
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2012, Article ID 962789, 11 pages
doi:10.1155/2012/962789

Research Article
Exact Travelling Wave Solutions for
Isothermal Magnetostatic Atmospheres by Fan
Subequation Method

Hossein Jafari,1, 2 Maryam Ghorbani,1
and Chaudry Masood Khalique2

1 Department of Mathematics, Faculty of Mathematical Sciences, University of Mazandaran,
P.O. Box 47416-95447, Babolsar, Iran

2 International Institute for Symmetry Analysis and Mathematical Modelling, Department of Mathematical
Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho 2735, South Africa

Correspondence should be addressed to Hossein Jafari, jafari h@math.com

Received 1 September 2012; Revised 14 November 2012; Accepted 15 November 2012

Academic Editor: Lan Xu

Copyright q 2012 Hossein Jafari et al. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

The equations of magnetohydrostatic equilibria for a plasma in a gravitational field are inves-
tigated analytically. An investigation of a family of isothermal magnetostatic atmospheres with
one ignorable coordinate corresponding to a uniform gravitational field in a plane geometry is
carried out. These equations transform to a single nonlinear elliptic equation for the magnetic
vector potential u. This equation depends on an arbitrary function of u that must be specified.
With choices of the different arbitrary functions, we obtain analytical solutions of elliptic equation
using the Fan subequation method.

1. Introduction

The equations of magnetostatic equilibria have been used extensively to model the
solar magnetic structure [1–4]. An investigation of a family of isothermal magnetostatic
atmospheres with one ignorable coordinate corresponding to a uniform gravitational field in
a plane geometry is carried out. The force balance consists of the J∧B force (B is the magnetic
field induction and J is the electric current density), the gravitational force, and gas pressure
gradient force. However, in many models, the temperature distribution is specified a priori
and direct reference to the energy equations is eliminated. In solar physics, the equations of
magnetostatic have been used to model diverse phenomena, such as the slow evolution stage
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of solar flares, or the magnetostatic support of prominences [5, 6]. The nonlinear equilibrium
problem has been solved in several cases [7–9].

Recently, Fan and Hon [10] developed an algebraic method, belonging to the sub-
equation method to seek more new solutions of nonlinear partial differential equations
(NLPDEs) that can be expressed as polynomial in an elementary function which satisfies
a more general sub-equation, called Fan sub-equation, than other sub-equations like Riccati
equation, auxiliary ordinary equation, elliptic equation, and generalized Riccati equation. As
we know, the more general analytical exact solutions of the sub-equation are proposed, the
more general corresponding exact solutions of NLPDEs will be obtained. Thus, it is very
important how to obtain more new solutions to the sub-equation. Fortunately, the Fan sub-
equation method can construct more general exact solutions to the sub-equation that can
capture all the solutions of the Riccati equation, auxiliary ordinary equation, elliptic equation,
and generalized Riccati equation. Some works using the Fan’s technique are presented in
[1, 11–16].

In this paper, we obtain the exact travelling wave solutions for the Liouville and
sinh-Poisson equations using the Fan sub-equation method. These two models are special
cases of magnetostatic atmospheres model. Also in these cases there is force balance between
differents forces.

2. The Basic Idea of Fan Subequation Method

In this section, we outline the main steps of Fan sub-equation method [11].

Step 1. For a given nonlinear partial differential equation

N(u, ut, ux, utt, uxx, . . .) = 0 (2.1)

we consider its travelling wave solutions u(x, t) = u(ξ), ξ = x − ct, then (2.1) is reduced to a
nonlinear ordinary differential equation

N
(
u(ξ),−cu′(ξ), u′(ξ), c2u′′(ξ), u′′(ξ), . . .

)
= 0, (2.2)

where a prime denotes the derivative with respect to the variable ξ.

Step 2. Expand the solution of (2.2) in the form

u(ξ) =
n∑
i=0

Aiφ
i, An /= 0, (2.3)
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where Ai (i = 0, 1, . . . , n) are constants to be determined later and the new variable φ satisfies
the Fan sub-equation

φ′(ξ) = ε

√√√√ 4∑
j=0

wjφj , (2.4)

where ε = ±1 and wj (j = 0, . . . , 4) are constants.

Thus, the derivatives with respect to the variable ξ become the derivatives with respect
to the variable φ as follows:

du

dξ
= ε

√√√√ 4∑
j=0

wjφj
du

dφ
,

d2u

dξ2
=

1
2

√√√√ 4∑
j=1

jwjφj−1 du
dφ

+
4∑

j=0

wjφ
j d

2u

dφ2
. (2.5)

Step 3. Determine n by substituting (2.3) with (2.4) into (2.2) and balancing the linear term
of the highest order with the nonlinear term in (2.2).

