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We construct a sequence of proximal iterates that converges strongly (underminimal assumptions)
to a common zero of two maximal monotone operators in a Hilbert space. The algorithm
introduced in this paper puts together several proximal point algorithms under one frame work.
Therefore, the results presented here generalize and improve many results related to the proximal
point algorithm which were announced recently in the literature.

1. Introduction

Let K1 and K2 be nonempty, closed, and convex subsets of a real Hilbert space H with
nonempty intersection and consider the following problem:

find an x ∈ H such that x ∈ K1 ∩K2. (1.1)

In his 1933 paper, von Neumann showed that if K1 and K2 are subspaces of H, then the
method of alternating projections, defined by

H � x0 �−→ x1 = PK1x0 �−→ x2 = PK2x1 �−→ x3 = PK1x2 �−→ x4 = PK2x3 �−→ . . . , (1.2)

converges strongly to a point inK1 ∩K2 which is closest to the starting point x0. The proof of
this classical result can be found for example in [1, 2]. Ever since von Neumann announced
his result, many researchers have dedicated their time to study the convex feasibility problem
(1.1). In his paper, Bregman [3] showed that ifK1 andK2 are two arbitrary nonempty, closed,



2 Abstract and Applied Analysis

and convex subsets inH with nonempty intersection, then the sequence (xn) generated from
the method of alternating projections converges weakly to a point in K1 ∩ K2. The work of
Hundal [4] revealed that the method of alternating projections fails in general to converge
strongly, see also [5].

Recall that the projection operator coincides with the resolvent of a normal cone. Thus,
the method of alternating projections can be extended in a natural way as follows: Given
x0 ∈ H, define a sequence (xn) iteratively by

x2n+1 = JAβn(x2n + en) for n = 0, 1, . . . ,

x2n = JBμn

(
x2n−1 + e′n

)
for n = 1, 2, . . . ,

(1.3)

for βn, μn ∈ (0,∞), and two maximal monotone operators A and B, where (en) and (e′n) are
sequences of computational errors. Here JAμ := (I + μA)−1 is the resolvent of A. In this case,
problem (1.1) can be restated as

find an x ∈ D(A) ∩D(B) such that x ∈ A−1(0) ∩ B−1(0). (1.4)

For en = 0 = e′n and βn = μn = μ > 0, Bauschke et al. [6] proved that sequences generated
from the method of alternating resolvents (1.3) converges weakly to some point that solves
problem (1.4). In fact, they showed that such a sequences converges weakly to a point in
Fix JAμ J

B
μ provided that the fixed point set of the composition mapping JAμ J

B
μ is nonempty.

Note that strong convergence of this method fails in general, (the same counter example of
Hundal [4] applies). For convergence analysis of algorithm (1.3) in the case when any of the
sequences of real numbers (βn) and (μn) is not a constant, and when the error sequences (en)
and (e′n) are not zero for all n ≥ 1, we refer the reader to [7].

There are other papers in the literature that address strong convergence of a given
iterative process to solutions of (1.4). For example, several authors have discussed strong
convergence of an iterative process of the Halpern type to common solutions of a finite family
of maximal monotone operators in Hilbert spaces (or even m-accretive operators in Banach
spaces). Among themost recent works in this direction is due toHu and Liu [8]. They showed
that under appropriate conditions, an iterative process of Halpern type defined by

xn+1 = αnu + δnxn + γnSrnxn, n ≥ 0, (1.5)

where αn, δn, γn ∈ (0, 1) with αn + δn + γn = 1 for all n ≥ 0, u, x0 ∈ H are given, Srn :=
a0I + a1J

1
rn + a2J

2
rn + · · · + alJ

l
rn with Jir = (I + rAi)

−1 for ai ∈ (0, 1), i = 0, 1, . . . , l and
∑l

i=0 ai = 1,
converges strongly to a point in

⋂n
i=1 A

−1
i (0) nearest to u.

