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The distribution of zeros and poles of best rational approximants is well understood for the
functions f(x) = |x|α, α > 0. If f ∈ C[−1, 1] is not holomorphic on [−1, 1], the distribution of
the zeros of best rational approximants is governed by the equilibrium measure of [−1, 1] under
the additional assumption that the rational approximants are restricted to a bounded degree of
the denominator. This phenomenon was discovered first for polynomial approximation. In this
paper, we investigate the asymptotic distribution of zeros, respectively, a-values, and poles of
best real rational approximants of degree at most n to a function f ∈ C[−1, 1] that is real-
valued, but not holomorphic on [−1, 1]. Generalizations to the lower half of the Walsh table are
indicated.

1. Introduction

Let B be a subset of C; we denote by

m1(B) := inf
∑

ν

|Uν| (1.1)

them1-measure of B, where the infimum is taken over all coverings {Uν} of B by disksUν and
|Uν| is the radius of the disk Uν.

Let D be a region in C and ϕ a function defined in D with values in C. A se-
quence {ϕn}n∈N

of meromorphic functions in D is said to converge to a function ϕ with
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respect to the m1-measure inside D if for every ε > 0 and any compact set K ⊂ D we
have

m1
({

z ∈ K :
∣∣(ϕ − ϕn

)
(z)

∣∣ ≥ ε
}) −→ 0 as n −→ ∞ (1.2)

(cf. Gončar [1]).
The sequence {ϕn}n∈N

is said to converge to ϕ m1-almost geometrically insideD if for any
ε > 0 there exists a set Ω(ε) in C withm1(Ω(ε)) < ε such that

lim sup
n→∞

∥∥ϕ − ϕn

∥∥1/n
K\Ω(ε) < 1 (1.3)

for any compact set K ⊂ D. We note that ‖ · ‖B is the supremum norm on a subset B of C.
For n ∈ N0 = N ∪ {0}, we denote by Pn the collection of all polynomials of degree at

most n, and let

Rn,m :=
{
r =

p

q
: p ∈ Pn, q ∈ Pm, q /≡ 0

}
. (1.4)

In [2], sequences {rn}n∈N
, rn ∈ Rn,n, on a regionD were investigated if the number of poles of

rn inD is bounded. It turns out that the geometric convergence of {rn}n∈N
on a continuum S ⊂

D implies that the sequence converges m1-almost geometrically inside D to a meromorphic
function f in D with at most a finite number of poles in D.

To be precise, let B ⊂ C and let Mm(B) denote the subset of meromorphic functions in
B with at most m poles in B, each pole counted with its multiplicity. The main result of [2]
can be stated as follows.

Theorem A. Let S be a continuum in C and D a region with S ⊂ D. Let {rn}n∈N
, rn ∈ Rn,n, be a

sequence of rational functions converging geometrically to a function f on S, that is,

lim sup
n→∞

∥∥f − rn
∥∥1/n
S < 1, (1.5)

and assume that f /≡ 0 on S. If there exists a fixed integerm ∈ N such that rn ∈ Mm(D) for all n and

N0(rn,K) = o(n) as n −→ ∞ (1.6)

for each compact set K ⊂ D, then the sequence {rn}n∈N
converges m1-almost geometrically inside D

to a meromorphic function f ∈ Mm(D).

Here, the numberN0(rn,K) denotes the number of zeros of rn inK, each zero counted
with its multiplicity.
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The above result was applied in [2] to Chebyshev approximation on [−1, 1]. Let
G(z,∞) be the Green function of Ω = C \ [−1, 1] with pole at ∞, and let

Eρ :=
{
z ∈ C : G(z,∞) < log ρ

}
, ρ > 1, (1.7)

be the Green domain to the parameter ρ, that is, Eρ is the open Joukowski-ellipse with foci at
+1 and −1 and major axis ρ + 1/ρ.

Let f ∈ C[−1, 1] be real-valued on [−1, 1]. For abbreviation, we will write ‖ · ‖ for
‖ · ‖[−1,1]. Given n,m ∈ N0, let r∗n,m = r∗n,m(f) ∈ Rn,m denote the real rational function of best
uniform approximation to f ∈ C[−1, 1] with respect to Rn,m, that is,

En,m

(
f
)
:=

∥∥f − r∗n,m
∥∥ = inf

{∥∥f − r
∥∥ : r ∈ Rn,m, r real-valued onR

}
. (1.8)

Moreover, let {mn}n∈N
be a sequence in N with

lim
n→∞

mn = ∞, mn = o

(
n

logn

)
as n −→ ∞, (1.9)

and let us consider a function f ∈ C[−1, 1] that can be continued meromorphically into Eρ

for some ρ > 1. Then the sequence {r∗n,mn
}n∈N

converges m1-almost geometrically inside Eρ

to f [3]. Using Theorem A, we obtain results about the distribution of the a-values in the
neighborhood of a point z0 ∈ ∂Eρ. For a ∈ C and B ⊂ C, we denote by

Na(r, B) := #{z ∈ B : r(z) = a} (1.10)

the number of a-values of the rational function r in B and each a-value is counted with its
multiplicity. If f cannot be continued meromorphically to z0, then for any neighborhood U

of z0 and any a ∈ C, with at most one exception,

lim sup
n→∞

Na

(
r∗n,mn

,U
)
= ∞. (1.11)

Particulary, such a point z0 is either an accumulation point of zeros or of poles of r∗n,mn
.