Step 4. Substituting (2.3) and (2.4) into (2.2) again and collecting all coefficients of φi (i =
0, 1, 2, . . . , n), then setting these coefficients to zero will give a set of algebraic equations with
respect to Ai (i = 0, 1, . . . , n).

Step 5. Solve these algebraic equations to obtain Ai (i = 0, 1, 2, . . . , n). Substituting these
results into (2.3) yields the general form of travelling wave solutions.

Step 6. For each solution to (2.4) which depends on the special conditions chosen for
the w0, w1, w2, w3, and w4, it follows from (2.3) obtained from the above steps that the
corresponding exact solution of (2.2) can be constructed.

3. Basic Equations

The relevant magnetohydrostatic equations consist of the equilibrium equation

J ∧ B − ρ∇Φ − ∇P = 0, (3.1)

which is coupled with Maxwells equations

J =
∇ ∧ B

μ
, ∇ · B = 0, (3.2)

where P , ρ, μ, and Φ are the gas pressure, the mass density, the magnetic permeability, and
the gravitational potential, respectively. It is assumed that the temperature is uniform in space
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and that the plasma is an ideal gas with equation of state p = ρR0T0, where R0 is the gas
constant and T0 is the temperature. Then the magnetic field B can be written as

B = ∇u ∧ ex + Bxex =
(
Bx,

∂u

∂z
,
−∂u
∂y

)
. (3.3)

The form of (3.3) for B ensures that ∇ · B = 0 and there is no mono pole or defect structure.
Equation (3.1) requires the pressure and density to be of the form [4]

P
(
y, z

)
= P(u)e−z/h, ρ

(
y, z

)
=

1(
gh

)P(u)e−z/h, (3.4)

where h = R0T0/g is the scale height. Substituting (3.2)–(3.4) into (3.1), we obtain

∇2u + f(u)e−z/h = 0, (3.5)

where

f(u) = μ
dP

du
. (3.6)

Equation (3.6) gives

P(u) = P0 +
1
μ

∫
f(u)du, (3.7)

where P0 is constant. Substituting (3.7) into (3.4), we obtain

P
(
y, z

)
=
(
P0 +

1
μ

∫
f(u)du

)
e−z/h,

ρ
(
y, z

)
=

1
gh

(
P0 +

1
μ

∫
f(u)du

)
e−z/h.

(3.8)

Using transformation x1 + ix2 = e−z/leiy/l, (3.5) reduces to

∂2u

∂x2
1

+
∂2u

∂x2
2

+ l2f(u)e(2/l−1/h)z = 0. (3.9)

These equations have been given in [2].

4. Applications of the Fan Subequation Method

In this section, we will employ the Fan sub-equation method for solving (3.9) for specific
forms of the function f(u).
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4.1. Liouville Equation

We first consider Liouville equation, which is a special case of (3.9), namely,

uxx + utt − α2l2e−2u = 0. (4.1)

In order to apply the Fan sub-equation method, we use the wave transformation u(x, t) =
u(ξ), ξ = x − ct and transform (4.1) into the form

(
1 + c2

)
u′′ = α2l2e−2u. (4.2)

We next use the transformation v = e−2u and obtain the nonlinear ordinary differential
equation

(
1 + c2

)
vv′′ −

(
1 + c2

)
v′2 + 2α2l2v3 = 0. (4.3)

Using Step 3 given above, we get n = 2, therefore the solution of (4.3) can be expressed as

v(ξ) = A0 +A1φ +A2φ
2. (4.4)

Following Step 4, we obtain a system of nonlinear algebraic equations for A0, A1, and A2:

2α2l2A0
3 − ε2A1

2w0 − c2ε2A1
2w0 + 2ε2A0w0 + 2c2ε2A0A2w0

+
1
2
ε2A0A1w1 +

1
2
c2ε2A0A1w1 = 0,

6αl2A0
2A1 − 2ε2A1A2w0 − 2c2ε2A1A2w0 − 1

2
ε2A1

2w1 + 3ε2A0A2w1

+ 3c2ε2A0A1
2 + ε2A0A1w2 + c2ε2A0A1w2 = 0,

6α2l2A0A1
2 + 6α2l2A0

2A2 − 2ε2A2
2w0 − 1

2
ε2A1A2w1 − 1

2
c2ε2A1A2w1

+ 4ε2A0A2w2 + 4c2ε2A0A2w2 +
3
2
ε2A0A1w3 +

3
2
c2ε2A0A1w3 = 0,

2α2l2A1
3 + 12α2l2A0A1A2 − ε2A2

2w1 − c2ε2A2
2w1 + ε2A1A2w2 + c2ε2A1A2w2

+
1
2
ε2A1

2w3 +
1
2
c2ε2A1

2w3 + 5ε2A0A2w3 + 5c2ε2A0A2w3

+ 2ε2A0A1w4 + 2c2ε2A0A1w4 = 0,
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6α2l2A1
2A2 + 6α2l2A0A2

2 +
5
2
ε2A1A2w3 +

5
2
ε2c2A1A2w3 + ε2A1

2w4

+ c2ε2A1
2w4 + 6ε2A0A2w4 + 6c2ε2A0A2w4 = 0,

6α2l2A1A2
2 + ε2A2

2w3 + c2ε2A2
2w1 + ε2A1A2w2 + c2ε2A2

2w3

+ 4ε2A1A2w4 + 4c2ε2A1A2w4 = 0,

2α2l2A2
3 + 2ε2A2

2w4 + 2c2ε2A2
2w4 = 0.

(4.5)

Case 1. When w0 = w1 = w3 = 0, w2 > 0, w4 < 0, (2.4) admits a hyperbolic function solution

φ =
√
−w2

w4
sech

(√
w2 ξ

)
. (4.6)

Thus (4.4) yields the following new solitary wave solution of (2.1) of bell-type

v1(ξ) =

(
1 + c2

)
w2

α2l2
sech2(√w2 ξ

)
, (4.7)

where w2 > 0, w4 < 0, α/= 0, l /= 0, and c are arbitrary constants. Reverting back to the original
variables x and t, we obtain the solution of (4.1) in the form

u1(x, t) = −1
2
ln

[(
1 + c2

)
w2

α2l2
sech2{√w2 (x − ct)

}]
. (4.8)

Case 2. When w1 = w3 = 0, w0 = w2
2/4w4, w2 < 0, w4 > 0, (2.4) admits two hyperbolic

function solutions

φ = ±
√
− w2

2w4
tanh

(√−w2

2
ξ

)
, (4.9)

and so (4.4) yields one family of solitary travelling wave solutions of (4.1) given by

u2(x, t) = −1
2
ln

[
−
(
1 + c2

)
w2

2α2l2
+

(
1 + c2

)
w2

α2l2
tanh2

(√
−w2

2
(x − ct)

)]
, (4.10)

where w2 < 0, w4 > 0, α/= 0, l /= 0, and c are arbitrary constants.

Case 3. When w0 = w1 = 0, w3 = ±2√w2w4, w2 > 0, w4 > 0, (2.4) has two kinds of exact
solutions:

φ = −
√
w2w4

2w4
sign(w3)

[
1 + tanh

(√
w2

2
ξ

)]
, (4.11)
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and (4.4) yields one family of solitary travelling wave solutions of (4.1) given by

u3(x, t) = − 1
2
ln

[
±
(
1 + c2

)
w2

α2l2
sign(w3)

[
1 + tanh

(√
w2

2
(x − ct)

)]

−
(
1 + c2

)
w2

4α2l2

[
1 + tanh

(√
w2

2
(x − ct)

)]2]
,

(4.12)

where w2 > 0, w4 > 0, α/= 0, l /= 0, and c are arbitrary constants.

Case 4. When w1 = w3 = 0, (2.4) admits three Jacobian elliptic doubly periodic solutions

φ =

√
−w2k

2

w4(2k2 − 1)
cn

(√
w2

2k2 − 1
ξ, k

)
, for w0 =

w2
2k2(k2 − 1

)

w4(2k2 − 1)2
, w2 > 0, w4 < 0,

φ =

√
−w2

w4(2 − k2)
dn

(√
w2

2 − k2
ξ, k

)
, for w0 =

w2
2(1 − k2)

w4(k2 − 2)2
, w2 > 0, w4 < 0,

φ = ±
√

−w2k
2

w4(k2 + 1)
sn

(√ −w2

k2 + 1
ξ, k

)
, for w0 =

w2
2k2

w4(k2 + 1)2
, w2 < 0, w4 > 0,

(4.13)

and (4.4), respectively, yields two families of Jacobian elliptic doubly periodic wave solutions

u4(x, t) = −1
2
ln

[
−
(
1 + c2

)
w2

2α2l2
+

(
1 + c2

)
w2

(
2k2 − 1

)