Suppose that we want to find solutions to problem (1.4) iteratively. Then we observe
that when using the iterative process (1.5), one has to calculate two resolvents of maximal
monotone operators in order to find the next iterate. On the other hand, for algorithm (1.3),
one needs to calculate only one resolvent operator at each step. This clearly shows that
theoretically, algorithm (1.5) requires more computational time compared to algorithm (1.3).
The only disadvantage with algorithm (1.3) is that it does not always converge strongly and
the limit to which it converges to is not characterized. This is not the case with algorithm (1.5).
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Since weak convergence is not good for an effective algorithm, our purpose in this paper is to
modify algorithm (1.3) in such a way that strong convergence is guaranteed. More precisely,
for any two maximal monotone operators A and B, we define an iterative process in the
following way: For x0, u ∈ H given, a sequence (xn) is generated using the rule

x2n+1 = αnu + δnx2n + γnJ
A
βn
x2n + en for n = 0, 1, . . . , (1.6)

x2n = JBμn

(
λnu + (1 − λn)x2n−1 + e′n

)
for n = 1, 2, . . . , (1.7)

where αn, δn, γn, λn ∈ [0, 1] with αn + δn + γn = 1 and βn, μn ∈ (0,∞). We will also show
that algorithm (1.6), (1.7) contains several algorithms such as the prox-Tikhonov method,
the Halpern-type proximal point algorithm, and the regularized proximal method as special
cases. That is, with our algorithm, we are able to put several algorithms under one frame
work. Therefore, our main results improve, generalize, and unify many related results
announced recently in the literature.

2. Preliminary Results

In the sequel, H will be a real Hilbert space with inner product 〈·, ·〉 and induced norm ‖ · ‖.
We recall that a map T : H → H is called nonexpansive if for every x, y ∈ H we have
‖Tx − Ty‖ ≤ ‖x − y‖. We say that a map T is firmly nonexpansive if for every x, y ∈ H, we
have

∥∥Tx − Ty
∥∥2 ≤ ∥∥x − y

∥∥2 − ∥∥(I − T)x − (I − T)y
∥∥2

. (2.1)

It is clear that firmly nonexpansive mappings are also nonexpansive. The converse need not
be true. The excellent book by Goebel and Reich [9] is recommended to the reader who is
interested in studying properties of firmly nonexpansive mappings. An operator A : D(A) ⊂
H → 2H is said to be monotone if

〈
x − x′, y − y′〉 ≥ 0, ∀(x, y), (x′, y′) ∈ G(A), (2.2)

whereG(A) = {(x, y) ∈ H×H : x ∈ D(A), y ∈ Ax} is the graph ofA. In other words, an oper-
ator is monotone if its graph is a monotone subset of the product spaceH ×H. An operatorA
is called maximal monotone if in addition to being monotone, its graph is not properly con-
tained in the graph of any other monotone operator. Note that ifA is maximal monotone, then
so is its inverseA−1. For a maximal monotone operatorA, the resolvent ofA, defined by JAβ :=

(I +βA)−1, is well defined on the whole spaceH, is single-valued, and is firmly nonexpansive
for every β > 0. It is known that the Yosida approximation of A, an operator defined by
Aβ := β−1(I − JA

β
) (where I is the identity operator) is maximal monotone for every β > 0. For

the properties of maximal monotone operators discussed above, we refer the reader to [10].

Notations. given a sequence (xn), we will use xn → x to mean that (xn) converges strongly
to x whereas xn ⇀ x will mean that (xn) converges weakly to x. The weak ω-limit set of a
sequence (xn) will be denoted by ωw((xn)). That is,

ωw((xn)) =
{
x ∈ H : xnk ⇀ x for some subsequence (xnk) of (xn)

}
. (2.3)
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The following lemmas will be useful in proving our main results. The first lemma is a
basic property of norms in Hilbert spaces.

