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Abstract. 
We suggest and analyze a modified extragradient method for solving variational inequalities, which is convergent strongly to the minimum-norm solution of some variational inequality in an infinite-dimensional Hilbert space.

1. Introduction
Let 
	
		
			

				𝐶
			

		
	
 be a closed convex subset of a real Hilbert space 
	
		
			

				𝐻
			

		
	
. A mapping 
	
		
			
				𝐴
				∶
				𝐶
				→
				𝐻
			

		
	
 is called 
	
		
			

				𝛼
			

		
	
-inverse-strongly monotone if there exists a positive real number 
	
		
			

				𝛼
			

		
	
 such that 
	
 		
 			
				(
				1
				.
				1
				)
			
 		
	

	
		
			
				⟨
				𝐴
				𝑢
				−
				𝐴
				𝑣
				,
				𝑢
				−
				𝑣
				⟩
				≥
				𝛼
				‖
				𝐴
				𝑢
				−
				𝐴
				𝑣
				‖
			

			

				2
			

			
				,
				∀
				𝑢
				,
				𝑣
				∈
				𝐶
				.
			

		
	

					The variational inequality problem is to find 
	
		
			
				𝑢
				∈
				𝐶
			

		
	
 such that 
	
 		
 			
				(
				1
				.
				2
				)
			
 		
	

	
		
			
				⟨
				𝐴
				𝑢
				,
				𝑣
				−
				𝑢
				⟩
				≥
				0
				,
				∀
				𝑣
				∈
				𝐶
				.
			

		
	

					The set of solutions of the variational inequality problem is denoted by 
	
		
			
				V
				I
				(
				𝐶
				,
				𝐴
				)
			

		
	
. It is well known that variational inequality theory has emerged as an important tool in studying a wide class of obstacle, unilateral, and equilibrium problems, which arise in several branches of pure and applied sciences in a unified and general framework. Several numerical methods have been developed for solving variational inequalities and related optimization problems; see [1–36] and the references therein.
It is well known that variational inequalities are equivalent to the fixed point problem. This alternative formulation has been used to study the existence of a solution of the variational inequality as well as to develop several numerical methods. Using this equivalence, one can suggest the following iterative method. 
Algorithm 1.1. For a given 
	
		
			

				𝑢
			

			

				0
			

			
				∈
				𝐶
			

		
	
, calculate the approximate solution 
	
		
			

				𝑢
			

			
				𝑛
				+
				1
			

		
	
 by the iterative scheme 
							
	
 		
 			
				(
				1
				.
				3
				)
			
 		
	

	
		
			

				𝑢
			

			
				𝑛
				+
				1
			

			
				=
				𝑃
			

			

				𝐶
			

			
				
				𝑢
			

			

				𝑛
			

			
				−
				𝜆
				𝐴
				𝑢
			

			

				𝑛
			

			
				
				,
				𝑛
				=
				0
				,
				1
				,
				2
				,
				…
				.
			

		
	

						It is well known that the convergence of Algorithm 1.1 requires that the operator 
	
		
			

				𝐴
			

		
	
 must be both strongly monotone and Lipschitz continuous. These restrict conditions rules out its applications in several important problems. To overcome these drawbacks, Korpelevič suggested in [8] an algorithm of the form 
							
	
 		
 			
				(
				1
				.
				4
				)
			
 		
	

	
		
			

				𝑦
			

			

				𝑛
			

			
				=
				𝑃
			

			

				𝐶
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝜆
				𝐴
				𝑥
			

			

				𝑛
			

			
				
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				=
				𝑃
			

			

				𝐶
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝜆
				𝐴
				𝑦
			

			

				𝑛
			

			
				
				,
				𝑛
				≥
				0
				.
			

		
	

						Noor [2] further suggested and analyzed the following new iterative methods for solving the variational inequality (1.2).
Algorithm 1.2. For a given 
	
		
			

				𝑢
			

			

				0
			

			
				∈
				𝐶
			

		
	
, calculate the approximate solution 
	
		
			

				𝑢
			

			
				𝑛
				+
				1
			

		
	
 by the iterative scheme 
							
	
 		
 			
				(
				1
				.
				5
				)
			
 		
	

	
		
			

				𝑢
			

			
				𝑛
				+
				1
			

			
				=
				𝑃
			

			

				𝐶
			

			
				
				𝑤
			

			

				𝑛
			

			
				−
				𝜆
				𝐴
				𝑤
			

			

				𝑛
			

			
				
				,
				𝑤
			

			

				𝑛
			

			
				=
				𝑃
			

			

				𝐶
			

			
				
				𝑢
			

			

				𝑛
			

			
				−
				𝜆
				𝐴
				𝑢
			

			

				𝑛
			

			
				
				,
				𝑛
				=
				0
				,
				1
				,
				2
				,
				…
				,
			

		
	

						which is known as the modified extragradient method. For the convergence analysis of Algorithm 1.2, see Noor [1, 2] and the references therein. We would like to point out that Algorithm 1.2 is quite different from the method of Korpelevič [8]. However, Algorithm 1.2 fails, in general, to converge strongly in the setting of infinite-dimensional Hilbert spaces.In this paper, we suggest and consider a very simple modified extragradient method which is convergent strongly to the minimum-norm solution of variational inequality (1.2) in an infinite-dimensional Hilbert space. This new method includes the method of Noor [2] as a special case.
2. Preliminaries
Let 
	
		
			

				𝐻
			

		
	
 be a real Hilbert space with inner product 
	
		
			
				⟨
				⋅
				,
				⋅
				⟩
			

		
	
 and norm 
	
		
			
				‖
				⋅
				‖
			

		
	
, and let 
	
		
			

				𝐶
			

		
	
 be a closed convex subset of 
	
		
			

				𝐻
			

		
	
. It is well known that, for any 
	
		
			
				𝑢
				∈
				𝐻
			

		
	
, there exists a unique 
	
		
			

				𝑢
			

			

				0
			

			
				∈
				𝐶
			

		
	
 such that 
	
 		
 			
				(
				2
				.
				1
				)
			
 		
	

	
		
			
				‖
				‖
				𝑢
				−
				𝑢
			

			

				0
			

			
				‖
				‖
				=
				i
				n
				f
				{
				‖
				𝑢
				−
				𝑥
				‖
				∶
				𝑥
				∈
				𝐶
				}
				.
			