On the other hand, if f is not holomorphic on [−1, 1], so far results about the
distribution of the zeros of r∗n,mn

(f) are only known in the case that mn = 0 for all n ∈ N

(polynomial approximation) or in the case that mn = m ∈ N is fixed (rational approximation
with a bounded number of free poles). In the polynomial case, the normalized zero counting
measures of r∗n,0(f) converge in the weak∗-sense to the equilibriummeasure of [−1, 1], at least
for a subsequence n ∈ Λ ⊂ N [4]. This result was generalized to rational approximation with
a bounded number of poles (cf. [5, Theorem 4.1]). Moreover, Stahl [6] and Saff and Stahl [7]
have investigated for the function f(x) = |x|α, α > 0, the distribution of zeros and poles of
rational approximants, as well as the alternation points of the optimal error function.

In contrast to the distribution of zeros of r∗n,mn
, the behavior of the alternation points of

f − r∗n,mn
for f ∈ C[−1, 1] is well understood, not only in the polynomial case (cf. [8, 9]), but

also for rational approximations (cf. [10–14]). The aim of the present paper is to investigate
the distribution of the zeros of the rational approximants via the distribution of the alternation
points.
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2. Main Results

Let f be continuous on [−1, 1], possibly complex-valued. It is well known that the rate of
approximation by rational functions does not guarantee the holomorphy of the function f .
Gončar ([15], p. 101) pointed out the example

f(z) =
∞∑

n=1

An

z − αn
, (2.1)

where the points αn are situated in C \ [−1, 1] such that any point of [−1, 1] is a limit point
of the sequence {αn} and the coefficients An converge to zero sufficiently fast. Hence, it is
possible that there exists a sequence {rn}n∈N

, rn ∈ Rn,n, such that

lim sup
n→∞

∥∥f − rn
∥∥1/n

< 1, (2.2)

and f is continuous on [−1, 1], but nowhere holomorphic on [−1, 1].
But it turns out that in this case Theorem A immediately yields the following.

Theorem 2.1. Let f ∈ C[−1, 1] be not holomorphic on [−1, 1], and let {rn}n∈N
, rn ∈ Rn,n, be a

sequence such that

lim sup
n→∞

∥∥f − rn
∥∥1/n

< 1. (2.3)

Then for any non holomorphic point z0 ∈ [−1, 1] of f any neighborhood U of z0 either

lim sup
n→∞

N∞(rn,U) = ∞ (2.4)

or

lim sup
n→∞

Na(rn,U)
n

> 0 (2.5)

for all a ∈ C.

In the following we consider functions f ∈ C[−1, 1] that are always real-valued on
[−1, 1]. Then the case that

lim sup
n→∞

E1/n
n,n

(
f
)
= 1 (2.6)

is not covered by Theorem 2.1. By Bernstein’s theorem, condition (2.6) implies that f ∈
C[−1, 1] is not holomorphic on [−1, 1]. Examples for (2.6) are functions which are piecewise
analytic on [−1, 1] (Newman [16], Gončar [15]).
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In the following, we assume that {mn}n∈N
is a sequence with

mn ≤ n, mn ≤ mn+1 ≤ mn + 1. (2.7)

For abbreviation, let

En := En,mn

(
f
)
, r∗n := r∗n,mn

(
f
)
=

p∗n
q∗n

, (2.8)

where p∗n ∈ Pn and q∗n ∈ Pmn have no common factor. We define

δn := min
(
n − deg p∗n,mn − deg q∗n

)
(2.9)

as the defect of r∗n and dn := n+mn+1−δn. According to the alternation theorem of Chebyshev
(cf. Meinardus [17], Theorem 98) there exist dn + 1 points x(n)

k
,

−1 ≤ x
(n)
0 < x

(n)
1 < · · · < x

(n)
dn

≤ 1, (2.10)

which satisfy

λn(−1)k
(
f − r∗n

)(
x
(n)
k

)
=

∥∥f − r∗n
∥∥
[−1,1], 0 ≤ k ≤ dn, (2.11)

where λn = +1 or λn = −1 is fixed. For each pair (n,mn) let

An = An

(
f
)
:=

{
x
(n)
k

}dn

k=0
(2.12)

denote an arbitrary, but fixed alternation set for the best approximation r∗n ∈ Rn,mn , and let νn
denote the normalized counting measure of An, that is,

νn
([
α, β

])
:=

#
{
x
(n)
k : α ≤ x

(n)
k ≤ β

}

dn + 1
(2.13)

for any interval [α, β] ⊂ [−1, 1]. Since νn is a probability measure on [−1, 1], there exists a
subsequence Λ ⊂ N such that

νn
∗→ ν asn −→ ∞, n ∈ Λ, (2.14)

in the weak∗-topology and ν is again a probability measure on [−1, 1].
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Theorem 2.2. Let f ∈ C[−1, 1] be real-valued, and let (2.6) hold. Moreover, let f be approximated
with respect to Rn,mn , where the sequence {mn}n∈N

satisfies (2.7). Then there exists a subsequence
Λ ⊂ N with the following properties:

(i)

νn
∗→ ν as n −→ ∞, n ∈ Λ, (2.15)

(ii) let z0 ∈ supp(ν), a ∈ C, and let U be a neighborhood of z0 with f(z)/≡a on U ∩ [−1, 1];
then

either lim sup
n∈Λ,n→∞

N∞(r∗n,U) = ∞

or lim sup
n∈Λ,n→∞

Na(r∗n,U)
n

> 0.
(2.16)

Applying to the approximation in the upper half of the Walsh table, we obtain the
following.