Lemma 2.1. For all x, y ∈ H, one has

∥
∥x + y

∥
∥2 ≤ ∥

∥y
∥
∥2 + 2

〈
x, x + y

〉
. (2.4)

The next lemma is well known, it can be found for example in [10, page 20].

Lemma 2.2. Any maximal monotone operator A : D(A) ⊂ H → 2H satisfies the demiclosedness
principle. In other words, given any two sequences (xn) and (yn) satisfying xn → x and yn ⇀ y
with (xn, yn) ∈ G(A), then (x, y) ∈ G(A).

Lemma 2.3 (Xu [11]). For any x ∈ H and μ ≥ β > 0,

∥∥∥x − JAβ x
∥∥∥ ≤ 2

∥∥∥x − JAμ x
∥∥∥, (2.5)

where A : D(A) ⊂ H → 2H is a maximal monotone operator.

We end this section with the following key lemmas.

Lemma 2.4 (Boikanyo and Moroşanu [12]). Let (sn) be a sequence of nonnegative real numbers
satisfying

sn+1 ≤ (1 − αn)(1 − λn)sn + αnbn + λncn + dn, n ≥ 0, (2.6)

where (αn), (λn), (bn), (cn), and (dn) satisfy the conditions: (i) αn, λn ∈ [0, 1], with
∏∞

n=0(1−αn) =
0, (ii) lim supn→∞bn ≤ 0, (iii) lim supn→∞cn ≤ 0, and (iv) dn ≥ 0 for all n ≥ 0with

∑∞
n=0 dn < ∞.

Then limn→∞sn = 0.

Remark 2.5. Note that if limn→∞αn = 0, then
∏∞

n=0(1 − αn) = 0 if and only if
∑∞

n=0 αn = ∞.

Lemma 2.6 (Maingé [13]). Let (sn) be a sequence of real numbers that does not decrease at infinity,
in the sense that there exists a subsequence (snj ) of (sn) such that snj < snj+1 for all j ≥ 0. Define an
integer sequence (τ(n))n≥n0

as

τ(n) = max{n0 ≤ k ≤ n : sk < sk+1}. (2.7)

Then τ(n) → ∞ as n → ∞ and for all n ≥ n0,

max
{
sτ(n), sn

} ≤ sτ(n)+1. (2.8)
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3. Main Results

Wefirst begin by giving a strong convergence result associatedwith the exact iterative process

v2n+1 = αnu + δnv2n + γnJ
A
βn
v2n for n = 0, 1, . . . , (3.1)

v2n = JBμn
(λnu + (1 − λn)v2n−1) for n = 1, 2, . . . , (3.2)

where αn, δn, γn, λn ∈ [0, 1] with αn + δn + γn = 1, βn, μn ∈ (0,∞) and v0, u ∈ H are given. The
proof of the following theorem makes use of some ideas of the papers [12–15].

Theorem 3.1. LetA : D(A) ⊂ H → 2H and B : D(B) ⊂ H → 2H be maximal monotone operators
with A−1(0) ∩ B−1(0) =: F /= ∅. For arbitrary but fixed vectors v0, u ∈ H, let (vn) be the sequence
generated by (3.1), (3.2), where αn, δn, γn, λn ∈ [0, 1] with αn + δn + γn = 1, and βn, μn ∈ (0,∞).
Assume that (i) limn→∞ αn = 0, γn ≥ γ for some γ > 0 and limn→∞ λn = 0, (ii) either

∑∞
n=0 αn = ∞

or
∑∞

n=0 λn = ∞, and (iii) βn ≥ β and μn ≥ μ for some β, μ > 0. Then (vn) converges strongly to the
point of F nearest to u.

