(γ+1)/γ

r2/γ(s)
ds =

∫β

τ

(s − τ)2(γ+1)/γ

r2/γ(s)
ds, (2.103)



20 Abstract and Applied Analysis

denoted by Pr2(α, β). By using r2 instead of r in Φ(Q, r) and Ψ(Q, r), we have

Φ
(
Q, r2

)
:=

Λ
2γ

[∫β

α

|Q(t)|(γ+1)/γ
r2/γ(t)

P
γ

r2

(
α, β
)
dt

]γ/(γ+1)
,

Ψ
(
Q, r2

)
:= Λ

[∫β

α

|Q(t)|(γ+1)/γ
r1/γ(t)

P ∗
r2

(
α, β
)
dt

]γ/(γ+1)
,

(2.104)

where P ∗
r2
(α, β) is obtained from (2.103). Using these new values and proceeding as in the

proof of Theorem 2.15, we have the following result.

Theorem 2.16. Assume that Q′(t) = q(t) and x(t) is a nontrivial solution of (1.1). If x(i)(α) = 0 =
x(i)(β), for i = 0, 1, 2, then

Φ
(
Q, r2

)
+ γCΓα1

(
α, β, r2

)
Ψ
(
Q, r2

)
+K∗

(
r2
)
≥ 1, (2.105)

where CΓ and α1(α, β, r) are defined as in (2.45) and (2.80) andK∗(r2), Φ(Q, r2), and Ψ(r2, Q) are
defined as in (2.102), (2.104).

In the proofs of Theorems 2.13 and 2.15 if we apply the Wirtinger inequality (2.20)
instead of the Hardy inequality (2.1), then we have the following results.

Theorem 2.17. Assume that Q′(t) = q(t) and x(t) is a nontrivial solution of (1.1). If x(i)(α) = 0 =
x(i)(β), for i = 0, 1, 2, then

Φ
(
Q, r2

)
+ γ
(
γ + 1

)γ+1Ψ
(
Q, r2

)
+K∗

(
r2
)
≥ 1, (2.106)

where CΓ and α1(α, β, r) are defined as in (2.45) and (2.80) and K∗(r2), Φ(Q, r2), and Ψ(r2, Q) are
defined as in (2.102), (2.104).

Theorem 2.18. Assume that Q′(t) = q(t) and x(t) is a nontrivial solution of (1.1). If x(i)(α) = 0 =
x(i)(β), for i = 0, 1, 2, then

Φ
(
Q, r2

)
+ γ
(
γ + 1

)γ+1Ψ
(
Q, r2

)
+K∗

(
r2
)
≥ 1, (2.107)

where K∗(r2), Φ(Q, r2), Ψ(r2, Q), and K∗ are defined as in (2.102), (2.104).

3. Discussions and Examples

In this section, we establish some special cases of the results obtained in Section 2 and also
give some illustrative examples. We begin with Theorem 2.8 and consider the case when
r(t) = 1. In this case, (1.1) becomes

(
(
x′′′(t)γ

)′ + q(t)xγ(t) = 0, t ∈ [α, β]. (3.1)
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When r(t) = 1, we see that

Φ1(Q, 1, P1,0) ≤ 1
2γ

(
1

γ + 1

)1/(γ+1)
[

γ
(
β − α

)3γ+3
(
3γ + 3

)(
3γ + 2

)

]γ/(γ+1)

max
t∈[α,β]

Q(t),

Ψ1

(
Q, 1, P ∗

1,0P
∗
1,1

)
≤ max

t∈[α,β]
|Q(t)|

(
1

γ + 1

)1/(γ+1)( γ

2γ + 1

)γ(γ−1)/(γ+1)

×
(

γ
(
2γ + 1

)(
γ − 1

)
+ 2γ

)γ/(γ+1)
(
β − α

)((2γ+1)(γ−1)+2γ)/(γ+1)
,

(3.2)

where Q(t) =
∫β
t q(s)ds. The same will be for Φ2(Q, 1, P1,0) and Ψ2(Q, 1, P ∗

1,0P
∗
1,1), but in this

case we assume that Q(t) =
∫ t
α q(s)ds. This gives us the following result for (3.1).

