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We constructed three two-step semi-implicit hybrid methods (SIHMs) for solving oscillatory second order ordinary differential
equations (ODEs). The first two methods are three-stage fourth-order and three-stage fifth-order with dispersion order six and
zero dissipation. The third is a four-stage fifth-order method with dispersion order eight and dissipation order five. Numerical
results show that SIHMs are more accurate as compared to the existing hybrid methods, Runge-Kutta Nyström (RKN) and Runge-
Kutta (RK) methods of the same order and Diagonally Implicit Runge-Kutta Nyström (DIRKN) method of the same stage. The
intervals of absolute stability or periodicity of SIHM for ODE are also presented.

1. Introduction

Second-order ordinary differential equations (ODEs) which
are oscillatory in nature often arise in many scientific areas of
engineering and applied sciences such as celestial mechanics,
molecular dynamics, and quantum mechanics. Consider the
numerical solution of the initial value problem (IVP) for
second-order ODEs in the form

𝑦

= 𝑓 (𝑡, 𝑦) , 𝑦 (𝑡

0
) = 𝑦
0
, 𝑦


(𝑡
0
) = 𝑦


0
, (1)

in which the first derivative does not appear explicitly. Appar-
ently, some of the most common methods used for solving
second-order ODEs numerically are Runge-Kutta Nyström
(RKN) and Runge-Kutta methods for Runge-Kutta method
the IVPs need to be reduced to a system of first-order ODEs
twice the dimension.The IVP can be solved using a particular
explicit hybrid algorithms which were developed by Franco
[1] or amultistepmethod for special second-orderODEs as in
Yap et al. [2]. Franco [3] proposed that (1) can be solved using
a particular explicit hybrid algorithms or special multistep
methods for second-order ODEs. Franco [3] constructed
explicit two-step hybridmethods of order four up to order six

for solving second-order IVPs by considering the local trun-
cation error and order conditions developed by Coleman [4].

Most of the IVPs represented by (1) have solutions which
are oscillatory in nature, making it difficult to get the accurate
numerical results. To address the problem several authors
[5–7] focused their research on developing methods with
reduced phase lag and dissipation, where phase-lag or disper-
sion error is the difference of the angle for the computed solu-
tion and the exact solution and dissipation is the distance of
the computed solution from the standard cyclic solution.The
analysis of phase-lag or dispersion errors was first introduced
by Brusa and Nigro [8]. Van der Houwen and Sommeijer [9]
proposed explicit RKN methods of order four, five, and six
with reduced phase-lag of order 𝑞 = 6, 8, 10, respectively. Senu
et al. [7, 10] developed diagonally implicit RKNmethod with
dispersion of higher order for solving oscillatory problems. In
a related work Kosti et al. [11] constructed an optimized RKN
method (OPRKN) based on the existing explicit four-stage
fifth-order RKN method for the integration of oscillatory
IVPs. In his derivation he used the phase-lag, amplification
factor and the first derivative of the amplification factor by
equating them to zero. Later, Kosti et al. [12] also developed an
OPRKNmethod based on the same explicit RKNmethod, in
which he used the phase lag, amplification factor, and the first
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derivative of the phase-lag properties instead of using only the
first derivative of amplification factor in his previous work.

In this paper, we constructed three-stage fourth-order
and three-stage fifth-ordermethods with dispersion order six
and zero dissipation and also four-stage fifth-order method
with dispersion order eight and dissipation order five. It
is done by taking the dispersion relations for the semi-
implicit hybrid methods and solving them together with the
algebraic conditions of the methods.The intervals of stability
of the methods are also presented. Finally, numerical tests on
second-order differential equation for oscillatory problems
are given.