Proof. Let p ∈ F. Then from (3.2) and the fact that the resolvent operator of a maximal
monotone operator B is nonexpansive, we have

∥∥v2n − p
∥∥ ≤ ∥∥λn

(
u − p

)
+ (1 − λn)

(
v2n−1 − p

)∥∥

≤ λn
∥∥u − p

∥∥ + (1 − λn)
∥∥v2n−1 − p

∥∥.
(3.3)

Again using the fact that the resolvent operator JA
βn

: H → H is nonexpansive, we have from
(3.1)

∥∥v2n+1 − p
∥∥ ≤ αn

∥∥u − p
∥∥ + δn

∥∥v2n − p
∥∥ + γn

∥∥∥JAβnv2n − p
∥∥∥

≤ αn

∥∥u − p
∥∥ + (1 − αn)

∥∥v2n − p
∥∥

≤ [αn + (1 − αn)λn]
∥∥u − p

∥∥ + (1 − αn)(1 − λn)
∥∥v2n−1 − p

∥∥

= [1 − (1 − αn)(1 − λn)]
∥∥u − p

∥∥ + (1 − αn)(1 − λn)
∥∥v2n−1 − p

∥∥,

(3.4)

where the last inequality follows from (3.3). Using a simple induction argument, we get

∥∥v2n+1 − p
∥∥ ≤

[

1 −
n∏

k=1

(1 − αk)(1 − λk)

]
∥∥u − p

∥∥ +
∥∥v1 − p

∥∥
n∏

k=1

(1 − αk)(1 − λk). (3.5)

This shows that the subsequence (v2n+1) of (vn) is bounded. In view of (3.3), the subsequence
(v2n) is also bounded. Hence the sequence (vn)must be bounded.

Now from the firmly nonexpansive property of JA
βn

: H → H, we have for any p ∈ F

∥∥∥JAβnv2n − p
∥∥∥
2 ≤ ∥∥v2n − p

∥∥2 −
∥∥∥v2n − JAβnv2n

∥∥∥
2
, (3.6)
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which in turn gives

2
〈
v2n − p, JAβnv2n − p

〉
=
∥
∥v2n − p

∥
∥2 +

∥
∥
∥JAβnv2n − p

∥
∥
∥
2 −

∥
∥
∥v2n − JAβnv2n

∥
∥
∥
2

≤ 2
(∥
∥v2n − p

∥
∥2 −

∥
∥
∥v2n − JAβnv2n

∥
∥
∥
2
)
.

(3.7)

Again by using the firmly nonexpansive property of the resolvent JAβn : H → H, we see that

∥
∥
∥δn

(
v2n − p

)
+ γn

(
JAβnv2n − p

)∥∥
∥
2

= δ2
n

∥∥v2n − p
∥∥2 + γ2n

∥∥∥JAβnv2n − p
∥∥∥
2
+ 2γnδn

〈
v2n − p, JAβnv2n − p

〉

≤ (1 − αn)2
∥∥v2n − p

∥∥2 − γn
(
γn + 2δn

)∥∥∥v2n − JAβnv2n

∥∥∥
2
.

(3.8)

Now from (3.1) and Lemma 2.1, we have

∥∥v2n+1 − p
∥∥2 ≤

∥∥∥δn
(
v2n − p

)
+ γn

(
JAβnv2n − p

)∥∥∥
2
+ 2αn

〈
u − p, v2n+1 − p

〉

≤ (1 − αn)
∥∥v2n − p

∥∥2 − ε
∥∥∥v2n − JAβnv2n

∥∥∥
2
+ 2αn

〈
u − p, v2n+1 − p

〉
,

(3.9)

where ε > 0 is such that γn(γn+2δn) ≥ ε. On the other hand, we observe that (3.2) is equivalent
to

v2n − p + μnBv2n � λn
(
u − p

)
+ (1 − λn)

(
v2n−1 − p

)
. (3.10)

Multiplying this inclusion scalarly by 2(v2n − p) and using the monotonicity of B, we obtain

2
∥∥v2n − p

∥∥2 ≤ 2λn
〈
u − p, v2n − p

〉
+ 2(1 − λn)