		
	

					We denote 
	
		
			

				𝑢
			

			

				0
			

		
	
 by 
	
		
			

				𝑃
			

			

				𝐶
			

			

				𝑢
			

		
	
, where 
	
		
			

				𝑃
			

			

				𝐶
			

		
	
 is called the metric projection of 
	
		
			

				𝐻
			

		
	
 onto 
	
		
			

				𝐶
			

		
	
. The metric projection 
	
		
			

				𝑃
			

			

				𝐶
			

		
	
 of 
	
		
			

				𝐻
			

		
	
 onto 
	
		
			

				𝐶
			

		
	
 has the following basic properties:(i)
	
		
			
				‖
				𝑃
			

			

				𝐶
			

			
				𝑥
				−
				𝑃
			

			

				𝐶
			

			
				𝑦
				‖
				≤
				‖
				𝑥
				−
				𝑦
				‖
			

		
	
 for all 
	
		
			
				𝑥
				,
				𝑦
				∈
				𝐻
			

		
	
;(ii)
	
		
			
				⟨
				𝑥
				−
				𝑦
				,
				𝑃
			

			

				𝐶
			

			
				𝑥
				−
				𝑃
			

			

				𝐶
			

			
				𝑦
				⟩
				≥
				‖
				𝑃
			

			

				𝐶
			

			
				𝑥
				−
				𝑃
			

			

				𝐶
			

			
				𝑦
				‖
			

			

				2
			

		
	
 for every 
	
		
			
				𝑥
				,
				𝑦
				∈
				𝐻
			

		
	
;(iii)
	
		
			
				⟨
				𝑥
				−
				𝑃
			

			

				𝐶
			

			
				𝑥
				,
				𝑦
				−
				𝑃
			

			

				𝐶
			

			
				𝑥
				⟩
				≤
				0
			

		
	
 for all 
	
		
			
				𝑥
				∈
				𝐻
			

		
	
, 
	
		
			
				𝑦
				∈
				𝐶
			

		
	
. 
We need the following lemma for proving our main results.
Lemma 2.1 (see [15]).  Assume that  
	
		
			
				{
				𝑎
			

			

				𝑛
			

			

				}
			

		
	
 is a sequence of nonnegative real numbers such that  
							
	
 		
 			
				(
				2
				.
				2
				)
			
 		
	

	
		
			

				𝑎
			

			
				𝑛
				+
				1
			

			
				≤
				
				1
				−
				𝛾
			

			

				𝑛
			

			
				
				𝑎
			

			

				𝑛
			

			
				+
				𝛿
			

			

				𝑛
			

			

				,
			

		
	

						where 
	
		
			
				{
				𝛾
			

			

				𝑛
			

			

				}
			

		
	
 is a sequence in 
	
		
			
				(
				0
				,
				1
				)
			

		
	
 and 
	
		
			
				{
				𝛿
			

			

				𝑛
			

			

				}
			

		
	
 is a sequence such that (1)
	
		
			

				∑
			

			
				∞
				𝑛
				=
				1
			

			

				𝛾
			

			

				𝑛
			

			
				=
				∞
			

		
	
;(2)
	
		
			
				l
				i
				m
				s
				u
				p
			

			
				𝑛
				→
				∞
			

			

				𝛿
			

			

				𝑛
			

			
				/
				𝛾
			

			

				𝑛
			

			
				≤
				0
			

		
	
 or 
	
		
			

				∑
			

			
				∞
				𝑛
				=
				1
			

			
				|
				𝛿
			

			

				𝑛
			

			
				|
				<
				∞
			

		
	
.Then 
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			

				𝑎
			

			

				𝑛
			

			
				=
				0
			

		
	
. 
3. Main Result
In this section we will state and prove our main result.
Theorem 3.1.  Let  
	
		
			

				𝐶
			

		
	
 be a closed convex subset of a real Hilbert space  
	
		
			

				𝐻
			

		
	
. Let  
	
		
			
				𝐴
				∶
				𝐶
				→
				𝐻
			

		
	
 be an  
	
		
			

				𝛼
			

		
	
-inverse-strongly monotone mapping. Suppose that  
	
		
			
				V
				I
				(
				𝐶
				,
				𝐴
				)
				≠
				∅
			

		
	
. For given  
	
		
			

				𝑥
			

			

				0
			

			
				∈
				𝐶
			

		
	
 arbitrarily, define a sequence  
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 iteratively by  
							
	
 		
 			
				(
				3
				.
				1
				)
			
 		
	

	
		
			

				𝑦
			

			

				𝑛
			

			
				=
				𝑃
			

			

				𝐶
			

			
				
				
				1
				−
				𝛼
			

			

				𝑛
			

			
				𝑥
				
				
			

			

				𝑛
			

			
				−
				𝜆
				𝐴
				𝑥
			

			

				𝑛
			

			
				,
				𝑥
				
				
			

			
				𝑛
				+
				1
			

			
				=
				𝑃
			

			

				𝐶
			

			
				
				𝑦
			

			

				𝑛
			

			
				−
				𝜆
				𝐴
				𝑦
			

			

				𝑛
			

			
				
				,
				𝑛
				≥
				0
				,
			

		
	

						where 
	
		
			
				{
				𝛼
			

			

				𝑛
			

			

				}
			

		
	
 is a sequence in 
	
		
			
				(
				0
				,
				1
				)
			

		
	
 and 
	
		
			
				𝜆
				∈
				[
				𝑎
				,
				𝑏
				]
				⊂
				(
				0
				,
				2
				𝛼
				)
			

		
	
 is a constant. Assume the following conditions are satisfied: (
	
		
			
				𝐶
				1
			

		
	
): 
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			

				𝛼
			

			

				𝑛
			

			
				=
				0
			

		
	
;(
	
		
			
				𝐶
				2
			

		
	
): 
	
		
			

				∑
			

			
				∞
				𝑛
				=
				1
			

			

				𝛼
			

			

				𝑛
			

			
				=
				∞
			

		
	
; (
	
		
			
				𝐶
				3
			

		
	
):  
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				(
				𝛼
			

			
				𝑛
				+
				1
			

			
				/
				𝛼
			

			

				𝑛
			

			
				)
				=
				1
			

		
	
. Then the sequence 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 generated by (3.1) converges strongly to 
	
		
			

				𝑃
			

			
				V
				I
				(
				𝐶
				,
				𝐴
				)
			

			
				(
				0
				)
			

		
	
 which is the minimum-norm element in 
	
		
			
				V
				I
				(
				𝐶
				,
				𝐴
				)
			

		
	
.
We will divide our detailed proofs into several conclusions.
Proof. Take 
	
		
			

				𝑥
			

			

				∗
			

			
				∈
				V
				I
				(
				𝐶
				,
				𝐴
				)
			

		
	
. First we need to use the following facts: (1)
	
		
			

				𝑥
			

			

				∗
			

			
				=
				𝑃
			

			

				𝐶
			

			
				(
				𝑥
			

			

				∗
			

			
				−
				𝜆
				𝐴
				𝑥
			

			

				∗
			

			
				)
				f
				o
				r
				a
				l
				l
				𝜆
				>
				0
			

		
	
; in particular, 
	
 		
 			
				(
				3
				.
				2
				)
			
 		
	

	
		
			

				𝑥
			

			