Corollary 2.3. Let f ∈ C[−1, 1] with (2.6) and let the subsequence {mn}n∈N
satisfy

mn ≤ cn with 0 ≤ c < 1, mn ≤ mn+1 ≤ mn + 1. (2.17)

Then there exists a subsequence Λ ⊂ N with the following property: Let a ∈ C, z0 ∈ [−1, 1], and let
U be a neighborhood of z0 with f(z)/≡a onU ∩ [−1, 1]; then either (i) or (ii) holds.

3. Auxiliary Tools

One of the essential tools for proving Theorem 2.2 is the interaction between alternation
points and poles of best rational approximants.

Let τn denote the normalized counting measure of the poles of r∗n, counted with their
multiplicities, and let us denote by τ̂n the balayage measure of τn onto [−1, 1]. Then the
following distribution results hold for the interaction between the alternation points of An

and the poles of r∗n and r∗n+1.

Theorem B (See [11]). Let f be not a rational function, and let {mn}n∈N
satisfy (2.7). Then there

exists a subsequence Λ ⊂ N such that

νn − αn(τ̂n + τ̂n+1) − (1 − αn)μ
∗→ 0 as n −→ ∞, n ∈ Λ, (3.1)

where

αn =
deg q∗n + deg q∗n+1

dn + 1
(3.2)

and μ is the equilibrium distribution of [−1, 1].
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We remark that in the proof of Theorem B in [11], the subsequenceΛ ⊂ N is defined by

Λ :=
{
n ∈ N :

En + En+1

En − En+1
≤ n2

}
. (3.3)

Inspecting the proof of (3.1) in [11], it turns out that we can modify the definition of Λ by

Λ :=
{
n ∈ N : En+1 ≤

(
1 − 1

n2

)
En

}
. (3.4)

The existence of such sequences Λ is based on the divergence of the infinite product

∞∏

n=0

En+1

En
=

∞∏

n=0

(
1 − En − En+1

En

)
(3.5)

to 0 if f is not a rational function. This argument has already been used by Kadec [9] in his
proof for the distribution of the alternation points in polynomial approximation.

Concerning the distribution of the zeros of best polynomial approximations p∗n to f ,

p∗n(z) = anz
n + · · ·, (3.6)

the asymptotic behavior of the highest coefficient an plays an essential role, namely,

lim sup
n→∞

|an|1/n =
1

cap([−1, 1])lim supn→∞e
1/n
n

, (3.7)

where

en =
∥∥f − p∗n

∥∥ = inf
pn∈Pn

∥∥f − pn
∥∥ (3.8)

and cap([−1, 1]) = 1/2 is the logarithmic capacity of [−1, 1].
If f ∈ C[−1, 1] is not holomorphic on [−1, 1], then lim supn→∞e

1/n
n = 1 and we can

choose a subsequence Λ ⊂ N such that

lim
n∈Λ,n→∞

e1/nn = 1 (3.9)

and moreover,

lim
n→Λ,n→∞

|an|1/n = 2. (3.10)

If en /= en+1, then the polynomial

pn(z) :=
p∗n(z)
an

(3.11)
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is monic and satisfies

∥∥pn
∥∥ ≤

(
1

2 − ε

)n

(3.12)

for all n ∈ Λ which are sufficiently large, where ε > 0 can be chosen arbitrarily. Then the
Erdős-Turán Theorem [18] (cf. [19]) implies a weak∗-version of Kadec’s result, namely, the
weak∗-convergence of the normalized counting measures of alternation sets of f − p∗n to the
equilibrium measure μ of [−1, 1], at least for a subsequence Λ, n ∈ Λ.

The objective of this section is to show that there exists a subsequence Λ ⊂ N such
that (3.4) and the analogue of (3.9) for rational approximation hold simultaneously with
consequences for the behavior of the difference of two consecutive best approximants.

Lemma 3.1. Let f ∈ C[−1, 1] with (2.6). Then there exists a subsequence Λ ⊂ N such that

En+1 ≤
(
1 − 1

n2

)
En for n ∈ Λ,

lim
n∈Λ,n→∞

E1/n
n = 1.