〈
v2n−1 − p, v2n − p

〉

= (1 − λn)
[∥∥v2n−1 − p

∥∥2 +
∥∥v2n − p

∥∥2 − ‖v2n − v2n−1‖2
]
+ 2λn

〈
u − p, v2n − p

〉
,

(3.11)

which implies that

∥∥v2n − p
∥∥2 ≤ (1 − λn)

[∥∥v2n−1 − p
∥∥2 − ‖v2n − v2n−1‖2

]
+ 2λn

〈
u − p, v2n − p

〉
. (3.12)
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Using this inequality in (3.9), we get

∥
∥v2n+1 − p

∥
∥2 ≤ (1 − αn)(1 − λn)

∥
∥v2n−1 − p

∥
∥2 − ε

∥
∥
∥v2n − JAβnv2n

∥
∥
∥
2

+ 2αn

〈
u − p, v2n+1 − p

〉 − (1 − αn)(1 − λn)‖v2n − v2n−1‖2

+ 2λn(1 − αn)
〈
u − p, v2n − p

〉
.

(3.13)

If we denote sn := ‖v2n−1 − PFu‖2, then we have for some positive constant M

sn+1 − sn + ‖v2n − v2n−1‖2 + ε
∥
∥
∥v2n − JAβnv2n

∥
∥
∥
2 ≤ (αn + λn)M. (3.14)

We now show that (sn) converges to zero strongly. For this purpose, we consider two possible
cases on the sequence (sn).

Case 1. (sn) is eventually decreasing (i.e., there existsN ≥ 0 such that (sn) is decreasing for all
n ≥ N). In this case, (sn) is convergent. Letting n → ∞ in (3.14), we get

lim
n→∞

‖v2n − v2n−1‖ = 0 = lim
n→∞

∥∥∥v2n − JAβnv2n

∥∥∥. (3.15)

Now using the second part of (3.15) and the fact that αn → 0 as n → ∞, we get

‖v2n+1 − v2n‖ ≤ αn

∥∥∥u − JAβnv2n

∥∥∥ + γn
∥∥∥JAβnv2n − v2n

∥∥∥ −→ 0, (3.16)

as n → ∞. Also, we have the following from Lemma 2.3 and the first part of (3.15)

∥∥∥v2n − JAβ v2n

∥
∥∥ ≤ 2

∥
∥∥v2n − JAβnv2n

∥
∥∥ −→ 0, (3.17)

as n → ∞. Since A−1
β , where Aβ denotes the Yosida approximation of A, is demiclosed, it

follows that ωw((v2n)) ⊂ A−1(0). On the other hand, from the nonexpansive property of the
resolvent operator of B, we get

∥∥∥v2n − JBμ v2n

∥∥∥ ≤ 2
∥∥∥v2n − JBμn

v2n

∥∥∥

≤ 2(λn‖u − v2n−1‖ + ‖v2n−1 − v2n‖),
(3.18)

where the first inequality follows from Lemma 2.3. Since B−1
μ is demiclosed, pass-

ing to the limit in the above inequality yields ωw((v2n)) ⊂ B−1(0), showing that
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ωw((v2n)) ⊂ F := A−1(0)∩B−1(0). Therefore, there is a subsequence (v2nk) of (v2n) converging
weakly to some z ∈ F such that

lim sup
n→∞

〈u − PFu, v2n − PFu〉 = lim sup
k→∞

〈u − PFu, v2nk − PFu〉

= 〈u − PFu, z − PFu〉 ≤ 0,
(3.19)

where the above inequality follows from the characterization of the projection operator. Note
that by virtue of (3.16), we have

lim sup
n→∞

〈u − PFu, v2n+1 − PFu〉 ≤ 0 (3.20)

as well. Now, we derive from (3.13)

‖v2n+1 − PFu‖2 ≤ (1 − αn)(1 − λn)‖v2n−1 − PFu‖2 + 2αn〈u − PFu, v2n+1 − PFu〉
+ 2λn(1 − αn)〈u − PFu, v2n − PFu〉.