2. Analysis Phase Lag of the Methods

An 𝑠-stage two-step hybrid method for the numerical inte-
gration of the IVP(1) is of the form

𝑌
𝑖
= (1 + 𝑐

𝑖
) 𝑦
𝑛
− 𝑐
𝑖
𝑦
𝑛−1

+ ℎ
2

𝑠

∑

𝑗=1

𝑎
𝑖𝑗
𝑓 (𝑡
𝑛
+ 𝑐
𝑗
ℎ, 𝑌
𝑗
) ,

𝑖 = 1, . . . , 𝑠,

𝑦
𝑛+1

= 2𝑦
𝑛
− 𝑦
𝑛−1

+ ℎ
2

𝑠

∑

𝑖=1

𝑏
𝑖
𝑓 (𝑡
𝑛
+ 𝑐
𝑖
ℎ, 𝑌
𝑖
) ,

(2)

where 𝑏
𝑖
, 𝑐
𝑖
, and 𝑎

𝑖𝑗
can be represented in Butcher notation by

the table of coefficients as follows:

𝑐 𝐴

𝑏
𝑇
=

𝑐
1

𝑎
1,1

⋅ ⋅ ⋅ 𝑎
1,𝑠

... ... d
...

𝑐
𝑠

𝑎
𝑠,1

⋅ ⋅ ⋅ 𝑎
𝑠,𝑠

𝑏
1

⋅ ⋅ ⋅ 𝑏
𝑠
.

(3)

The methods of the form (2) are defined by

𝑌
1
= 𝑦
𝑛−1
, 𝑌

2
= 𝑦
𝑛
, (4)

𝑌
𝑖
= (1 + 𝑐

𝑖
) 𝑦
𝑛
− 𝑐
𝑖
𝑦
𝑛−1

+ ℎ
2

𝑖

∑

𝑗=1

𝑎
𝑖𝑗
𝑓 (𝑡
𝑛
+ 𝑐
𝑗
ℎ, 𝑌
𝑗
) ,

𝑖 = 3, . . . , 𝑠,

(5)

𝑦
𝑛+1

= 2𝑦
𝑛
− 𝑦
𝑛−1

+ ℎ
2
[𝑏
1
𝑓
𝑛−1

+ 𝑏
2
𝑓
𝑛
+

𝑠

∑

𝑖=3

𝑏
𝑖
𝑓 (𝑡
𝑛
+ 𝑐
𝑖
ℎ, 𝑌
𝑖
)] ,

(6)

where 𝑓
𝑛−1

= 𝑓(𝑡
𝑛−1
, 𝑦
𝑛−1
), 𝑓
𝑛
= 𝑓(𝑡
𝑛
, 𝑦
𝑛
), ℎ = Δ𝑡 = 𝑡

𝑛+1
− 𝑡
𝑛

and the first two nodes are 𝑐
1
= −1 and 𝑐

2
= 0. The method

only requires to evaluate 𝑓(𝑡
𝑛
, 𝑦
𝑛
), 𝑓(𝑡
𝑛
+ 𝑐
3
ℎ, 𝑌
3
), . . . , 𝑓(𝑡

𝑛
+

𝑐
𝑠
ℎ, 𝑌
𝑠
) for each step after the starting procedure.Thismethod

is considered as a two-step hybridmethodwith 𝑠−1 stages per

step and the semi-implicit hybrid with the diagonal elements
being equal can be written in Butcher tableau as follows:

−1

0

𝑐
3
𝑎
3,1

𝑎
3,2

𝛾

...
...

... d 𝛾

𝑐
𝑠
𝑎
𝑠,1

𝑎
𝑠,2

⋅ ⋅ ⋅ 𝑎
𝑠,𝑠−1

𝛾

𝑏
1

𝑏
2

⋅ ⋅ ⋅ 𝑏
𝑠−1

𝑏
𝑠
.