Theorem 3.1. Suppose that x is a nontrivial solution of (3.1). If x(i)(α) = 0, for i = 0, 1, 2 and
x′′(β) = 0, then

Mγ max
t∈[α,β]

|Q(t)|(β − α
)γ((3γ+3)/(γ+1)) + γNγ max

t∈[α,β]
|Q(t)|(β − α

)((2γ+1)(γ−1)+2γ)/(γ+1) ≥ 1, (3.3)

where Q(t) =
∫β
t q(s)ds, and

Mγ :=
1
2γ

(
1

γ + 1

)1/(γ+1)
[

γ
(
3γ + 3

)(
3γ + 2

)

]γ/(γ+1)
,

Nγ :=
(
γ + 1

)γ+1
(

γ

2γ + 1

)γ(γ−1)/(γ+1)( γ
(
2γ + 1

)(
γ − 1

)
+ 2γ

)γ/(γ+1)(
1

γ + 1

)1/(γ+1)

.

(3.4)

If x(i)(β) = 0, for i = 0, 1, 2 and x′′(α) = 0, then (3.3) holds with Q(t) =
∫ t
α q(s)ds.

As a special case of Theorem 3.1, if γ = 1, we have the following result.

Theorem 3.2. Suppose that x is a nontrivial solution of

x′′′′(t) + q(t)x(t) = 0, t ∈ [α, β]. (3.5)

If x(i)(α) = 0, for i = 0, 1, 2 and x′′(β) = 0, then

1

4
√
15

max
t∈[α,β]

∣∣∣∣∣

∫β

t

q(s)ds

∣∣∣∣∣

[(
β − α

)3 + 8
√
15
(
β − α

)] ≥ 1. (3.6)
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If x(i)(β) = 0, for i = 0, 1, 2 and x′′(α) = 0, then

1

4
√
15

max
t∈[α,β]

∣
∣
∣
∣
∣

∫ t

α

q(s)ds

∣
∣
∣
∣
∣

[(
β − α

)3 + 8
√
15
(
β − α

)] ≥ 1. (3.7)

As a special case of Theorem 2.11, if r(t) = 1, we have the following result.

Theorem 3.3. Suppose that x is a nontrivial solution of (3.1). If x(i)(0) = 0, for i = 0, 1, 2 and
x′′(β) = 0, then

max
t∈[0,β]

∣
∣
∣
∣
∣

∫ t

0
q(s)ds

∣
∣
∣
∣
∣

[
1

4
√
15

βγ((3γ+3)/(γ+1)) +
1

42
√
3
β2γ−1+2/γ

]
≥ 1. (3.8)

Example 3.4. Consider the equation

x(4)(t) + cos(αt)x(t) = 0, 0 ≤ t ≤ β, (3.9)

where λ and α are positive constants. Theorem 3.3 gives that if the solution of (3.9) satisfies
x(i)(0) = 0, for i = 0, 1, 2 and x′′(β) = 0, then

max
t∈[α,β]

∣∣∣∣∣

∫ t

0
q(t)dt

∣∣∣∣∣
= max

t∈[0,β]

∣∣∣∣∣

∫ t

0
cos(αt)dt

∣∣∣∣∣
:=

1
α
≥ 4

√
15 + 42

√
3

β3
. (3.10)

That is β ≥ (4
√
15 + 42

√
3)

1/3
α1/3.

Using the definitions of the functions P1,0 and P2,0 and putting r(t) = 1, we see after
simplifications that

P1,0(t) :=
∫ t

α

(t − s)2(γ+1)/γds =
(t − α)(3γ+2)
(
3γ + 2

) ,

P2,0(t) :=
∫β

t

(s − t)2(γ+1)/γds =

(
β − t

)(3γ+2)
(
3γ + 2

) .