(3.21)

Using Lemma 2.4 we get ‖v2n+1 − PFu‖ → 0 as n → ∞. Passing to the limit in (3.12), we also
get ‖v2n −PFu‖ → 0 as n → ∞. Therefore, we derive ‖vn −PFu‖ → 0 as n → ∞. This proves
the result for the case when (sn) is eventually decreasing.

Case 2. (sn) is not eventually decreasing, that is, there is a subsequence (snj ) of (sn) such that
snj < snj+1 for all j ≥ 0. We then define an integer sequence (τ(n))n≥n0

as in Lemma 2.6 so that
sτ(n) ≤ sτ(n)+1 for all n ≥ n0. Then from (3.14), it follows that

lim
n→∞

∥∥v2τ(n) − v2τ(n)−1
∥∥ = 0 = lim

n→∞

∥∥∥v2τ(n) − JAβτ(n)v2τ(n)

∥∥∥. (3.22)

We also derive from (3.1)

∥∥v2τ(n)+1 − v2τ(n)
∥∥ ≤ ατ(n)

∥∥∥u − JAβτ(n)v2τ(n)

∥∥∥ + γτ(n)
∥∥∥JAβτ(n)v2τ(n) − v2τ(n)

∥∥∥ −→ 0, (3.23)

as n → ∞. In a similar way as in Case 1, we derive ωw((v2τ(n))) ⊂ F. Consequently,

lim sup
n→∞

〈
u − PFu, v2τ(n) − PFu

〉 ≤ 0. (3.24)

Note that from (3.21)we have, for some positive constant K,

‖v2n+1 − PFu‖2 ≤ (1 − αn)(1 − λn)‖v2n−1 − PFu‖2 + αnK‖v2n+1 − v2n‖
+ 2(λn(1 − αn) + αn)〈u − PFu, v2n − PFu〉.

(3.25)



Abstract and Applied Analysis 9

Therefore, for all n ≥ n0, we have

sτ(n)+1 ≤
(
1 − ατ(n)

)(
1 − λτ(n)

)
sτ(n) + ατ(n)K

∥
∥v2τ(n)+1 − v2τ(n)

∥
∥

+ 2
(
λτ(n)

(
1 − ατ(n)

)
+ ατ(n)

)〈
u − PFu, v2τ(n) − PFu

〉
.

(3.26)

Since sτ(n) ≤ sτ(n)+1 for all n ≥ n0, we have

sτ(n)+1 ≤ 2
〈
u − PFu, v2τ(n) − PFu

〉
+
ατ(n)K

∥
∥v2τ(n)+1 − v2τ(n)

∥
∥

λτ(n)
(
1 − ατ(n)

)
+ ατ(n)

≤ 2
〈
u − PFu, v2τ(n) − PFu

〉
+K

∥
∥v2τ(n)+1 − v2τ(n)

∥
∥.

(3.27)

Letting n → ∞ in the above inequality, we see that sτ(n)+1 → 0. Hence from (2.8) it follows
that sn → 0 as n → ∞. That is, v2n+1 → PFu as n → ∞. Furthermore, for some positive
constant C, we have from (3.12)

‖v2n − PFu‖2 ≤ (1 − λn)‖v2n−1 − PFu‖2 + λnC, (3.28)

which implies that v2n → PFu as n → ∞. Hence, we have vn → PFu as n → ∞. This
completes the proof of the theorem.

We are now in a position to give a strong convergence result for the inexact iteration
process (1.6), (1.7). For the error sequence, we will use the 14 conditions established in [12].