				∗
			

			
				=
				𝑃
			

			

				𝐶
			

			
				
				𝑥
			

			

				∗
			

			
				
				−
				𝜆
				1
				−
				𝛼
			

			

				𝑛
			

			
				
				𝐴
				𝑥
			

			

				∗
			

			
				
				=
				𝑃
			

			

				𝐶
			

			
				
				𝛼
			

			

				𝑛
			

			

				𝑥
			

			

				∗
			

			
				+
				
				1
				−
				𝛼
			

			

				𝑛
			

			
				𝑥
				
				
			

			

				∗
			

			
				−
				𝜆
				𝐴
				𝑥
			

			

				∗
			

			
				
				
				,
				∀
				𝑛
				≥
				0
				;
			

		
	
(2)
	
		
			
				𝐼
				−
				𝜆
				𝐴
			

		
	
 is nonexpansive and for all 
	
		
			
				𝑥
				,
				𝑦
				∈
				𝐶
			

		
	

	
 		
 			
				(
				3
				.
				3
				)
			
 		
	

	
		
			
				‖
				(
				𝐼
				−
				𝜆
				𝐴
				)
				𝑥
				−
				(
				𝐼
				−
				𝜆
				𝐴
				)
				𝑦
				‖
			

			

				2
			

			
				≤
				‖
				𝑥
				−
				𝑦
				‖
			

			

				2
			

			
				+
				𝜆
				(
				𝜆
				−
				2
				𝛼
				)
				‖
				𝐴
				𝑥
				−
				𝐴
				𝑦
				‖
			

			

				2
			

			

				.
			

		
	

						From (3.1), we have 
							
	
 		
 			
				(
				3
				.
				4
				)
			
 		
	

	
		
			
				‖
				‖
				𝑦
			

			

				𝑛
			

			
				−
				𝑥
			

			

				∗
			

			
				‖
				‖
				=
				‖
				‖
				𝑃
			

			

				𝐶
			

			
				
				
				1
				−
				𝛼
			

			

				𝑛
			

			
				𝑥
				
				
			

			

				𝑛
			

			
				−
				𝜆
				𝐴
				𝑥
			

			

				𝑛
			

			
				
				
				−
				𝑃
			

			

				𝐶
			

			
				
				𝛼
			

			

				𝑛
			

			

				𝑥
			

			

				∗
			

			
				+
				
				1
				−
				𝛼
			

			

				𝑛
			

			
				𝑥
				
				
			

			

				∗
			

			
				−
				𝜆
				𝐴
				𝑥
			

			

				∗
			

			
				‖
				‖
				≤
				‖
				‖
				𝛼
				
				
			

			

				𝑛
			

			
				
				−
				𝑥
			

			

				∗
			

			
				
				+
				
				1
				−
				𝛼
			

			

				𝑛
			

			
				𝑥
				
				
				
			

			

				𝑛
			

			
				−
				𝜆
				𝐴
				𝑥
			

			

				𝑛
			

			
				
				−
				
				𝑥
			

			

				∗
			

			
				−
				𝜆
				𝐴
				𝑥
			

			

				∗
			

			
				‖
				‖
				
				
				≤
				𝛼
			

			

				𝑛
			

			
				‖
				𝑥
			

			

				∗
			

			
				
				‖
				+
				1
				−
				𝛼
			

			

				𝑛
			

			
				
				‖
				‖
				(
				𝐼
				−
				𝜆
				𝐴
				)
				𝑥
			

			

				𝑛
			

			
				−
				(
				𝐼
				−
				𝜆
				𝐴
				)
				𝑥
			

			

				∗
			

			
				‖
				‖
				≤
				𝛼
			

			

				𝑛
			

			
				‖
				𝑥
			

			

				∗
			

			
				
				‖
				+
				1
				−
				𝛼
			

			

				𝑛
			

			
				
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑥
			

			

				∗
			

			
				‖
				‖
				.
			

		
	

						Thus, 
							
	
 		
 			
				(
				3
				.
				5
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				∗
			

			
				‖
				‖
				=
				‖
				‖
				𝑃
			

			

				𝐶
			

			
				
				𝑦
			

			

				𝑛
			

			
				−
				𝜆
				𝐴
				𝑦
			

			

				𝑛
			

			
				
				−
				𝑃
			

			

				𝐶
			

			
				
				𝑥
			

			

				∗
			

			
				−
				𝜆
				𝐴
				𝑥
			

			

				∗
			

			
				
				‖
				‖
				≤
				‖
				‖
				
				𝑦
			

			

				𝑛
			

			
				−
				𝜆
				𝐴
				𝑦
			

			

				𝑛
			

			
				
				−
				
				𝑥
			

			

				∗
			

			
				−
				𝜆
				𝐴
				𝑥
			

			

				∗
			

			
				
				‖
				‖
				≤
				‖
				‖
				𝑦
			

			

				𝑛
			

			
				−
				𝑥
			

			

				∗
			

			
				‖
				‖
				≤
				𝛼
			

			

				𝑛
			

			
				‖
				𝑥
			

			

				∗
			

			
				
				‖
				+
				1
				−
				𝛼
			

			

				𝑛
			

			
				
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑥
			

			

				∗
			

			
				‖
				‖
				
				≤
				m
				a
				x
				‖
				𝑥
			

			

				∗
			

			
				‖
				‖
				𝑥
				‖
				,
			

			

				0
			

			
				−
				𝑥
			

			

				∗
			

			
				‖
				‖
				
				.
			

		
	

						Therefore, 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 is bounded and so are 
	
		
			
				{
				𝑦
			

			

				𝑛
			

			
				}
				,
				{
				𝐴
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
, and 
	
		
			
				{
				𝐴
				𝑦
			

			

				𝑛
			

			

				}
			

		
	
.From (3.1), we have 
							
	
 		
 			
				(
				3
				.
				6
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				=
				‖
				‖
				𝑃
			

			

				𝐶
			

			
				
				𝑦
			

			

				𝑛
			

			
				−
				𝜆
				𝐴
				𝑦
			

			

				𝑛
			

			
				
				−
				𝑃
			

			

				𝐶
			

			
				
				𝑦
			

			
				𝑛
				−
				1
			

			
				−
				𝜆
				𝐴
				𝑦
			

			
				𝑛
				−
				1
			

			
				
				‖
				‖
				≤
				‖
				‖
				
				𝑦
			

			

				𝑛
			

			
				−
				𝜆
				𝐴
				𝑦
			

			

				𝑛
			

			
				
				−
				
				𝑦
			

			
				𝑛
				−
				1
			

			
				−
				𝜆
				𝐴
				𝑦
			

			
				𝑛
				−
				1
			

			
				
				‖
				‖
				≤
				‖
				‖
				𝑦
			

			

				𝑛
			

			
				−
				𝑦
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				=
				‖
				‖
				𝑃
			

