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This paper mainly investigates the lag synchronization of nonlinear coupled complex networks
using methods that are based on pinning control, where the weight configuration matrix is not
necessarily symmetric or irreducible. We change the control strength into a parameter concerning
time t, by using the Lyapunov direct method, some sufficient conditions of lag synchronization are
obtained. To validate the proposed method, numerical simulation examples are provided to verify
the correctness and effectiveness of the proposed scheme.

1. Introduction

In recent years, a great deal of attention has been paid to the investigation of complex
networks in various fields. In fact, complex networks are shown to widely exist in our life.
Common examples of complex networks include the Internet, the World Wide Web (WWW),
food webs, scientific citation webs, as well as many other systems that are made up of a large
number of intricately connected parts. Indeed, complex networks are an important part of
our daily lives.

Synchronization of complex networks has been one of the focal points in many
research and application fields. Synchronization has been studied from various angles and
a variety of different synchronization phenomena have been discovered, such as complete
synchronization (CS), phase synchronization (PS), lag synchronization (LS), generalized
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synchronization (GS), anticipatory synchronization, antiphase synchronization, clustering
synchronization, projective synchronization, and others [1–15]. It is worthmentioning that, in
many practical situations, a propagation delay will appear in the electronic implementation
of dynamical systems. Therefore, it is very important to investigate the lag synchronizationa
few results have been reported. Guo [16] investigated the lag synchronization of complex
networks via pinning control. Without assuming the symmetry and irreducibility of the
coupling matrix, sufficient conditions of lag synchronization are obtained by adding
controllers to a part of nodes. Particularly, the following two questions are solved: (1)
How many controllers are needed to pin a coupled complex network to a homogeneous
solution? (2) how should we distribute these controllers? Shahverdiev et al. [17] investigated
lag synchronization between unidirectionally coupled Ikeda systems with time delay via
feedback control techniques; Yang and Cao [18] studied the exponential lag synchronization
of a class of chaotic delayed neural networks with impulsive effects. Some sufficient
conditions are established by the stability analysis of impulsive differential equations. Li
et al. [19] considered the lag synchronization issue of coupled time-delayed systems with
chaos, applied proposed lag synchronization strategies towards the secure communication.
Wang and Shi [20] investigated the chaotic bursting lag synchronization of Hindmarsh-Rose
system via a single controller. Zhou et al. [21] investigated lag synchronization of coupled
chaotic delayed neural networks without noise perturbation by using adaptive feedback
control techniques. Wang et al. [22] investigated lag synchronization of chaotic systems with
parameter mismatches. Sun and Cao [23] and Yu and Cao [24] researched the adaptive lag
synchronization of unknown chaotic delayed neural networks.

It is noticed that almost all the regimes of lag synchronization mentioned above
used the method of adding controllers to all the nodes to make complex networks get
synchronized. As we know now, the real-world complex networks normally have a large
number of nodes. Therefore, for the complexity of the dynamical network, it is difficult to
realize the synchronization by adding controllers to all nodes. To reduce the number of the
controllers, a natural way is using pinning control method [25–29].

Motivated by the above discussions, in this paper, we work on the lag synchronization
of nonlinear coupled complex networks via pinning control method. The main contributions
of this paper are three fold. (1) This paper deals with the lay synchronization problem
for nonlinear coupled complex networks. We change the control strength into a parameter
concerning time t, some sufficient conditions for the synchronization are derived by
constructing an effective control scheme. Particularly, the weight configuration matrix is not
necessarily symmetric or irreducible. (2) Compared with some similar designs, our pinning
controllers are very simple. (3) Generally, previous works require the coupling strength
c to be large so that the synchronization of complex networks can be realized. However,
there exists a drawback as c becomes larger. This equivalently makes all weights larger
simultaneously. This must raise the synchronization cost. In this paper, we show that, as a
parameter, ε(t) > 0 can be used to complete the task with a lower cost. Numerical examples
are also provided to demonstrate the effectiveness of the theory. This work improves the
current results that we have.

The rest of this paper is organized as follows. The network model is introduced
and some necessary definitions, lemmas, and hypotheses are given in Section 2. The lag
synchronization of the coupled complex networks is discussed in Section 3. Examples and
their simulations are obtained in Section 4. Finally, conclusions are drawn in Section 5.
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2. Model and Preliminaries

Now we consider the nonlinear coupled complex networks consisting of m identical nodes
that are n-dimensional dynamical units. The model is described as

ẋi(t) = f(t, xi(t)) + c
m∑

j=1

aijg
(
xj(t)

)
, i = 1, . . . , m, (2.1)

where xi(t) = (xi1(t), xi2(t), . . . , xin(t))
T ∈ Rn is the state vector of node i; f : Rn → Rn

standing for the activity of an individual subsystem is a vector value function. g(•) is
some nonlinear function reflecting the nonlinear coupling relationship between those nodes.
A = (aij)m×m is the corresponding coupling matrix that satisfies aij ≥ 0(i /= j), denoting the
coupling coefficients, and aii = −∑m

j=1,j /= i aji, for i, j = 1, 2, . . . , m and c is the coupling strength
and will be fixed in this paper.