Theorem 3.2. LetA : D(A) ⊂ H → 2H and B : D(B) ⊂ H → 2H be maximal monotone operators
with A−1(0) ∩ B−1(0) =: F /= ∅. For arbitrary but fixed vectors x0, u ∈ H, let (xn) be the sequence
generated by (1.6), (1.7), where αn, δn, γn, λn ∈ [0, 1] with αn + δn + γn = 1 and βn, μn ∈ (0,∞).
Assume that limn→∞ αn = 0, γn ≥ γ for some γ > 0 and limn→∞ λn = 0, either

∑∞
n=0 αn = ∞ or∑∞

n=0 λn = ∞, βn ≥ β and μn ≥ μ for some β, μ > 0. Then (xn) converges strongly to the point of F
nearest to u, provided that any of the following conditions is satisfied:

(a)
∑∞

n=0 ‖en‖ < ∞ and
∑∞

n=1 ‖e′n‖ < ∞;

(b)
∑∞

n=0 ‖en‖ < ∞ and ‖e′n‖/αn → 0;

(c)
∑∞

n=0 ‖en‖ < ∞ and ‖e′n‖/λn → 0;

(d) ‖en‖/αn → 0 and
∑∞

n=1 ‖e′n‖ < ∞;

(e) ‖en‖/λn → 0 and
∑∞

n=1 ‖e′n‖ < ∞;

(f) ‖en‖/αn → 0 and ‖e′n‖/αn → 0;

(g) ‖en‖/αn → 0 and ‖e′n‖/λn → 0;

(h) ‖en‖/λn → 0 and ‖e′n‖/αn → 0;

(i) ‖en‖/λn → 0 and ‖e′n‖/λn → 0;

(j) ‖en‖/αn → 0 and ‖e′n‖/αn−1 → 0;

(k) ‖en−1‖/λn → 0 and ‖e′n‖/αn−1 → 0;

(l) ‖en−1‖/λn → 0 and ‖e′n‖/λn → 0;
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(m)
∑∞

n=0 ‖en‖ < ∞ and ‖e′n‖/αn−1 → 0;

(n) ‖en−1‖/λn → 0 and
∑∞

n=1 ‖e′n‖ < ∞.

Proof. Taking note of Theorem 3.1, it suffices to show that ‖xn −vn‖ → 0 as n → ∞. Since the
resolvent of B is nonexpansive, we derive from (1.7) and (3.2) the following:

‖x2n − v2n‖ ≤ (1 − λn)‖x2n−1 − v2n−1‖ +
∥
∥e′n

∥
∥. (3.29)

Similarly, from (1.6) and (3.1), we have

‖x2n+1 − v2n+1‖ ≤ δn‖x2n − v2n‖ + γn
∥
∥
∥JAβnx2n − JAβnv2n

∥
∥
∥ + ‖en‖

≤ (1 − αn)‖x2n − v2n‖ + ‖en‖.
(3.30)

Substituting (3.29) into (3.30) yields

‖x2n+1 − v2n+1‖ ≤ (1 − αn)(1 − λn)‖x2n−1 − v2n−1‖ + ‖en‖ +
∥∥e′n

∥∥. (3.31)

Therefore, if the error sequence satisfy any of the conditions (a)–(i), then it readily follows
from Lemma 2.4 that ‖x2n+1 − v2n+1‖ → 0 as n → ∞. Passing to the limit in (3.29), we derive
‖x2n − v2n‖ → 0 as well. If the error sequence satisfy any of the conditions (j)–(n), then from
(3.29) and (3.30), we have

‖x2n − v2n‖ ≤ (1 − αn−1)(1 − λn)‖x2n−2 − v2n−2‖ + ‖en−1‖ +
∥∥e′n

∥∥. (3.32)

Then Lemma 2.4 guarantees that ‖x2n − v2n‖ → 0 as n → ∞. Passing to the limit in (3.30),
we derive ‖x2n+1 − v2n+1‖ → 0 as well. This completes the proof of the theorem.