			

				𝐶
			

			
				
				
				1
				−
				𝛼
			

			

				𝑛
			

			
				𝑥
				
				
			

			

				𝑛
			

			
				−
				𝜆
				𝐴
				𝑥
			

			

				𝑛
			

			
				
				
				−
				𝑃
			

			

				𝐶
			

			
				
				
				1
				−
				𝛼
			

			
				𝑛
				−
				1
			

			
				𝑥
				
				
			

			
				𝑛
				−
				1
			

			
				−
				𝜆
				𝐴
				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				≤
				‖
				‖
				
				
				
				1
				−
				𝛼
			

			

				𝑛
			

			
				
				
				(
				𝐼
				−
				𝜆
				𝐴
				)
				𝑥
			

			

				𝑛
			

			
				−
				(
				𝐼
				−
				𝜆
				𝐴
				)
				𝑥
			

			
				𝑛
				−
				1
			

			
				
				−
				
				𝛼
			

			

				𝑛
			

			
				−
				𝛼
			

			
				𝑛
				−
				1
			

			
				
				(
				𝐼
				−
				𝜆
				𝐴
				)
				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				≤
				
				1
				−
				𝛼
			

			

				𝑛
			

			
				
				‖
				‖
				(
				𝐼
				−
				𝜆
				𝐴
				)
				𝑥
			

			

				𝑛
			

			
				−
				(
				𝐼
				−
				𝜆
				𝐴
				)
				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				+
				|
				|
				𝛼
			

			

				𝑛
			

			
				−
				𝛼
			

			
				𝑛
				−
				1
			

			
				|
				|
				‖
				‖
				(
				𝐼
				−
				𝜆
				𝐴
				)
				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				≤
				
				1
				−
				𝛼
			

			

				𝑛
			

			
				
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				+
				|
				|
				𝛼
			

			

				𝑛
			

			
				−
				𝛼
			

			
				𝑛
				−
				1
			

			
				|
				|
				𝑀
				,
			

		
	

						where 
	
		
			
				𝑀
				>
				0
			

		
	
 is a constant such that 
	
		
			
				s
				u
				p
			

			

				𝑛
			

			
				{
				‖
				(
				𝐼
				−
				𝜆
				𝐴
				)
				𝑥
			

			

				𝑛
			

			
				‖
				,
				‖
				(
				𝐼
				−
				𝜆
				𝐴
				)
				𝑥
			

			

				𝑛
			

			
				‖
				(
				‖
				(
				𝐼
				−
				𝜆
				𝐴
				)
				𝑥
			

			

				𝑛
			

			
				‖
				+
				2
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑥
			

			

				∗
			

			
				‖
				)
				}
				≤
				𝑀
			

		
	
. Hence, by Lemma 2.1, we obtain 
							
	
 		
 			
				(
				3
				.
				7
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				=
				0
				.
			

		
	

						From (3.4), (3.5) and the convexity of the norm, we deduce 
							
	
 		
 			
				(
				3
				.
				8
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				∗
			

			
				‖
				‖
			

			

				2
			

			
				≤
				‖
				‖
				𝛼
			

			

				𝑛
			

			
				
				−
				𝑥
			

			

				∗
			

			
				
				+
				
				1
				−
				𝛼
			

			

				𝑛
			

			
				𝑥
				
				
				
			

			

				𝑛
			

			
				−
				𝜆
				𝐴
				𝑥
			

			

				𝑛
			

			
				
				−
				
				𝑥
			

			

				∗
			

			
				−
				𝜆
				𝐴
				𝑥
			

			

				∗
			

			
				‖
				‖
				
				
			

			

				2
			

			
				≤
				𝛼
			

			

				𝑛
			

			
				‖
				𝑥
			

			

				∗
			

			

				‖
			

			

				2
			

			
				+
				
				1
				−
				𝛼
			

			

				𝑛
			

			
				
				‖
				‖
				(
				𝐼
				−
				𝜆
				𝐴
				)
				𝑥
			

			

				𝑛
			

			
				−
				(
				𝐼
				−
				𝜆
				𝐴
				)
				𝑥
			

			

				∗
			

			
				‖
				‖
			

			

				2
			

			
				≤
				𝛼
			

			

				𝑛
			

			
				‖
				𝑥
			

			

				∗
			

			

				‖
			

			

				2
			

			
				+
				
				1
				−
				𝛼
			

			

				𝑛
			

			
				
				
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑥
			

			

				∗
			

			
				‖
				‖
			

			

				2
			

			
				‖
				‖
				+
				𝜆
				(
				𝜆
				−
				2
				𝛼
				)
				𝐴
				𝑥
			

			

				𝑛
			

			
				−
				𝐴
				𝑥
			

			

				∗
			

			
				‖
				‖
			

			

				2
			

			
				
				≤
				𝛼
			

			

				𝑛
			

			
				‖
				𝑥
			

			

				∗
			

			

				‖
			

			

				2
			

			
				+
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑥
			

			

				∗
			

			
				‖
				‖
			

			

				2
			

			
				+
				
				1
				−
				𝛼
			

			

				𝑛
			

			
				
				‖
				‖
				𝑎
				(
				𝑏
				−
				2
				𝛼
				)
				𝐴
				𝑥
			

			

				𝑛
			

			
				−
				𝐴
				𝑥
			

			

				∗
			

			
				‖
				‖
			

			

				2
			

			

				.
			

		
	

						Therefore, we have 
							
	
 		
 			
				(
				3
				.
				9
				)
			
 		
	

	
		
			
				
				1
				−
				𝛼
			

			

				𝑛
			

			
				
				‖
				‖
				𝑎
				(
				2
				𝛼
				−
				𝑏
				)
				𝐴
				𝑥
			

			

				𝑛
			

			
				−
				𝐴
				𝑥
			

			

				∗
			

			
				‖
				‖
			

			

				2
			

			
				≤
				𝛼
			

			

				𝑛
			

			
				‖
				𝑥
			

			

				∗
			

			

				‖
			

			

				2
			

			
				+
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑥
			

			

				∗
			

			

				‖
			

			

				2
			

			
				−
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				∗
			

			

				‖
			

			

				2
			

			
				≤
				𝛼
			

			

				𝑛
			

			
				‖
				𝑥
			

			

				∗
			

			

				‖
			

			

				2
			

			
				+
				
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑥
			

			

				∗
			

			
				‖
				‖
				+
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				∗
			

			
				‖
				‖
				
				×
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑥
			

			
				𝑛
				+
				1
			

			
				‖
				‖
				.
			