4α2l2(k2 − 1)
cn2

(√
w2

2k2 − 1
(x − ct), k

)]
, (4.14)

with w2 > 0, w4 < 0, α/= 0, l /= 0, k ∈ (
√
2/2, 1), and c being arbitrary constants. Similarly,

from (4.4), respectively, we can obtain two families of Jacobian elliptic doubly periodic wave
solutions

u5(x, t) = −1
2
ln

[
−
(
1 + c2

)
w2

2α2β2
+

(
1 + c2

)
w2

(
k2 − 2

)

4α2l2(1 − k2)
dn2

(√
w2

2 − k2 (x − ct), k
)]

, (4.15)

with w2 > 0, w4 < 0, α/= 0, l /= 0, k ∈ (0, 1), and c being arbitrary constants. Similarly,
from (4.4), respectively, we can obtain two families of Jacobian elliptic doubly periodic wave
solutions

u6(x, t) = −1
2
ln

[
−
(
1 + c2

)
w2

2α2l2
+

(
1 + c2

)
w2

(
k2 + 1

)

4α2l2
sn2

(√
− w2

k2 + 1
(x − ct), k

)]
(4.16)

with w2 < 0, w4 > 0, α/= 0, l /= 0, k ∈ (0, 1), and c being arbitrary constants.
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4.2. The sinh-Poisson Equation

Secondly, we consider sinh-Poisson equation which plays an important role in soliton model
with BPS Bound. Also, this equation is a special case of (3.9) and is given by

uxx + utt = β2 sinh(u). (4.17)

In order to apply the Fan sub-equation method, we use the wave transformation ξ = x − ct
and convert (4.17) into the form

(
1 + c2

)
u′′ = β2 sinh(u). (4.18)

We next use the transformation v = eu and obtain the equation

2
(
1 + c2

)
vv′′ − 2

(
1 + c2

)
v′2 − β2

(
v3 − v

)
= 0. (4.19)

Applying Step 3, we get n = 2, therefore the solution of (4.19) can be expressed as

v(ξ) = A0 +A1φ +A2φ
2. (4.20)

Then using Step 4, we obtain a system of nonlinear algebraic equations for A0, A1, and A2:

− l2A0
3 − 2ε2A1

2w0 − 2c2ε2A1
2w0 + 4ε2A0A2w0 + 4c2ε2A0A2w0

+ ε2A0A1w1 + c2ε2A0A1w1 = 0,

− 3l2A0
2A1 − 4ε2A1A2w0 − 4c2ε2A1A2w0 − ε2A1

2w1 − c2ε2A1
2w1 + 6ε2A0A2w1

+ 6c2ε2A0A2w1 + 2ε2A0A1w2 + 2c2ε2A0A1w2 = 0,

− 3l2A0A1
2 − 3l2A0

2A2 − 4ε2A2
2w0 − 4c2ε2A2

2w0 − ε2A1A2w1 − c2ε2A1A2w1

+ 8ε2A0A2w2 + 8c2ε2A0A2w2 + 3ε2A0A1w3 + 3c2ε2A0A1w3 = 0,

− l2A1
3 − 6l2A0A1A2 − 2ε2A2

2w1 − 2c2ε2A2
2w1 + 2ε2A1A2w2 + 2c2ε2A1A2w2

+ ε2A1
2w3 + c2ε2A1

2w3 + 10ε2A0A2w3 + 10c2ε2A0A2w3

+ 4ε2A0A1w4 + 4c2ε2A0A1w4 = 0,

− 3l2A1
2A2 − 3l2A0A2

2 + 5ε2A1A2w3 + 5c2ε2A1A2w3 + 2ε2A1
2w4 + 2c2ε2A1

2w4

+ 12ε2A0A2w4 + 12c2ε2A0A2w4 = 0,

− 3l2A1A2
2 + 2ε2A2

2w3 + 2c2ε2A2
2w3 + 8ε2A1A2w4 + 8c2ε2A1A2w4 = 0,

− l2A2
3 + 4ε2A2

2w4 + 4c2ε2A2
2w4 = 0.

(4.21)
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Case 1. When w0 = w1 = w3 = 0, w2 > 0, w4 < 0, (2.4) admits a hyperbolic function solution

φ =
√
−w2

w4
sech

(√
w2 ξ

)
(4.22)

and (4.20) yields the following new solitary wave solution of (4.17) of bell-type

u1(x, t) = ln

[
−4

(
1 + c2

)
w2

l2
sech2(√w2 (x − ct)

)]
, (4.23)

where w2 > 0, w4 < 0, l /= 0, and c are arbitrary constants.