(7)

Phase analysis can be divided into two parts. First is the
inhomogeneous part, in which the phase error is constant in
time and second is the homogeneous one, in which the phase
errors are accumulated as 𝑛 increases. As proposed by Franco
[3], the phase analysis is investigated using the second-order
homogeneous linear test model

𝑦


(𝑡) = −𝜆
2
𝑦 (𝑡) for 𝜆 > 0, 𝜆 ∈ R. (8)

Alternatively when (2) are applied to (8), they can be
written in vector form as

Y = (e + c) 𝑦
𝑛
− c𝑦
𝑛−1

− 𝐻
2AY, (9)

𝑦
𝑛+1

= 2𝑦
𝑛
− 𝑦
𝑛−1

− 𝐻
2bTY, (10)

where 𝐻 = 𝜆ℎ, Y = (𝑌
1
, . . . , 𝑌

𝑠
)
𝑇, c = (𝑐

1
, . . . , 𝑐

𝑠
)
𝑇, and e =

(1, . . . , 1)
𝑇. From (9) we obtain

Y = (I + 𝐻2A)
−1

(e + c) 𝑦
𝑛
− (I + 𝐻2A)

−1

c𝑦
𝑛−1
. (11)

Substituting (11) into (10), the following recursion relation
is obtained:

𝑦
𝑛+1

− 𝑆 (𝐻
2
) 𝑦
𝑛
+ 𝑃 (𝐻

2
) 𝑦
𝑛−1

= 0, (12)

where

𝑆 (𝐻
2
) = 2 − 𝐻

2bT(I + 𝐻2A)
−1

(e + c) ,

𝑃 (𝐻
2
) = 1 − 𝐻

2bT(I + 𝐻2A)
−1

c.
(13)

Solving the difference system (12), the computed solution
is given by

𝑦
𝑛
= 2 |𝑐|

𝜌

𝑛 cos (𝜔 + 𝑛𝜙) , (14)

where 𝜌 is the amplification factor, 𝜙 is the phase, 𝜔 and 𝑐
are real constants determined by 𝑦

0
and 𝑦

0
and the hybrid

parameters. The exact solution of (8) is given by

𝑦 (𝑡
𝑛
) = 2 |𝜎| cos (𝜒 + 𝑛𝐻) , (15)

where 𝑛 is the number of term, 𝜎 and 𝜒 are real constants
determined by initial conditions. Equations (14) and (15) led
to the following definition.

Definition 1 (phase lag). Apply the hybrid method (2) to (8).
Next we define the phase lag 𝜑(𝐻) = 𝐻 − 𝜙. If 𝜑(𝐻) =

𝑂(𝐻
𝑞+1
), and then the hybrid method is said to have phase-

lag order 𝑞. Additionally, the quantity 𝑑(𝐻) = 1 − |𝜌| is
called amplification error. If𝑑(𝐻) = 𝑂(𝐻𝑟+1), then the hybrid
method is said to have dissipation order 𝑟.
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From Definition 1, it follows that

𝜑 (𝐻) = 𝐻 − cos−1(
𝑆(𝐻
2
)

2√𝑃 (𝐻2)

) ,

𝑑 (𝐻) = 1 − √𝑃 (𝐻2)

(16)

Let us denote 𝑆(𝐻2) and 𝑃(𝐻2) to be the following:

𝑆 (𝐻
2
) =

2 + ∑
𝑠−1

𝑖=1
𝛼
𝑖
𝐻
2𝑖

(1 + 𝛾𝐻2)
𝑠−2

,

𝑃 (𝐻
2
) =

1 + ∑
𝑠−1

𝑖=1
𝛽
𝑖
𝐻
2𝑖

(1 + 𝛾𝐻2)
𝑠−2

.