Based on the system above, we construct a response system whose state variables are
denoted by yi(i = 1, 2, . . . , m), whereas (2.1) is considered as the drive system with state
variables denoted by xi(i = 1, 2, . . . , m). In the response network, we add controllers to a
part of the nodes which will be much more practical. Without loss of generality, we add the
controllers to the first m1 nodes (1 ≤ m1 ≤ m). Therefore, the response system with delay
feedback can be described as

ẏi(t) = f
(
t, yi(t)

)
+ c

m∑

j=1

aijg
(
yj(t)

) − cε(t)
(
g
(
yi(t)

) − g(xi(t − τ))
)
, i = 1, . . . , m1

ẏi(t) = f
(
t, yi(t)

)
+ c

m∑

j=1

aijg
(
yj(t)

)
, i = m1 + 1, . . . , m,

(2.2)

where τ > 0 is the time delay, ε(t) > 0 and ε̇(t) =
∑m1

i=1 δx
T
i (t)Pδxi(t). Define δxi(t) = yi(t) −

xi(t − τ) and δg(xi(t)) = g(yi(t)) − g(xi(t − τ)); then we have the error system as

δẋi(t) = f
(
t, yi(t)

) − f(t, xi(t − τ)) + c
m∑

j=1

ãijδg
(
xj(t)

)
, i = 1, . . . , m, (2.3)

where ãii = aii − ε(t), i = 1, . . . , m1 and ãij = aij otherwise.
Now, we introduce some definitions, assumptions, and lemmas that will be required

throughout the paper.

Definition 2.1 (see [30]). The drive system (2.1) is said to lag synchronize with the response
system (2.2) at time τ if yi(t) − xi(t − τ) → 0, t → ∞, i = 1, . . . , m, where τ is a given positive
time delay.

Lemma 2.2 (see [31]). Assuming that A = (aij)n×n satisfies the following conditions.

(1) aij ≥ 0, (i /= j), aii = −Σn
j=1,i /= j aij , i, j = 1, 2, . . . , n.
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(2) A is irreducible. Then, one has

(i) real parts of the eigenvalues of A are all negative except an eigenvalue 0 with
multiplicity 1,

(ii)A has the right eigenvector (1, 1, . . . , 1)T corresponding to the eigenvalue 0,
(iii) let ξ = (ξ1, ξ2, . . . , ξn)

T be the left eigenvector of A corresponding to the eigenvalue
0, ξi > 0, i = 1, . . . n for convenience, one writes Ξ = diag{ξ1, . . . , ξn}.

Lemma 2.3 (see [32]). If A = (aij)n×n is an irreducible matrix and satisfies aij = aji ≥ 0,
for i /= j, and aii = −Σn

j=1,i /= j aij , i, j = 1, 2, . . . , n then, all eigenvalues of the matrix Ã = A −
diag(k1, k2, . . . , km1 , 0, . . . , 0) are negative, where k1, k2, . . . , km1 are positive constants.

Assumption 2.4 (see [33]). The function f(•) ∈ QUAD(P,Δ, η) if there exists a positive
definite diagonal matrix P = diag(p1, . . . , pn), a diagonal matrix Δ = diag(Δ1, . . . ,Δn), and
a scalar η > 0 such that (x − y)TP(f(x) − f(y) −Δx + Δy) ≤ −η(x − y)T (x − y) holds for any
x, y ∈ Rn, t > 0.

Assumption 2.5 (see [34] (Global Lipschitz Condition)). Suppose that there exist nonnegative
constants γ , for all ∀t ∈ R+, such that for any time-varying vectors x(t), y(t) ∈ Rn

∥∥g(x) − g
(
y
)∥∥ ≤ γ

∥∥x − y
∥∥, (2.4)

where ‖‖ denotes the 2-norm throughout the paper.
For the convenience of later use, we introduce some notations:

δx(t) =
[
δx1(t)T , . . . , δxm(t)T

]T
, δx̃k(t) =

[
δxk

1 (t), . . . , δx
k
m(t)

]T
, k = 1, . . . , n,

δg
(
x̃k(t)

)
=
[
δg

(
xk
1 (t)

)
, . . . , δg

(
xk
m(t)

)]
, k = 1, . . . , n.