Note that when B = ∂IH where ∂IH is the subdifferential of the indicator function ofH
and λn = 0 = e′n for all n ≥ 1, then algorithm (1.6), (1.7) is reduced to the contraction proximal
point method which was introduced by Yao and Noor in 2008 [16]. Such a method is given
by

xn+1 = αnu + δnxn + γnJ
A
βn
xn + en for n = 1, 2, . . . , (3.33)

where we have used the notation xn := x2n−1. Here (βn) is a sequence in (0,∞) and αn, δn, γn ∈
[0, 1]with αn + δn + γn = 1. For this method, we have the following strong convergence result.

Corollary 3.3. LetA : D(A) ⊂ H → 2H be a maximal monotone operator withA−1(0) =: S/= ∅. For
arbitrary but fixed vectors x1, u ∈ H, let (xn) be the sequence generated by (3.33) where αn, δn, γn ∈
[0, 1] with αn +δn + γn = 1 and βn ∈ (0,∞). Assume that limn→∞ αn = 0 with

∑∞
n=1 αn = ∞, γn ≥ γ

for some γ > 0 and βn ≥ β for some β > 0. If either
∑∞

n=1 ‖en‖ < ∞ or ‖en‖/αn → 0, then (xn)
converges strongly to the point of S nearest to u.

Corollary 3.3 generalizes and unifies many results announced recently in the literature
such as [7, Theorem 4], [16, Theorem 3.3], [17, Theorem 2], and [18, Theorem 3.1]. We also
recover [15, Theorem 1].
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Remark 3.4. We refer the reader to the paper [12] for another generalization of the method
(3.3).

In the case when A = ∂IH where ∂IH is the subdifferential of the indicator function
of H and αn = 0 = en for all n ≥ 1, then algorithm (1.6), (1.7) reduces to the regularization
method

xn+1 = JBμn

(
λnu + (1 − λn)xn + e′n

)
for n = 1, 2, . . . , (3.34)

where we have used the notation xn := x2n. In this case, we have the following strong
convergence result which improves results given in the papers [11, 19–21].

Corollary 3.5. Let B : D(B) ⊂ H → 2H be a maximal monotone operator with B−1(0) =: S/= ∅. For
arbitrary but fixed vectors x1, u ∈ H, let (xn) be the sequence generated by (3.34) where λn ∈ (0, 1)
and μn ∈ (0,∞). Assume that limn→∞ λn = 0 with

∑∞
n=1 λn = ∞ and μn ≥ μ for some μ > 0. If either∑∞

n=1 ‖e′n‖ < ∞ or ‖e′n‖/λn → 0, then (xn) converges strongly to the point of S nearest to u.

It is worth mentioning that the regularization method is a generalization of the prox-
Tikhonov method introduced by Lehdili and Moudafi [22], see [11]. We also mention that for
λn → 0 and e′n → 0, the regularization method (3.34) is equivalent to the inexact Halpern
type proximal point algorithm, see [23]. Therefore Corollary 3.5 also improves many results
given in the papers [15, 19, 22, 24–26] related to the inexact Halpern type proximal point
algorithm.
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[13] P.-E. Maingé, “Strong convergence of projected subgradient methods for nonsmooth and nonstrictly
convex minimization,” Set-Valued Analysis, vol. 16, no. 7-8, pp. 899–912, 2008.



12 Abstract and Applied Analysis

[14] O.A. Boikanyo andG.Moros, “A generalization of the regularization proximal pointmethod,” Journal
of Nonlinear Analysis and Application, vol. 2012, Article ID jnaa-00129, 6 pages, 2012.

[15] F. Wang and H. Cui, “On the contraction-proximal point algorithms with multi-parameters,” Journal
of Global Optimization. In press.

[16] Y. Yao and M. A. Noor, “On convergence criteria of generalized proximal point algorithms,” Journal
of Computational and Applied Mathematics, vol. 217, no. 1, pp. 46–55, 2008.
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