(17)

Based on the definition of phase lag, the dispersion
relations are developed. For a zero dissipative method with
three-stage (𝑠=3), the dispersion relation of order six (𝑞 = 6)
is given by the following:

Order 6:

𝛼
2
=
1

𝛾
(
1

360
− 𝛾
2
) , (18)

and the dispersion relations up to order eight for 𝑠 = 4 are
given by

Order 6:

𝛽
3
− 2𝛽
2
𝛾 − 𝛼
3
+ 𝛾𝛼
2
−
1

2
𝛽
2
= −

3

2
𝛾
2
+

1

360
− 2𝛾
3
, (19)

Order 8:
1

4
𝛽
2

2
− (

7

2
𝛾
2
+ 𝛾 +

1

24
) 𝛽
2
− 𝛾𝛼
3
+ 𝛾
2
𝛼
2
+ (2𝛾 +

1

2
) 𝛽
3

=
1

20160
−
1

24
𝛾
2
− 2𝛾
3
−
13

4
𝛾
4
.

(20)

The following quantity is used to determine that the
dissipation constant of the formula for 𝑠 = 3, 4 is

(i) for 𝑠 = 3

1 − √𝑃 (𝐻2) = (−
1

2
𝛽
1
+
1

2
𝛾)𝐻
2

+ (−
1

2
𝛽
2
+
1

4
𝛾𝛽
1
−
3

8
𝛾
2
+
1

8
𝛽
2

1
)𝐻
4

+ (
1

4
𝛾𝛽
2
−
3

16
𝛾
2
𝛽
1
+
5

16
𝛾
3
+
1

4
𝛽
1
𝛽
2

−
1

16
𝛾𝛽
2

1
−
1

16
𝛽
3

1
)𝐻
6

+ (
5

128
𝛽
4

1
−
3

16
𝛾
2
𝛽
2
+
5

32
𝛾
3
𝛽
1

+
3

64
𝛾
2
𝛽
2

1
+
1

8
𝛽
2

2
−
3

16
𝛽
2

1
𝛽
2
+
1

32
𝛽
3

1
𝛾

−
1

8
𝛾𝛽
1
𝛽
2
−
35

128
𝛾
4
)𝐻
8
+ 𝑂 (𝐻

10
) ,

(21)

(ii) for 𝑠 = 4

1 − √𝑃 (𝐻2) = (𝛾 −
1

2
𝛽
1
)𝐻
2

+ (
1

2
𝛽
1
𝛾 − 𝛾
2
−
1

2
𝛽
2
+
1

8
𝛽
2

1
)𝐻
4

+ (−
1

2
𝛽
1
𝛾
2
+
1

2
𝛽
2
𝛾 + 𝛾
3
−
1

2
𝛽
3
−
1

8
𝛽
2

1
𝛾

+
1

4
𝛽
1
𝛽
2
−
1

16
𝛽
3

1
)𝐻
6

+ (−𝛾
4
+
1

2
𝛽
1
𝛾
3
−
1

2
𝛽
2
𝛾
2

+
1

2
𝛽
3
𝛾 −

1

4
𝛽
1
𝛽
2
𝛾 +

1

8
𝛽
2

1
𝛾
2

+
1

4
𝛽
1
𝛽
3
+
1

8
𝛽
2

2
+
1

16
𝛽
3

1
𝛾

−
3

16
𝛽
2

1
𝛽
2
+

5

128
𝛽
4

1
)𝐻
8
+ 𝑂 (𝐻

10
) .

(22)

From (12), the stability polynomial of hybrid method
can be written as

𝜉
2
− 𝑆 (𝐻

2
) 𝜉 + 𝑃 (𝐻

2
) = 0. (23)

The numerical solution defined by (12) should be periodic.
The necessary conditions are

𝑃 (𝐻
2
) ≡ 1,


𝑆 (𝐻
2
)

< 2, ∀𝐻

2
∈ (0,𝐻

2

𝑝
) , (24)

and interval (0,𝐻2
𝑝
) is known as the periodicity interval of the

method. The method is called zero dissipative when 𝑑(𝐻) =
0, that is, if it satisfies conditions (16). Otherwise, as the
method possesses a finite order of dissipation, the integration
process is stable if the coefficients of polynomial in (23) satisfy
the conditions

𝑃 (𝐻
2
) < 1,


𝑆 (𝐻
2
)

< 1 + 𝑃 (𝐻

2
) ,

∀𝐻
2
∈ (0,𝐻

2

𝑠
) ,

(25)

and interval (0,𝐻2
𝑠
) is known as the interval of absolute

stability of the method.