(3.13)

Moreover, let {ξn}n∈Λ be a sequence in [−1, 1] with |(f − r∗n)(ξn)| = ‖f − r∗n‖; then

lim
n∈Λ,n→∞

∣∣(r∗n − r∗n+1
)
(ξn)

∣∣1/n = 1. (3.14)

Proof . Using the above arguments of the beginning of this section, there exists a subsequence
Λ1 ⊂ N such that

En+1 ≤
(
1 − 1

n2

)
En for n ∈ Λ1. (3.15)

First, we show that there exists Λ ⊂ N such that (3.13) holds.
For proving this, we define

Λ̃ :=
{
n ∈ N : En+1 ≤

(
1 − 1

n2

)
En

}
. (3.16)

Since Λ1 ⊂ Λ̃, Λ̃/= ∅, and Λ̃ is not finite, hence the complement

Λ̃c := N \ Λ̃ (3.17)

of Λ̃ in N has the property that

En+1 >

(
1 − 1

n2

)
En for n ∈ Λ̃c. (3.18)
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If Λ̃c is a finite set, then there exists m ∈ N such that

Λ := {n ∈ N : n ≥ m} (3.19)

satisfies property (3.13).
If Λ̃c is an infinite set, then observing that Λ̃ is not a finite set, we can define

subsequences {mj}j∈N
and {nj}j∈N

of N such that

nj−1 < mj ≤ nj < mj+1,

Λ̃ =
{
n ∈ N : mj ≤ n ≤ nj, j ≥ 1

}
.

(3.20)

Next, we consider a fixed integer m ≥ m1. If

nj−1 < m < mj, j ≥ 2, (3.21)

thenm /∈ Λ̃ and we deduce

Emj >

(
1 − 1

(
mj − 1

)2

)
Emj−1 >

(
1 − 1

(
mj − 1

)2

)(
1 − 1

(
mj − 2

)2

)
Emj−2

> · · · >
mj−m−1∏

k=0

(
1 − 1

(m + k)2

)
Em.

(3.22)

Since the infinite product

S =
∞∏

n=2

(
1 − 1

n2

)
(3.23)

converges, there exists a constant β, 0 < β < 1, such that all partial products

Sν,μ :=
μ∏

n=ν

(
1 − 1

n2

)
, 2 ≤ ν < μ, (3.24)

of S are bounded by β from below, that is, Sν,μ ≥ β.
By (3.22), Emj > βEm and

E
1/mj

mj
≥ E1/m

mj
> β1/mE1/m

m for Emj ≤ 1. (3.25)

Let us define form ≥ m1

ν(m) :=

{
m, if m ∈ Λ̃
mj, if nj−1 < m < mj.

(3.26)
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Next, we choose a subsequence Λ2 = {kj}j∈N
of N such that k1 ≥ m1 and

lim
j→∞

E
1/kj
kj

= 1. (3.27)

If Λ2 ⊂ Λ̃, then we are done. As for the general case, let us define

Λ :=
∞⋃

j=1

{
ν
(
kj

)}
; (3.28)

then Λ ⊂ Λ̃ and (3.25)–(3.27) imply

lim
j→∞

E
1/ν(kj )
ν(kj )

= 1. (3.29)

Hence, (3.13) is proved.
Moreover, for n ∈ Λ,

∣∣(r∗n − r∗n+1
)
(ξn)

∣∣ ≥ ∣∣(f − r∗n
)
(ξn)

∣∣ − ∣∣(f − r∗n+1
)
(ξn)

∣∣

≥ En − En+1 ≥ En −
(
1 − 1

n2

)
En =

1
n2

En,

1 ≥ lim sup
n→∞

∣∣(r∗n − r∗n+1
)
(ξn)

∣∣1/n ≥ lim sup
n∈Λ,n→∞

∣∣(r∗n − r∗n+1
)
(ξn)

∣∣1/n

≥ lim sup
n∈Λ,n→∞

((
1
n2

)1/n

E1/n
n

)
= lim

n∈Λ,n→∞
E1/n
n = 1.

(3.30)

Hence,

lim
n∈Λ,n→∞

∣∣(r∗n − r∗n+1
)
(ξn)

∣∣1/n = 1, (3.31)

and (3.14) is proved.

4. Proofs

Proof of Theorem 2.2. First we will prove the theorem for a = 0.
According to the lemma in Section 3, there exists a subsequenceΛ ⊂ N such that (3.13)–

(3.14) hold. Then Theorem B applies and (3.1) holds for n ∈ Λ. Because νn are probability
measures on [−1, 1], we may assume that

νn
∗→ ν as n −→ ∞, n ∈ Λ. (4.1)

Let z0 ∈ supp(ν) and U a neighborhood of z0 such that f(z)/≡ 0 on U ∩ [−1, 1].
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Let us assume that (ii) of Theorem 2.2 does not hold. Hence, there exists m ∈ N

N∞(r∗n,U) ≤ m ∀n ∈ N, (4.2)

N0(r∗n,U) = o(n) as n −→ ∞. (4.3)

Of course, wemay assume thatU is a bounded symmetric region with respect to the real axis.
Let ln be the number of poles ξn,i of r∗n inU counted with their multiplicities. Then we define

qn(z) :=

⎧
⎪⎨

⎪⎩

ln∏
i=1

(z − ξn,i), ln ≥ 1,

1, ln = 0.
(4.4)

Because qn, qn+1 ∈ Pm, there exists a subsequence Λ1 ⊂ Λ and q̃0, q̃1 ∈ Pm such that

lim
n∈Λ1,n→∞

qn+i = q̃i for i = 0, 1. (4.5)