		
	

						Since 
	
		
			

				𝛼
			

			

				𝑛
			

			
				→
				0
			

		
	
 and 
	
		
			
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑥
			

			
				𝑛
				+
				1
			

			
				‖
				→
				0
			

		
	
 as 
	
		
			
				𝑛
				→
				∞
			

		
	
, we obtain 
	
		
			
				‖
				𝐴
				𝑥
			

			

				𝑛
			

			
				−
				𝐴
				𝑥
			

			

				∗
			

			
				‖
				→
				0
			

		
	
 as 
	
		
			
				𝑛
				→
				∞
			

		
	
.By the property (ii) of the metric projection 
	
		
			

				𝑃
			

			

				𝐶
			

		
	
, we have
							
	
 		
 			
				(
				3
				.
				1
				0
				)
			
 		
	

	
		
			
				‖
				‖
				𝑦
			

			

				𝑛
			

			
				−
				𝑥
			

			

				∗
			

			
				‖
				‖
			

			

				2
			

			
				=
				‖
				‖
				𝑃
			

			

				𝐶
			

			
				
				
				𝑥
				(
				1
				−
				𝛼
				)
			

			

				𝑛
			

			
				−
				𝜆
				𝐴
				𝑥
			

			

				𝑛
			

			
				
				
				−
				𝑃
			

			

				𝐶
			

			
				
				𝑥
			

			

				∗
			

			
				−
				𝜆
				𝐴
				𝑥
			

			

				∗
			

			
				
				‖
				‖
			

			

				2
			

			
				≤
				
				
				1
				−
				𝛼
			

			

				𝑛
			

			
				𝑥
				
				
			

			

				𝑛
			

			
				−
				𝜆
				𝐴
				𝑥
			

			

				𝑛
			

			
				
				−
				
				𝑥
			

			

				∗
			

			
				−
				𝜆
				𝐴
				𝑥
			

			

				∗
			

			
				
				,
				𝑦
			

			

				𝑛
			

			
				−
				𝑥
			

			

				∗
			

			
				
				=
				1
			

			
				
			
			
				2
				
				‖
				‖
				
				𝑥
			

			

				𝑛
			

			
				−
				𝜆
				𝐴
				𝑥
			

			

				𝑛
			

			
				
				−
				
				𝑥
			

			

				∗
			

			
				−
				𝜆
				𝐴
				𝑥
			

			

				∗
			

			
				
				−
				𝛼
			

			

				𝑛
			

			
				(
				𝐼
				−
				𝜆
				𝐴
				)
				𝑥
			

			

				𝑛
			

			
				‖
				‖
			

			

				2
			

			
				+
				‖
				‖
				𝑦
			

			

				𝑛
			

			
				−
				𝑥
			

			

				∗
			

			
				‖
				‖
			

			

				2
			

			
				−
				‖
				‖
				
				𝑥
			

			

				𝑛
			

			
				−
				𝜆
				𝐴
				𝑥
			

			

				𝑛
			

			
				
				−
				
				𝑥
			

			

				∗
			

			
				−
				𝜆
				𝐴
				𝑥
			

			

				∗
			

			
				
				−
				
				𝑦
			

			

				𝑛
			

			
				−
				𝑥
			

			

				∗
			

			
				
				−
				𝛼
			

			

				𝑛
			

			
				(
				𝐼
				−
				𝜆
				𝐴
				)
				𝑥
			

			

				𝑛
			

			
				‖
				‖
			

			

				2
			

			
				
				≤
				1
			

			
				
			
			
				2
				
				‖
				‖
				
				𝑥
			

			

				𝑛
			

			
				−
				𝜆
				𝐴
				𝑥
			

			

				𝑛
			

			
				
				−
				
				𝑥
			

			

				∗
			

			
				−
				𝜆
				𝐴
				𝑥
			

			

				∗
			

			
				
				‖
				‖
			

			

				2
			

			
				+
				𝛼
			

			

				𝑛
			

			
				‖
				‖
				𝑦
				𝑀
				+
			

			

				𝑛
			

			
				−
				𝑥
			

			

				∗
			

			
				‖
				‖
			

			

				2
			

			
				−
				‖
				‖
				
				𝑥
			

			

				𝑛
			

			
				−
				𝑦
			

			

				𝑛
			

			
				
				
				−
				𝜆
				𝐴
				𝑥
			

			

				𝑛
			

			
				−
				𝐴
				𝑥
			

			

				∗
			

			
				
				−
				𝛼
			

			

				𝑛
			

			
				(
				𝐼
				−
				𝜆
				𝐴
				)
				𝑥
			

			

				𝑛
			

			
				‖
				‖
			

			

				2
			

			
				
				≤
				1
			

			
				
			
			
				2
				
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑥
			

			

				∗
			

			
				‖
				‖
			

			

				2
			

			
				+
				𝛼
			

			

				𝑛
			

			
				‖
				‖
				𝑦
				𝑀
				+
			

			

				𝑛
			

			
				−
				𝑥
			

			

				∗
			

			
				‖
				‖
			

			

				2
			

			
				−
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑦
			

			

				𝑛
			

			
				‖
				‖
			

			

				2
			

			
				+
				2
				𝜆
				⟨
				𝑥
			

			

				𝑛
			

			
				−
				𝑦
			

			

				𝑛
			

			
				,
				𝐴
				𝑥
			

			

				𝑛
			

			
				−
				𝐴
				𝑥
			

			

				∗
			

			
				⟩
				+
				2
				𝛼
			

			

				𝑛
			

			
				⟨
				(
				𝐼
				−
				𝜆
				𝐴
				)
				𝑥
			

			

				𝑛
			

			
				,
				𝑥
			

			

				𝑛
			

			
				−
				𝑦
			

			

				𝑛
			

			
				⟩
				−
				‖
				‖
				𝜆
				
				𝐴
				𝑥
			

			

				𝑛
			

			
				−
				𝐴
				𝑥
			

			

				∗
			

			
				
				+
				𝛼
			

			

				𝑛
			

			
				(
				𝐼
				−
				𝜆
				𝐴
				)
				𝑥
			

			

				𝑛
			

			
				‖
				‖
			

			

				2
			

			
				
				≤
				1
			

			
				
			
			
				2
				
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑥
			

			

				∗
			

			
				‖
				‖
			

			

				2
			

			
				+
				𝛼
			

			

				𝑛
			

			
				‖
				‖
				𝑦
				𝑀
				+
			

			

				𝑛
			

			
				−
				𝑥
			

			

				∗
			

			
				‖
				‖
			

			

				2
			

			
				−
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑦
			

			

				𝑛
			

			
				‖
				‖
			

			

				2
			

			
				‖
				‖
				𝑥
				+
				2
				𝜆
			

			

				𝑛
			

			
				−
				𝑦
			

			

				𝑛
			

			
				‖
				‖
				‖
				‖
				𝐴
				𝑥
			

			

				𝑛
			

			
				−
				𝐴
				𝑥
			

			

				∗
			

			
				‖
				‖
				+
				2
				𝛼
			

			

				𝑛
			

			
				‖
				‖
				(
				𝐼
				−
				𝜆
				𝐴
				)
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑦
			

			

				𝑛
			

			
				‖
				‖
				
				.
			