(3.11)

The condition (2.57) is satisfied when (τ − α)(3γ+2)/γ = (β − τ)(3γ+2)/γ . This in fact is satisfied
when τ = (α + β)/2. In this case, we see that

P
(
α, β
)
=

γ

2(3γ+2)/γ
(
3γ + 2

)
(
β − α

)(3γ+2)/γ
. (3.12)

Also, when r(t) = 1, one can get that

P ∗(α, β
)
=
(

γ

2γ + 1

)γ−1(β − α

2

)(2γ+1)(γ−1)/γ+1
. (3.13)
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In this case, we have that

Φ(Q, 1) :=
Λ
2γ

[∫β

α

|Q(t)|(γ+1)/γPγ(α, β
)
dt

]γ/(γ+1)
,

Ψ(Q, 1) := Λ

[∫β

α

|Q(t)|(γ+1)/γP ∗(α, β
)
dt

]γ/(γ+1)
.

(3.14)

As a special case of Theorem 2.15, if r(t) = 1, then we have the following result.

Theorem 3.5. Assume that r(t) > 0, Q′(t) = q(t), and x(t) is a nontrivial solution of (3.1). If
x(i)(α) = 0 = x(i)(β) for i = 0, 1, 2, then

Φ(Q, 1) + γ
(
γ + 1

)γ+1Ψ(Q, 1) ≥ 1. (3.15)

As a special case when γ = 1, we see that

Φ(Q, 1) ≤ 1
80

√
5max
t∈[α,β]

∣∣∣∣∣

∫ t

q(t)dt

∣∣∣∣∣
× (β − α

)3
,

Ψ(Q, 1) ≤ 1
2
max
t∈[α,β]

∣∣∣∣∣

∫ t

q(t)dt

∣∣∣∣∣
(
β − α

)
.

(3.16)

This gives us the following result for (3.5).

Theorem 3.6. Assume that r(t) > 0, Q′(t) = q(t), and x(t) is a nontrivial solution of (3.5). If
x(i)(α) = 0 = x(i)(β) for i = 0, 1, 2, then

max
t∈[α,β]

∣∣∣∣∣

∫ t

q(t)dt

∣∣∣∣∣

[
1
80

√
5
(
β − α

)3 + 2
(
β − α

)
]
≥ 1. (3.17)

One can also use the rest of theorems to get some new results and due to the limited
space the details are left to the reader. The following example illustrates the result.

Example 3.7. Consider the equation

x(4)(t) + λcos2(αt)x(t) = 0, 0 ≤ t ≤ π, (3.18)
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where λ and α are positive constants. If x(t) is a solution of (3.18), which satisfies x(i)(0) =
x(i)(π) = 0 for i = 0, 1, 2, then

λmax
t∈[0,π]

∫ t

0
cos2(αt)dt = λmax

t∈[0,π]

[
1
2
t +

1
4α

sin(2αt)
]

×
[
1
80

√
5π3 + 2π

]

=
(
λπ

2
+

λ

4α

)
×
[
1
80

√
5π3 + 2π

]
.

(3.19)

That is, λ(π/2 + 1/4α) ≥ 1/[(1/80)
√
5π3 + 2π].

It will be interesting to establish some new results related to some boundary value
problems in bending of beams, see [21, 22].

Problem 1. In particular, one can consider the boundary conditions

x(α) = x′(α) = x
(
β
)
= x′(β

)
= 0, (3.20)

which correspond to a beam clamped at each end and establish some new Lyapunov’s type
inequalities. The main problem in this case that has been appeared when I tried to treat it is
the integral

∫
(x′′′)γdt. Note that this integral is trivial if γ = 1. So to complete the proof, one

should give a relation between this integral and (x′′)γ .

Problem 2. One can also consider the boundary conditions

x(α) = x′(α) = x′′(β
)
= x′′′(β

)
= 0, (3.21)

which correspond to a beam clamped at t = α and free at t = β.

Remark 3.8. The study of the boundary conditions x(β) = x′(β) = x′′(α) = x′′′(α) = 0, which
correspond to a beam clamped at t = β and free at t = α, and the boundary conditions x(α) =
x′′(α) = x(β) = x′′(β) = 0, which correspond to a beam hinged or supported at both ends
will be similar to the proof of the boundary conditions (3.20)-(3.21) and will be left to the
interested reader. For more discussions of boundary conditions of the bending of beams, we
refer to [21, 22].
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