(2.5)

3. Main Results

According to proposition in [16], we can get that the matrix ΞA is zero row sum. Moreover,
due to A being an irreducible coupling matrix and Ξ a positive diagonal matrix, it is easy to
verify that ΞA is also irreducible and the matrix ΞA is negative definite.

Theorem 3.1. Suppose that Assumptions 2.4 and 2.5 hold and the coupling matrix A is irreducible.
If one has

ΔkΞ + cγ
(
ΞÃ

)
≤ 0, k = 1, . . . , n (3.1)

then, the drive system (2.1) lag synchronization with the response system (2.2) at time τ .

Proof. Choose the following Lyapunov functional candidate:

V (t) =
1
2

m∑

i=1

ξiδx
T
i (t)Pδxi(t). (3.2)
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Differentiating V (t) with respect to time along the solution of (2.3) yields

V̇ (t) =
m∑

i=1

ξiδx
T
i (t)Pδẋ

T
i (t)

=
m∑

i=1

ξiδx
T
i (t)P

⎡

⎣f
(
t, yi(t)

) − f(t, xi(t − τ)) + c
m∑

j=1

ãijδg
(
xj(t)

)
⎤

⎦.

(3.3)

By the Assumption 2.4 and Lemmas 2.2 and 2.3, we obtain

V̇ (t) ≤ − η
m∑

i=1

ξiδx
T
i (t)δxi(t) +

m∑

i=1

ξiδx
T
i (t)PΔδxi(t) + c

m∑

i=1

ξiδx
T
i (t)P

m∑

j=1

ãijδg
(
xj(t)

)

≤ − η
m∑

i=1

ξiδx
T
i (t)δxi(t) +

n∑

k=1

pkΔk

(
δx̃k(t)

)T
Ξδx̃k(t) + c

n∑

k=1

pk
(
δx̃k(t)

)T
ΞÃδg

(
x̃k(t)

)
.

(3.4)

By the Assumption 2.5, we obtain

V̇ (t) ≤ −η
m∑

i=1

ξiδx
T
i (t)δxi(t) +

n∑

k=1

pk
(
δx̃k(t)

)T[
ΔkΞ + cγ

(
ΞÃ

)]
δx̃k(t). (3.5)

Therefore, if we have ΔkΞ + cγ(ΞÃ) ≤ 0, k = 1, . . . , n then

V̇ (t) ≤ 0. (3.6)

Theorem 3.1 is proved completely.

Theorem 3.2. Suppose that Assumptions 2.4 and 2.5 hold and the coupling matrix A is reducible. If
one has when

ΔkΞ + cγΞA − cqΛ < 0 k = 1, . . . , n, (3.7)

whereΛ =
(

Im1×m1 0
0 0

)

m×m
, then, the drive system (2.1) lag synchronize with the response system (2.2)

at time τ .

Proof. We consider the following system:

δxi(t) = f
(
t, yi(t)

) − f(t, xi(t − τ)) + c
m∑
j=1

aijδg
(
xj(t)

)

−cε(t)(g(yi(t)
) − g(xi(t − τ))

)
, i = 1, . . . , m1

δxi(t) = f
(
t, yi(t)

) − f(t, xi(t − τ)) + c
m∑

j=1

aijδg
(
xj(t)

)
, i = m1 + 1, . . . , m.

(3.8)
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Choose the following Lyapunov functional candidate:

V (t) =
1
2

m∑

i=1

ξiδx
T
i (t)Pδxi(t) +

c

2

m1∑

i=1

(
γξiε(t) − q

)2

γξi
, (3.9)

where q > 0.

Differentiating V1(t)with respect to time along the solution of (3.8) yields

V̇ (t) =
m∑

i=1

ξiδx
T
i (t)Pδẋ

T
i (t) + c

m1∑

i=1

(
γξiε(t) − q

)
ε̇(t)

=
m∑

i=1

ξiδx
T
i (t)P

[
f
(
t, yi(t)

) − f(t, xi(t − τ)) + c
m∑

i=1

aijδg
(
xj(t)

)

−cε(t)(g(yi(t)
) − g(xi(t − τ))

)
]
+ c

m1∑

i=1

(
γξiε(t) − q

)
ε̇(t)

=
m∑

i=1

ξiδx
T
i (t)P

[
f
(
t, yi(t)

) − f(t, xi(t − τ)) −Δδxi(t)
]
+

m∑

i=1

ξiδx
T
i (t)PΔδxi(t)

+ c
m∑

i=1

ξiδx
T
i (t)P

m∑

i=1

aijδg
(
xj(t)

)
+ c

m1∑

i=1

(
γξiε(t) − q

)
ε̇(t)

− c
m1∑

i=1

ξiδx
T
i (t)Pε(t)

(
g
(
yi(t)

) − g(xi(t − τ))
)
.