Together with f(z)/≡ 0 for z ∈ U ∩ [−1, 1], this implies that there exists an interval [α, β] ⊂
U ∩ [−1, 1], α /= β, and a constant κ > 0 such that

∣∣q̃i(x)
∣∣ ≥ κ for x ∈ [

α, β
]
, i = 0, 1, (4.6)

∣∣f(x)
∣∣ ≥ κ for x ∈ [

α, β
]
. (4.7)

Let kn be the number of zeros (with multiplicities) of r∗n in U. If kn ≥ 1, let ηn,i, 1 ≤ i ≤ kn, be
the zeros of r∗n inU and let

πn(z) :=

⎧
⎪⎨

⎪⎩

kn∏
i=1

(
z − ηn,i

)
, kn > 0

1, kn = 0.
(4.8)

Because of (4.3), kn = o(n) as n → ∞ and we obtain

lim sup
n→∞

‖πn‖1/nK ≤ 1 (4.9)

for any compact set K in C. Now, let us define

hn(z) :=
1
n
log|Φn(z)| (4.10)
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with

Φn(z) :=
πn(z)

r∗n(z)qn(z)
. (4.11)

Then Φn is holomorphic inU and hn harmonic in U.
Consider z ∈ [α, β] and Λ1 as before. Then by (4.5)–(4.7) there exists ñ ∈ N such that

∣∣r∗n+i(z)
∣∣ ≥ κ

2
,

∣∣qn+i(z)
∣∣ ≥ κ

2
(4.12)

for z ∈ [α, β], i = 0, 1, and n ∈ Λ1, n ≥ ñ. Then for i = 0, 1

∥∥∥∥∥
πn+i

r∗n+iqn+i

∥∥∥∥∥
[α,β]

≤ 4(d + 1)kn+i

κ2
, (4.13)

where

d = sup
z∈U

|z|. (4.14)

According to a Lemma of Gončar [20, Lemma 1, page 153], for any compact set K ⊂ U there
exists a constant λ = λ([α, β], U,K) > 1 such that

∥∥∥∥∥
πn+i

r∗n+iqn+i

∥∥∥∥∥
K

≤ λn+i
∥∥∥∥∥

πn+i

r∗n+iqn+i

∥∥∥∥∥
[α,β]

(4.15)

for i = 0, 1. For example, λ([α, β], U,K) can be chosen as

λ
([
α, β

]
, U,K

)
:= max

z∈K
sup
t∈C\U

exp
(
G[α,β](z, t)

)
, (4.16)

where G[α,β](z, t) is the Green function of C \ [α, β]with pole at t.
Next, we choose a region W ⊂ U, W symmetric to the real axis, with z0 ∈ W , W ⊂ U

and [α, β] ⊂ W , then

hn+i(z) ≤ λ
([

α, β
]
, U,W

)
+

1
n + i

log
4
κ2

+
kn + i

n + i
log(1 + d) (4.17)

for i = 0, 1. Hence for i = 0, 1, the sequences {hn+i}n∈Λ1
are uniformly bounded in W from

above as n → ∞, n ∈ Λ1, i = 0, 1. By Harnack’s theorem, either

hn(z) −→ −∞ locally uniformly in W as n −→ ∞, n ∈ Λ1, (4.18)

or there exists a subsequence Λ2 ⊂ Λ1 such that {hn}n∈Λ2
converges locally uniformly to h0 as

n → ∞, n ∈ Λ2, in the region W and the function h0 is harmonic inW .
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Next, let us show that the first situation cannot occur: if C > 0 is such that

max
z∈[α,β]

hn(z) ≤ −C (4.19)

for n ∈ Λ1 and n sufficiently large, then

n · max
z∈[α,β]

|hn(z)| ≤ max
z∈[α,β]

log
∣∣∣∣

πn(z)
r∗n(z)qn(z)

∣∣∣∣ ≤ −nC. (4.20)

Hence, by (4.5)–(4.7) there exists a constant c1 > 0 such that

max
z∈[α,β]

|πn(z)| ≤ c1e
−nC. (4.21)

Since πn ∈ Pkn is a monic polynomial and kn = o(n) as n → ∞, this is a contradiction to

‖πn‖[α,β] ≥ 2

((
β − α

)

4

)kn

. (4.22)

Next, we consider (4.17) for i = 1. Again by Harnack’s theorem, either

hn+1(z) −→ −∞ locally uniformly in W as n −→ ∞, n ∈ Λ2, (4.23)

or there exists a subsequence Λ3 ⊂ Λ2 such that {hn+1}n∈Λ3
converges locally uniformly to a

function h1 inW and h1 is harmonic inW .
As above for {hn}n∈Λ1

, the first situation cannot occur. Consequently,

max
z∈[α,β]

hi(z) ≥ 0 for i = 0, 1. (4.24)

On the other hand, using (4.13)we deduce for i = 0, 1 that

lim sup
n∈Λ1,n→∞

max
z∈[α,β]

hn+i(z) ≤ 0. (4.25)

Summarized, we have for i = 0, 1 that

hi(z) ≡ 0 for z ∈ [
α, β

]
. (4.26)