		
	

						It follows that 
							
	
 		
 			
				(
				3
				.
				1
				1
				)
			
 		
	

	
		
			
				‖
				‖
				𝑦
			

			

				𝑛
			

			
				−
				𝑥
			

			

				∗
			

			
				‖
				‖
			

			

				2
			

			
				≤
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑥
			

			

				∗
			

			

				‖
			

			

				2
			

			
				+
				𝛼
			

			

				𝑛
			

			
				𝑀
				−
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑦
			

			

				𝑛
			

			

				‖
			

			

				2
			

			
				‖
				‖
				𝑥
				+
				2
				𝜆
			

			

				𝑛
			

			
				−
				𝑦
			

			

				𝑛
			

			
				‖
				‖
				‖
				‖
				𝐴
				𝑥
			

			

				𝑛
			

			
				−
				𝐴
				𝑥
			

			

				∗
			

			
				‖
				‖
				+
				2
				𝛼
			

			

				𝑛
			

			
				‖
				‖
				(
				𝐼
				−
				𝜆
				𝐴
				)
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑦
			

			

				𝑛
			

			
				‖
				‖
				,
			

		
	

						and hence 
							
	
 		
 			
				(
				3
				.
				1
				2
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				∗
			

			
				‖
				‖
			

			

				2
			

			
				≤
				‖
				‖
				𝑦
			

			

				𝑛
			

			
				−
				𝑥
			

			

				∗
			

			
				‖
				‖
			

			

				2
			

			
				≤
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑥
			

			

				∗
			

			
				‖
				‖
			

			

				2
			

			
				+
				𝛼
			

			

				𝑛
			

			
				‖
				‖
				𝑥
				𝑀
				−
			

			

				𝑛
			

			
				−
				𝑦
			

			

				𝑛
			

			
				‖
				‖
			

			

				2
			

			
				‖
				‖
				𝑥
				+
				2
				𝜆
			

			

				𝑛
			

			
				−
				𝑦
			

			

				𝑛
			

			
				‖
				‖
				‖
				‖
				𝐴
				𝑥
			

			

				𝑛
			

			
				−
				𝐴
				𝑥
			

			

				∗
			

			
				‖
				‖
				+
				2
				𝛼
			

			

				𝑛
			

			
				‖
				‖
				(
				𝐼
				−
				𝜆
				𝐴
				)
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑦
			

			

				𝑛
			

			
				‖
				‖
			

		
	

						which implies that 
							
	
 		
 			
				(
				3
				.
				1
				3
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑦
			

			

				𝑛
			

			
				‖
				‖
			

			

				2
			

			
				≤
				
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑥
			

			

				∗
			

			
				‖
				‖
				+
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				∗
			

			
				‖
				‖
				
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				+
				𝛼
			

			

				𝑛
			

			
				‖
				‖
				𝑥
				𝑀
				+
				2
				𝜆
			

			

				𝑛
			

			
				−
				𝑦
			

			

				𝑛
			

			
				‖
				‖
				‖
				‖
				𝐴
				𝑥
			

			

				𝑛
			

			
				−
				𝐴
				𝑥
			

			

				∗
			

			
				‖
				‖
				+
				2
				𝛼
			

			

				𝑛
			

			
				‖
				‖
				(
				𝐼
				−
				𝜆
				𝐴
				)
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑦
			

			

				𝑛
			

			
				‖
				‖
				.
			

		
	

						Since 
	
		
			

				𝛼
			

			

				𝑛
			

			
				→
				0
				,
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑥
			

			
				𝑛
				+
				1
			

			
				‖
				→
				0
			

		
	
, and 
	
		
			
				‖
				𝐴
				𝑥
			

			

				𝑛
			

			
				−
				𝐴
				𝑥
			

			

				∗
			

			
				‖
				→
				0
			

		
	
, we derive 
	
		
			
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑦
			

			

				𝑛
			

			
				‖
				→
				0
			

		
	
.Next we show that
							
	
 		
 			
				(
				3
				.
				1
				4
				)
			
 		
	

	
		
			
				l
				i
				m
				s
				u
				p
			

			
				𝑛
				→
				∞
			

			
				⟨
				𝑧
			

			

				0
			

			
				,
				𝑧
			

			

				0
			

			
				−
				𝑦
			

			

				𝑛
			

			
				⟩
				≤
				0
				,
			

		
	

						where 
	
		
			

				𝑧
			

			

				0
			

			
				=
				𝑃
			

			
				V
				I
				(
				𝐶
				,
				𝐴
				)
			

			
				(
				0
				)
			

		
	
. To show it, we choose a subsequence 
	
		
			
				{
				𝑦
			

			

				𝑛
			

			

				𝑖
			

			

				}
			

		
	
 of 
	
		
			
				{
				𝑦
			

			

				𝑛
			

			

				}
			

		
	
 such that 
							
	
 		
 			
				(
				3
				.
				1
				5
				)
			
 		
	

	
		
			
				l
				i
				m
				s
				u
				p
			

			
				𝑛
				→
				∞
			

			
				⟨
				𝑧
			

			

				0
			

			
				,
				𝑧
			

			

				0
			

			
				−
				𝑦
			

			

				𝑛
			

			
				⟩
				=
				l
				i
				m
			

			
				𝑖
				→
				∞
			

			
				
				𝑧
			

			

				0
			

			
				,
				𝑧
			

			

				0
			

			
				−
				𝑦
			

			

				𝑛
			

			

				𝑖
			

			
				
				.
			

		
	

						As 
	
		
			
				{
				𝑦
			

			

				𝑛
			

			

				𝑖
			

			

				}
			

		
	
 is bounded, we have that a subsequence 
	
		
			
				{
				𝑦
			

			

				𝑛
			

			
				𝑖
				𝑗
			

			

				}
			

		
	
 of 
	
		
			
				{
				𝑦
			

			

				𝑛
			

			

				𝑖
			

			

				}
			

		
	
 converges weakly to 
	
		
			

				𝑧
			

		
	
.Next we show that 
	
		
			
				𝑧
				∈
				V
				I
				(
				𝐶
				,
				𝐴
				)
			

		
	
. We define a mapping 
	
		
			

				𝑇
			

		
	
 by
							
	
 		
 			
				(
				3
				.
				1
				6
				)
			
 		
	

	
		
			
				
				𝑇
				𝑣
				=
				𝐴
				𝑣
				+
				𝑁
			

			

				𝐶
			

			
				𝑣
				,
				𝑣
				∈
				𝐶
				,
				∅
				,
				𝑣
				∉
				𝐶
				.
			