(3.10)

By the Assumption 2.4, we obtain

V̇ (t) ≤ − η
m∑

i=1

ξiδx
T
i (t)δxi(t) +

n∑

k=1

pk
(
δx̃k(t)

)T
(ΔkΞ)δx̃k(t) + c

m∑

i=1

ξiδx
T
i (t)P

m∑

i=1

aijδg
(
xj(t)

)

− cγ
m1∑

i=1

ξiδx
T
i (t)Pε(t)δxi(t) + cγ

m1∑

i=1

ξiε(t)ε̇(t) − c
m1∑

i=1

qε̇(t)

≤ − η
m∑

i=1

ξiδx
T
i (t)δxi(t) +

n∑

k=1

pk
(
δx̃k(t)

)T
(ΔkΞ)δx̃k(t)

+ c
n∑

k=1

pk
(
δx̃k(t)

)T
(ΞA)δg

(
x̃k(t)

)
− cq

n∑

k=1

pk
(
δx̃k(t)

)T
Λ
(
δx̃k(t)

)
.

(3.11)
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By the Assumption 2.5, we obtain

V̇ (t) ≤ −η
m∑

i=1

ξiδx
T
i (t)δxi(t) +

n∑

k=1

pk
(
δx̃k(t)

)T(
ΔkΞ + cγΞA − cqΛ

)(
δx̃k(t)

)
. (3.12)

Therefore, if we have ΔkΞ + cγΞA − cqΛ < 0, k = 1, . . . , n then

V̇ (t) ≤ 0, (3.13)

Theorem 3.2 is proved completely.

Remark 3.3. Compared with the control methods in the literature [16], the work requires
the coupling strength c and ki(ui(t) = ki(xi(t − τ) − yi(t)), where ki are positive constants)
to be large so that the lag synchronization of complex networks can be realized. However,
there exists a drawback as c becomes larger. This equivalently makes all weights larger
simultaneously. This must raise the synchronization cost. In this paper, we show that, as a
parameter, ε(t) > 0 can be used to complete the task with a lower cost.

4. Illustrative Examples

In this section, a numerical example will be given to demonstrate the validity of the
lag synchronization criteria obtained in the previous sections. Considering the following
network:

ẏi(t) = f
(
t, yi(t)

)
+ c

m∑

j=1

aijg
(
yj(t)

) − cε(t)
(
g
(
yi(t)

) − g(xi(t − τ))
)
, i = 1, . . . , m1

ẏi(t) = f
(
t, yi(t)

)
+ c

m∑

j=1

aijg
(
yj(t)

)
, i = m1 + 1, . . . , m,

(4.1)

where i = 1, 2, . . . , m, f(t, yi(t)) = Dyi(t) + h(yi(t)) + B, yi(t) = (yi1(t), yi2(t), yi3(t))
T , Here

B = [0, 0, 0.1]T , h(xi) = (0, 0, yi1yi3)
T , m1 = 1, c = 0.5, τ = 0.01, g(y) = cosy + 3y. And

D =

⎡

⎣
0 −1 −1
1 0.1 0
1 0 −10

⎤

⎦, A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−6 1 2 1 1 1
1 −5 2 1 0 1
2 2 −7 0 1 2
1 1 0 −7 2 3
1 0 1 2 −5 1
1 1 2 3 1 −8

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (4.2)
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Figure 1: The chaotic behavior of time-delayed Rossler system.

Figure 2: Time evolution of the lag synchronization errors E(t).

The following quantities are utilized to measure the process of lag synchronization

E(t) =
N∑

i=1

∥∥yi(t) − xi(t − τ)
∥∥

e1(t) =
∥∥y1(t) − x1(t − τ)

∥∥,

(4.3)

where E(t) is the error of lag synchronization for this controlled network (2.2); e1(t) is used
to display the synchronization process of the first pinned node. The simulation results are
given in Figures 1, 2, 3, and 4. From Figure 4, we see the time evolution of control strength.
The numerical results show that the theoretical results are effective.

Remark 4.1. In this paper we designed controllers to ensure that the special networks could
get lag synchronization. It indeed provides some new insights for the future practical
engineering design.
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Figure 3: Time evolution of the lag synchronization errors e1(t).
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Figure 4: Time evolution of control strength ε(t).

5. Conclusions

The problems of lag synchronization and pinning control for the nonlinear coupled complex
networks are investigated. It is shown that lag synchronization can be realized via pinning
controller. The study showed that the use of simple control law helps to derive sufficient
criteria which ensure that the lag synchronization of the network model is derived. In
addition, numerical simulations were performed to verify the effectiveness of the theoretical
results.
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