Case 2. When w1 = w3 = 0, w0 = w2
2/4w4, w2 < 0, w4 > 0, (2.4) admits two hyperbolic

function solutions

φ = ±
√
− w2

2w4
tanh

(√−w2

2
ξ

)
, (4.24)

and (4.20) yields one family of solitary travelling wave solutions of (4.17) given by

u2(x, t) = ln

[
2
(
1 + c2

)
w2

l2
− 2

(
1 + c2

)
w2

l2
tanh2

(√
−w2

2
(x − ct)

)]
, (4.25)

where w2 < 0, w4 > 0, l /= 0, and c are arbitrary constants.

Case 3. When w0 = w1 = 0, w3 = ±2√w2w4, w2 > 0, w4 > 0, (2.4) has two kinds of exact
solutions

φ = −
√
w2w4

2w4
sign(w3)

[
1 + tanh

(√
w2

2
ξ

)]
, (4.26)

and (4.20) yields one family of solitary travelling wave solutions solitary travelling wave
solutions of (4.17) given by

u3(x, t) = ln

[
±2

(
1 + c2

)
w2

l2
sign(w3)

[
1 + tanh

(√
w2

2
(x − ct)

)]

−
(
1 + c2

)
w2

l2

[
1 + tanh

(√
w2

2
(x − ct)

)]2]
,

(4.27)

where w2 > 0,w4 > 0, l /= 0 and c are arbitrary constants.
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Case 4. When w1 = w3 = 0, (2.4) admits three Jacobian elliptic doubly periodic solutions

φ =

√
−w2k

2

w4(2k2 − 1)
cn

(√
w2

2k2 − 1
ξ, k

)
, for w0 =

w2
2k2(k2 − 1

)

w4(2k2 − 1)2
, w2 > 0, w4 < 0,

φ =

√
−w2

w4(2 − k2)
dn

(√
w2

2 − k2
ξ, k

)
, for w0 =

w2
2(1 − k2)

w4(k2 − 2)2
, w2 > 0, w4 < 0,

φ = ±
√

−w2k
2

w4(k2 + 1)
sn

(√ −w2

k2 + 1
ξ, k

)
, for w0 =

w2
2k2

w4(k2 + 1)2
, w2 < 0, w4 > 0,

(4.28)

and (4.20), respectively, yields two families of Jacobian elliptic doubly periodic wave
solutions

u4(x, t) = ln

[
2
(
1 + c2

)
w2

l2
+
2
(
1 + c2

)(
2k2 − 1

)
w2

l2(k2 − 1)
cn2

(√
w2

2k2 − 1
(x − ct), k

)]
, (4.29)

with w2 > 0, w4 < 0, l /= 0, k ∈ (
√
2/2, 1), and c being arbitrary constants. Similarly, from

(4.20), respectively, we can obtain two families of Jacobian elliptic doubly periodic wave
solutions

u5(x, t) = ln

[
2
(
1 + c2

)
w2

l2
− 2

(
1 + c2

)
w2

(
2 − k2)

l2(1 − k2)
dn2

(√
w2

2 − k2 (x − ct), k
)]

, (4.30)

with w2 > 0, w4 < 0, α/= 0, l /= 0, k ∈ (0, 1), and c being arbitrary constants. Likewise,
from (4.20), respectively, we can get two families of Jacobian elliptic doubly periodic wave
solutions

u6(x, t) = ln

[
2
(
1 + c2

)
w2

l2
− 2

(
1 + c2

)
w2

(
k2 + 1

)

l2
sn2

(√
− w2

k2 + 1
(x − ct), k

)]
, (4.31)

with w2 < 0, w4 > 0, α/= 0, l /= 0, k ∈ (0, 1), and c being arbitrary constants.

5. Concluding Remarks

In this paper, the Fan sub-equation method has been successfully used to obtain some
exact travelling wave solutions for the Liouville and sinh-Poisson equations. These exact
solutions include the hyperbolic function solutions, trigonometric function solutions. When
the parameters are taken as special values, the solitary wave solutions are derived from the
hyperbolic function solutions. Thus, this study shows that the Fan sub-equation method is
quite efficient and practically well suited for use in finding exact solutions for nonlinear
partial differential equations. The reliability of the method and the reduction in the size of
computational domain give this method a wider applicability.
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