		
	

						Then 
	
		
			

				𝑇
			

		
	
 is maximal monotone (see [16]). Let 
	
		
			
				(
				𝑣
				,
				𝑤
				)
				∈
				𝐺
				(
				𝑇
				)
			

		
	
. Since 
	
		
			
				𝑤
				−
				𝐴
				𝑣
				∈
				𝑁
			

			

				𝐶
			

			

				𝑣
			

		
	
 and 
	
		
			

				𝑦
			

			

				𝑛
			

			
				∈
				𝐶
			

		
	
, we have 
	
		
			
				⟨
				𝑣
				−
				𝑦
			

			

				𝑛
			

			
				,
				𝑤
				−
				𝐴
				𝑣
				⟩
				≥
				0
			

		
	
. On the other hand, from 
	
		
			

				𝑦
			

			

				𝑛
			

			
				=
				𝑃
			

			

				𝐶
			

			
				[
				(
				1
				−
				𝛼
			

			

				𝑛
			

			
				)
				(
				𝑥
			

			

				𝑛
			

			
				−
				𝜆
				𝐴
				𝑥
			

			

				𝑛
			

			
				)
				]
			

		
	
, we have 
							
	
 		
 			
				(
				3
				.
				1
				7
				)
			
 		
	

	
		
			
				
				𝑣
				−
				𝑦
			

			

				𝑛
			

			
				,
				𝑦
			

			

				𝑛
			

			
				−
				
				1
				−
				𝛼
			

			

				𝑛
			

			
				𝑥
				
				
			

			

				𝑛
			

			
				−
				𝜆
				𝐴
				𝑥
			

			

				𝑛
			

			
				
				
				≥
				0
				,
			

		
	

						that is, 
							
	
 		
 			
				(
				3
				.
				1
				8
				)
			
 		
	

	
		
			
				
				𝑣
				−
				𝑦
			

			

				𝑛
			

			
				,
				𝑦
			

			

				𝑛
			

			
				−
				𝑥
			

			

				𝑛
			

			
				
			
			
				𝜆
				+
				𝐴
				𝑥
			

			

				𝑛
			

			
				+
				𝛼
			

			

				𝑛
			

			
				
			
			
				𝜆
				(
				𝐼
				−
				𝜆
				𝐴
				)
				𝑥
			

			

				𝑛
			

			
				
				≥
				0
				.
			

		
	

						Therefore, we have 
							
	
 		
 			
				(
				3
				.
				1
				9
				)
			
 		
	

	
		
			
				
				𝑣
				−
				𝑦
			

			

				𝑛
			

			

				𝑖
			

			
				
				≥
				
				,
				𝑤
				𝑣
				−
				𝑦
			

			

				𝑛
			

			

				𝑖
			

			
				
				≥
				
				,
				𝐴
				𝑣
				𝑣
				−
				𝑦
			

			

				𝑛
			

			

				𝑖
			

			
				
				−
				
				,
				𝐴
				𝑣
				𝑣
				−
				𝑦
			

			

				𝑛
			

			

				𝑖
			

			
				,
				𝑦
			

			

				𝑛
			

			

				𝑖
			

			
				−
				𝑥
			

			

				𝑛
			

			

				𝑖
			

			
				
			
			
				𝜆
				+
				𝐴
				𝑥
			

			

				𝑛
			

			

				𝑖
			

			
				+
				𝛼
			

			

				𝑛
			

			

				𝑖
			

			
				
			
			
				𝜆
				(
				𝐼
				−
				𝜆
				𝐴
				)
				𝑥
			

			

				𝑛
			

			

				𝑖
			

			
				
				=
				
				𝑣
				−
				𝑦
			

			

				𝑛
			

			

				𝑖
			

			
				,
				𝐴
				𝑣
				−
				𝐴
				𝑥
			

			

				𝑛
			

			

				𝑖
			

			
				−
				𝑦
			

			

				𝑛
			

			

				𝑖
			

			
				−
				𝑥
			

			

				𝑛
			

			

				𝑖
			

			
				
			
			
				𝜆
				−
				𝛼
			

			

				𝑛
			

			

				𝑖
			

			
				
			
			
				𝜆
				(
				𝐼
				−
				𝜆
				𝐴
				)
				𝑥
			

			

				𝑛
			

			

				𝑖
			

			
				
				=
				
				𝑣
				−
				𝑦
			

			

				𝑛
			

			

				𝑖
			

			
				,
				𝐴
				𝑣
				−
				𝐴
				𝑦
			

			

				𝑛
			

			

				𝑖
			

			
				
				+
				
				𝑣
				−
				𝑦
			

			

				𝑛
			

			

				𝑖
			

			
				,
				𝐴
				𝑦
			

			

				𝑛
			

			

				𝑖
			

			
				−
				𝐴
				𝑥
			

			

				𝑛
			

			

				𝑖
			

			
				
				−
				
				𝑣
				−
				𝑦
			

			

				𝑛
			

			

				𝑖
			

			
				,
				𝑦
			

			

				𝑛
			

			

				𝑖
			

			
				−
				𝑥
			

			

				𝑛
			

			

				𝑖
			

			
				
			
			
				𝜆
				+
				𝛼
			

			

				𝑛
			

			

				𝑖
			

			
				
			
			
				𝜆
				(
				𝐼
				−
				𝜆
				𝐴
				)
				𝑥
			

			

				𝑛
			

			

				𝑖
			

			
				
				≥
				
				𝑣
				−
				𝑦
			

			

				𝑛
			

			

				𝑖
			

			
				,
				𝐴
				𝑦
			

			

				𝑛
			

			

				𝑖
			

			
				−
				𝐴
				𝑥
			

			

				𝑛
			

			

				𝑖
			

			
				
				−
				
				𝑣
				−
				𝑦
			

			

				𝑛
			

			

				𝑖
			

			
				,
				𝑦
			

			

				𝑛
			

			

				𝑖
			

			
				−
				𝑥
			

			

				𝑛
			

			

				𝑖
			

			
				
			
			
				𝜆
				+
				𝛼
			

			

				𝑛
			

			

				𝑖
			

			
				
			
			
				𝜆
				(
				𝐼
				−
				𝜆
				𝐴
				)
				𝑥
			

			

				𝑛
			

			

				𝑖
			

			
				
				.
			