By definition, the regions U,W are symmetric to R as well as the functions

∣∣r∗n+i(z)
∣∣, |πn+i(z)|,

∣∣qn+i(z)
∣∣ (4.27)
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for i = 0, 1. This symmetry, together with (4.26), implies that

hi(z) ≡ 0 ∀z ∈ W (4.28)

for i = 0, 1. Hence,

lim
n∈Λ3,n→∞

∥∥r∗n+iqn+i
∥∥1/n
K ≤ 1 (4.29)

for all compact sets K inW , i = 0, 1.
Combining (4.29) for i = 0, 1, we obtain

lim
n∈Λ3,n→∞

∥∥(r∗n − r∗n+1
)
qnqn+1

∥∥1/n
K ≤ 1 (4.30)

for all compact sets K ⊂ W . Hence, the function V (z) ≡ 0 is a harmonic majorant for the
sequence {Fn}n∈Λ3

of subharmonic functions inW , where

Fn(z) :=
1
n
log

∣∣(r∗n − r∗n+1
)
(z)qn(z)qn+1(z)

∣∣, n ∈ N. (4.31)

Next, we want to show that V (z) ≡ 0 is an exact harmonic majorant for {Fn}n∈Λ3
and also for

any {Fn}n∈Λ4
for any subsequence Λ4 ⊂ Λ3.

Let us assume that this assertion would be false: then there exists a subsequence Λ4 ⊂
Λ3 ⊂ Λ (Λ as in the Corollary of Section 3) and a continuum K ⊂ W such that

lim sup
n∈Λ4,n→∞

max
z∈K

Fn(z) < 0. (4.32)

Since V (z) ≡ 0 is a harmonic majorant for {Fn}n∈Λ4
in W , then (4.32) implies that the

inequality (4.32) holds for any continuum K ⊂ W .
First, let us note that under the condition (4.2) a point ξ ∈ U ∩ [−1, 1] cannot be an

isolated point of supp(ν).
To prove this, let us denote by δz the Dirac measure of the point z ∈ C, and let δ̂z be

the associated balayage measure of δz to the interval [−1, 1]. For z /∈ [−1, 1] the density of the
balayage measure δ̂z at the point x ∈ (−1, 1) is given by

d

dx
δ̂z(x) =

∂

∂n+

G(x, z) +
∂

∂n−
G(x, z), (4.33)

where n+ (resp., n−) denotes the normal at the point x to the upper half (resp., lower half)
plane andG(ξ, z) is the Green function for ξ ∈ C\[−1, 1]with pole at z, continuously extended
by G(x, z) = 0 to ξ = x ∈ [−1, 1].
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Then for any interval [α, β] ⊂ [−1, 1]

0 ≤ δ̂z
([
α, β

]) ≤ 1,

lim
z→η

η∈[−1,1]\[α,β]

δ̂z
([
α, β

])
= 0. (4.34)

Let z ∈ C \ [−1, 1], ξ ∈ U ∩ [−1, 1], and ε > 0; then

lim
ε→ 0

δ̂z([ξ − ε, ξ + ε]) = 0. (4.35)

Consider the exterior of the ε-neighborhood of [−1, 1]; that is, let

Wε :=
{
z ∈ C : dist(z, [−1, 1]) ≥ ε

}
. (4.36)

Then we can obtain a sharpening of (4.35), namely,

lim
ε→ 0

max
z∈Wε\U

δ̂z([ξ − ε, ξ + ε]) = 0. (4.37)

Since ξ ∈ U ∩ [−1, 1] and (4.2) holds, (4.34)–(4.37) imply

lim
ε→ 0

lim
n→∞

τ̃n([ξ − ε, ξ + ε]) = 0. (4.38)

Because (3.1) and (4.1) hold for n ∈ Λ, ξ cannot be an isolated point of supp(ν).
Consequently, since z0 ∈ supp(ν) there exists a sequence {ξk}k∈N

in U, ξk ∈ supp(ν),
such that

z0 = lim
k→∞

ξk (4.39)

and each ξk is not an isolated point of supp(ν). Hence, for any k ∈ N and any open interval
(α, β) with ξk ∈ (α, β) we have ν((α, β)) > 0. Taking into account (4.39) and the fact that the
zero set

Z :=
{
z ∈ C : p̃0(z) = 0 or p̃i(z) = 0

}
(4.40)

of the polynomials p̃0, p̃1 in (4.5) is finite, there exists an interval [α̃, β̃] ⊂ U ∩ [−1, 1], α̃ < β̃,
with

ν
([

α̃, β̃
])

> 0,
[
α̃, β̃

]
∩ Z = ∅. (4.41)
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Using (4.5) we conclude that there exists n1 ∈ N and a constant κ̃ > 0 such that

∣∣qn+i(z)
∣∣ ≥ κ̃ for z ∈

[
α̃, β̃

]
, (4.42)

where n ∈ Λ1, n ≥ n1, and i = 0, 1.
Let us choose forK in (4.32) the interval [α̃, β̃]. Then there exists, by definition of Fn(z)

in (4.31), a constant δ, 0 < δ < 1, and n2 ∈ N, n2 ≥ n1, such that

max
z∈[α̃,β̃]