		
	

						Noting that 
	
		
			

				𝛼
			

			

				𝑛
			

			

				𝑖
			

			
				→
				0
			

		
	
, 
	
		
			
				‖
				𝑦
			

			

				𝑛
			

			

				𝑖
			

			
				−
				𝑥
			

			

				𝑛
			

			

				𝑖
			

			
				‖
				→
				0
			

		
	
, and 
	
		
			

				𝐴
			

		
	
 is Lipschitz continuous, we obtain 
	
		
			
				⟨
				𝑣
				−
				𝑧
				,
				𝑤
				⟩
				≥
				0
			

		
	
. Since 
	
		
			

				𝑇
			

		
	
 is maximal monotone, we have 
	
		
			
				𝑧
				∈
				𝑇
			

			
				−
				1
			

			
				(
				0
				)
			

		
	
, and hence 
	
		
			
				𝑧
				∈
				V
				I
				(
				𝐶
				,
				𝐴
				)
			

		
	
. Therefore, 
							
	
 		
 			
				(
				3
				.
				2
				0
				)
			
 		
	

	
		
			
				l
				i
				m
				s
				u
				p
			

			
				𝑛
				→
				∞
			

			
				⟨
				𝑧
			

			

				0
			

			
				,
				𝑧
			

			

				0
			

			
				−
				𝑦
			

			

				𝑛
			

			
				⟩
				=
				l
				i
				m
			

			
				𝑖
				→
				∞
			

			
				
				𝑧
			

			

				0
			

			
				,
				𝑧
			

			

				0
			

			
				−
				𝑦
			

			

				𝑛
			

			

				𝑖
			

			
				
				=
				⟨
				𝑧
			

			

				0
			

			
				,
				𝑧
			

			

				0
			

			
				−
				𝑧
				⟩
				≤
				0
				.
			

		
	

						Finally, we prove 
	
		
			

				𝑥
			

			

				𝑛
			

			
				→
				𝑧
			

			

				0
			

		
	
. By the property (ii) of metric projection 
	
		
			

				𝑃
			

			

				𝐶
			

		
	
, we have 
							
	
 		
 			
				(
				3
				.
				2
				1
				)
			
 		
	

	
		
			
				‖
				‖
				𝑦
			

			

				𝑛
			

			
				−
				𝑧
			

			

				0
			

			
				‖
				‖
			

			

				2
			

			
				=
				‖
				‖
				𝑃
			

			

				𝐶
			

			
				
				
				1
				−
				𝛼
			

			

				𝑛
			

			
				𝑥
				
				
			

			

				𝑛
			

			
				−
				𝜆
				𝐴
				𝑥
			

			

				𝑛
			

			
				
				
				−
				𝑃
			

			

				𝐶
			

			
				
				𝛼
			

			

				𝑛
			

			

				𝑧
			

			

				0
			

			
				+
				
				1
				−
				𝛼
			

			

				𝑛
			

			
				𝑧
				
				
			

			

				0
			

			
				−
				𝜆
				𝐴
				𝑧
			

			

				0
			

			
				‖
				‖
				
				
			

			

				2
			

			
				≤
				
				𝛼
			

			

				𝑛
			

			
				
				−
				𝑧
			

			

				0
			

			
				
				+
				
				1
				−
				𝛼
			

			

				𝑛
			

			
				𝑥
				
				
				
			

			

				𝑛
			

			
				−
				𝜆
				𝐴
				𝑥
			

			

				𝑛
			

			
				
				−
				
				𝑧
			

			

				0
			

			
				−
				𝜆
				𝐴
				𝑧
			

			

				0
			

			
				
				
				,
				𝑦
			

			

				𝑛
			

			
				−
				𝑧
			

			

				0
			

			
				
				≤
				𝛼
			

			

				𝑛
			

			
				⟨
				𝑧
			

			

				0
			

			
				,
				𝑧
			

			

				0
			

			
				−
				𝑦
			

			

				𝑛
			

			
				
				⟩
				+
				1
				−
				𝛼
			

			

				𝑛
			

			
				
				‖
				‖
				
				𝑥
			

			

				𝑛
			

			
				−
				𝜆
				𝐴
				𝑥
			

			

				𝑛
			

			
				
				−
				
				𝑧
			

			

				0
			

			
				−
				𝜆
				𝐴
				𝑧
			

			

				0
			

			
				
				‖
				‖
				‖
				‖
				𝑦
			

			

				𝑛
			

			
				−
				𝑧
			

			

				0
			

			
				‖
				‖
				≤
				𝛼
			

			

				𝑛
			

			
				⟨
				𝑧
			

			

				0
			

			
				,
				𝑧
			

			

				0
			

			
				−
				𝑦
			

			

				𝑛
			

			
				
				⟩
				+
				1
				−
				𝛼
			

			

				𝑛
			

			
				
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑧
			

			

				0
			

			
				‖
				‖
				‖
				‖
				𝑦
			

			

				𝑛
			

			
				−
				𝑧
			

			

				0
			

			
				‖
				‖
				≤
				𝛼
			

			

				𝑛
			

			
				⟨
				𝑧
			

			

				0
			

			
				,
				𝑧
			

			

				0
			

			
				−
				𝑦
			

			

				𝑛
			

			
				⟩
				+
				1
				−
				𝛼
			

			

				𝑛
			

			
				
			
			
				2
				
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑧
			

			

				0
			

			
				‖
				‖
			

			

				2
			

			
				+
				‖
				‖
				𝑦
			

			

				𝑛
			

			
				−
				𝑧
			

			

				0
			

			
				‖
				‖
			

			

				2
			

			
				
				.
			

		
	

						Hence, 
							
	
 		
 			
				(
				3
				.
				2
				2
				)
			
 		
	

	
		
			
				‖
				‖
				𝑦
			

			

				𝑛
			

			
				−
				𝑧
			

			

				0
			

			
				‖
				‖
			

			

				2
			

			
				≤
				
				1
				−
				𝛼
			

			

				𝑛
			

			
				
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑧
			

			

				0
			

			
				‖
				‖
			

			

				2
			

			
				+
				2
				𝛼
			

			

				𝑛
			

			
				⟨
				𝑧
			

			

				0
			

			
				,
				𝑧
			

			

				0
			

			
				−
				𝑦
			

			

				𝑛
			

			
				⟩
				.
			

		
	

						Therefore, 
							
	
 		
 			
				(
				3
				.
				2
				3
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑧
			

			

				0
			

			
				‖
				‖
			

			

				2
			

			
				≤
				‖
				‖
				𝑦
			

			

				𝑛
			

			
				−
				𝑧
			

			

				0
			

			
				‖
				‖
			

			

				2
			

			
				≤
				
				1
				−
				𝛼
			

			

				𝑛
			

			
				
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑧
			

			

				0
			

			
				‖
				‖
			

			

				2
			

			
				+
				2
				𝛼
			

			

				𝑛
			

			
				⟨
				𝑧
			

			

				0
			

			
				,
				𝑧
			

			

				0
			

			
				−
				𝑦
			

			

				𝑛
			

			
				⟩
				.
			

		
	

						We apply Lemma 2.1 to the last inequality to deduce that 
	
		
			

				𝑥
			

			

				0
			

			
				→
				𝑧
			

			

				0
			

		
	
. This completes the proof.
Remark 3.2. Our Algorithm (3.1) is similar to Noor’s modified extragradient method; see [2]. However, our algorithm has strong convergence in the setting of infinite-dimensional Hilbert spaces.
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