∣∣(r∗n − r∗n+1
)
(z)qn(z)qn+1(z)

∣∣ ≤ δn. (4.43)

for all n ∈ Λ4, n ≥ n2. By (4.42) we obtain

max
z∈[α̃,β̃]

∣∣(r∗n − r∗n+1
)
(z)

∣∣ ≤ δn

κ̃2
, (4.44)

lim sup
n∈Λ4,n→∞

∥∥r∗n − r∗n+1
∥∥1/n
[α̃,β̃]

≤ δ < 1 (4.45)

contradicting the property (3.14) and ν([α̃, β̃]) > 0.
Hence, V (z) ≡ 0 is an exact harmonic majorant for {Fn}n∈Λ3

and for any subsequence
{Fn}n∈Λ4

, Λ4 ⊂ Λ3, in the region W .
This is now the situation that a distribution result of Walsh about the zeros of the

sequence

{(
r∗n − r∗n+1

)
qnqn+1

}
n∈Λ3

(4.46)

of holomorphic functions in W can be applied (Walsh [21], Theorem 16, page 221): for every
compact set K inW we have

N0
((
r∗n − r∗n+1

)
qnqn+1, K

)
= o(n) as n ∈ Λ3, n −→ ∞. (4.47)

Choosing forK the interval [α̃, β̃], then the number of alternations of f − r∗n in [α̃, β̃] is a lower
bound for the number

N0

((
r∗n − r∗n+1

)
qnqn+1,

[
α̃, β̃

])
(4.48)

of zeros of (r∗n − r∗n+1)qnqn+1 in [α̃, β̃]. Because of (4.1) and ν([α̃, β̃]) > 0,

lim
n∈Λ3,n→∞

νn
([

α̃, β̃
])

= ν
([

α̃, β̃
])

> 0 (4.49)

which contradicts (4.47).
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Hence, the theorem is proved for a = 0. The case a/= 0 can be reduced to a = 0 by
defining

f̃(z) := f(z) + a, z ∈ [−1, 1], (4.50)

r̃(z) := r(z) + a for r ∈ Rn,n, z ∈ C. (4.51)

If a ∈ C, we note that the inequality (4.30) is equivalent to

lim
n∈Λ3,n→∞

∥∥(r̃∗n − r̃∗n+1)qnqn+1
∥∥1/n
K ≤ 1 (4.52)

and (3.14) is equivalent to

lim
n∈Λ,n→∞

∣∣(r̃∗n − r̃∗n+1
)
(ξn)

∣∣1/n = 1, (4.53)

where {ξn}n∈Λ, ξn ∈ [−1, 1], and |(f̃ − r̃∗n)(ξn)| = ‖f̃ − r̃∗n‖. Therefore, all arguments for the
sequence {Fn} are invariant by replacing in definition (4.10) the functions r∗n, r

∗
n+1 by r̃∗n, r̃

∗
n+1.

Hence, Theorem 2.2 is true for all a ∈ C.

Proof of the Corollary. In the proof of Theorem 2.2, the subsequence Λ was chosen such that

νn − αn(τ̂n + τ̂n+1) − (1 − αn)μ
∗→ 0 as n −→ ∞, n ∈ Λ, (4.54)

where

αn =
deg q∗n + deg q∗n+1

dn + 1
. (4.55)

Since {mn} fulfills (2.17), we obtain

αn =
deg q∗n + deg q∗n+1
n +mn + 1 − δn

≤ deg q∗n + deg q∗n+1
n +mn + 1 − (

mn − deg q∗n
)

= 1 − n + 1 − deg q∗n+1
n + 1 + deg q∗n

< 1 − n + 1 − c(n + 1)
n + 1 + c(n + 1)

= 1 − 1 − c

1 + c
.

(4.56)

Hence, by (3.1)

νn
([
α, β

]) ≥ 1 − c

1 + c
μ
([
α, β

])
(4.57)
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for any interval [α, β] ⊂ C[−1, 1]. Therefore, property (i) of Theorem 2.2 implies that

νn
∗→ ν, supp(ν) = [−1, 1] (4.58)

and Theorem 2.2 holds for all z0 ∈ [−1, 1].

5. Generalization to the Lower-Half of the Walsh Table

Theorem 2.2 restricts the approximation to the upper half of theWalsh table. In the following,
we also want to allow approximations in the lower half of the Walsh table. We assume that
the pairs

(n(s), m(s)) ∈ N0 × N0 (5.1)

depend on parameters s ∈ N. For abbreviation, let

Es := En(s),m(s)
(
f
)
, r∗s = r∗n(s),m(s)

(
f
)
=

p∗s
q∗s

, (5.2)

where p∗s and q∗s have no common factor. As above, let

δs := min
(
n(s) − deg p∗s,m(s) − deg p∗s

)
(5.3)

be the defect of r∗s , and let As = As(f) = {x(s)
k
}d(s)
k=0 be an alternation point set to f − r∗s , where

ds = n(s) +m(s) + 1 − δs. (5.4)

We denote by νs the normalized counting measure of As. Then Theorem 2.2 can be
generalized in the following way.

Theorem 5.1. Let (n(s), m(s)), s ∈ N, be a strictly increasing subsequence of N0 × N0 with

n(s) ≤ n(s + 1) ≤ n(s) + 1, m(s) ≤ m(s + 1) ≤ m(s) + 1, (5.5)

and let us approximate f ∈ C[−1, 1], with respect to Rn(s),m(s), where

m(s) ≤ n(s) + κ(s), s ∈ N,

κ(s) = o

(
s

log s

)
as s −→ ∞.

(5.6)

If f ∈ C[−1, 1] satisfies (2.6), then there exists a subset Λ ⊂ N with the following properties:

(i) νs
∗→ ν as s → ∞, s ∈ Λ.
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(ii) let a ∈ C; then for any z0 ∈ supp(ν) and any neighborhood U of z0 with f(z)/≡a on
U ∩ [−1, 1] either

lim sup
s→∞

N∞(r∗s ,U) = ∞ (5.7)

or

lim sup
s→∞

Na(r∗s ,U)
s

> 0. (5.8)

For the proof, we use a generalization of Theorem B to the previous situation (see [10]): if
(5.5) and (5.6) hold, then there exists a subsequence Λ ⊂ N such that

νs − αs(τ̂s + τ̂s+1) − (1 − αs)μ
∗→ 0 as s −→ ∞, s ∈ Λ. (5.9)

Again, we use in (5.9) the balayage measures of the normalized pole counting measures τs
and τs+1 of r∗s , respectively, r

∗
s+1, onto [−1, 1] and

αs :=
deg q∗s + deg q∗s+1

ds + 1
. (5.10)

Then the proof of (5.7) and (5.8) follows the same lines as the proof of Theorem 2.2 if

lim sup
s→∞

E1/s
s = 1. (5.11)

Because of (5.5), the index n(s) runs from n(1) to ∞. Moreover, let M(s) := max(n(s), m(s)),
s ∈ N; then M(s) runs fromM(1) to∞ and

lim sup
s→∞

E1/s
s = lim sup

s→∞
E1/s
n(s),m(s)

≥ lim sup
s→∞

(
E
1/M(s)
M(s),M(s)

)M(s)/s
= 1,

(5.12)

since

s ≥ M(s) −M(1). (5.13)
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6. Remarks

For the function f(x) = |x|α, α > 0, the distribution of alternation points of the optimal error
curves, as well as the zeros and poles of r∗n,m is very well investigated [7].

Let α ∈ R+ \ 2N, and let (n,mn) ∈ N × N with

lim
n→∞

mn

n
= c ≤ 1, n ≥ mn + 2

[α
2

]
. (6.1)

Since all best approximants of f(x) = |x|α are even functions, we can assume that n,mn ∈ N

are even. Moreover, the error function f − r∗n,mn
has always exactly n + mn + 3 points [7].

By νAn = νn we denote the normalized alternation counting measure and νPn denotes the
normalized pole counting measure of r∗n,mn

and νZn the normalized zero counting measure of
r∗n,mn

. Then

νAn

∗→
n→∞

2c
1 + c

δ0 +
1 − c

1 + c
μ, (6.2)

νPn

∗→
n→∞

δ0, (6.3)

νZn

∗→
n→∞

cδ0 + (1 − c)μ (6.4)

(cf. Theorems 1.6 and 1.7 in [7]).
For c < 1, we would obtain by (3.1) and by the corollary of Theorem 2.2 that any point

of [−1, 1] is either a limit point of poles or of a-values of r∗n,mn
, a ∈ C, as n → ∞. Since by

(6.3) the normalized pole counting measures converge to the Dirac measure at 0, any point
of [−1, 1], with 0 as only possible exception, is a limit point of a-values.

For c = 1, νAn

∗→ δ0. Hence Theorem 2.2 can only tell us that the point 0 is either a limit
point of poles or of a-values, a ∈ C. But (6.3) and (6.4) show that 0 is as well a limit point of
zeros as of poles of r∗n,mn

. Hence, the investigations in [7] for the special functions f(x) = |x|α
lead to deeper results for the zeros and poles of the best approximants.

But the example of f(x) = |x|α shows an interesting area for further investigations,
namely, a weak∗-type analogue of relation (3.1) for the distribution of zeros, respectively, a-
values, and poles of rational approximationwould be desirable. Moreover, the approximation
problem should be moved from the interval [−1, 1] to more general compact sets E in C.
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[15] A. A. Gončar, “Properties of functions related to their rate of approximability by rational functions,”
American Mathematical Society Translations Series 2, vol. 91, pp. 99–127, 1970.

[16] D. J. Newman, “Rational approximation to |x|,” The Michigan Mathematical Journal, vol. 11, pp. 11–14,
1964.

[17] G. Meinardus, Approximation of Functions: Theory and Numerical Methods, Springer, New York, NY,
USA, 1967.
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[20] A. A. Gončar, “A local condition of single-valuedness of analytic functions,”Mathematics of the USSR-
Sbornik, vol. 18, no. 1, pp. 148–164, 1972.

[21] J. L. Walsh, “Overconvergence, degree of convergence, and zeros of sequences of analytic functions,”
Duke Mathematical Journal, vol. 13, pp. 195–234, 1946.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