3. Construction of the Methods

In this section, the fourth-and fifth-order SIHMs which
require only three and four stages respectively are obtained.
The derivations of the methods are based on the order con-
ditions, dispersive and dissipative error, and minimization of
the error constant 𝐶

𝑝+1
of the method. The error constant is

defined by

𝐶
𝑝+1

=

(𝑒
𝑝+1

(𝑡
1
)) , . . . , (𝑒

𝑝+1
(𝑡
𝑘
))
2
, (26)

where 𝑘 is the number of trees of order 𝑝 + 2(𝑝(𝑡
𝑖
) = 𝑝 + 2),

for the𝑝th-ordermethod and (𝑒
𝑝+1
(𝑡
𝑖
)) is the local truncation

error defined in Coleman [4].
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The Order conditions of hybrid method given in [4] are
Order 2

∑𝑏
𝑖
= 1, (27)

Order 3

∑𝑏
𝑖
𝑐
𝑖
= 0, (28)

Order 4

∑𝑏
𝑖
𝑐
2

𝑖
=
1

6
, ∑𝑏

𝑖
𝑎
𝑖𝑗
=
1

12
, (29)

Order 5

∑𝑏
𝑖
𝑐
3

𝑖
= 0, ∑𝑏

𝑖
𝑐
𝑖
𝑎
𝑖𝑗
=
1

12
, ∑𝑏

𝑖
𝑎
𝑖𝑗
𝑐
𝑗
= 0, (30)

Order 6

∑𝑏
𝑖
𝑐
4

𝑖
= 0, ∑𝑏

𝑖
𝑐
2

𝑖
𝑎
𝑖𝑗
=
1

30
, ∑𝑏

𝑖
𝑐
𝑖
𝑎
𝑖𝑗
𝑐
𝑗
= −

1

60
,

∑𝑏
𝑖
𝑎
𝑖𝑗
𝑎
𝑖𝑘
=

7

120
, ∑𝑏

𝑖
𝑎
𝑖𝑗
𝑐
2

𝑗
=

1

180
,

∑𝑏
𝑖
𝑎
𝑖𝑗
𝑎
𝑗𝑘
=

1

360
.

(31)

For the method, 𝑐
𝑖
need to satisfy

∑𝑎
𝑖𝑗
=
(𝑐
2

𝑖
+ 𝑐
𝑖
)

2
, (𝑖 = 1, . . . , 𝑠) . (32)

3.1. SIHM with Three Stages. To derive the fourth-order
SIHM method, we use the algebraic conditions up to order
four (27)–(29), simplifying condition (32), zero dissipation
conditions (𝛽

1
= 𝛾, 𝛽

2
= 0), and dispersion relation of order

six (𝑞 = 6), (19). The resulting system of equations consists
of five nonlinear equations with seven unknown variables
to be solved. Therefore, we have two degrees of freedom.
The coefficients of the methods are determined in terms of
the arbitrary parameters 𝑐

3
and 𝑎

33
which are given by the

expressions

𝑏
1
=

1

6 + 6𝑐
3

, 𝑏
2
=
6𝑐
3
− 1

6𝑐
3

, 𝑏
3
=

1

6𝑐
3
(1 + 𝑐
3
)
,

𝑎
31
= −

𝑐
3
(30𝑎
33
𝑐
3
− 𝑐
3
− 1)

30
,

𝑎
32
=
7

15
𝑐
2

3
+ 𝑎
33
𝑐
2

3
+
7

15
𝑐
3
− 𝑎
33
.

(33)

By minimizing the error constant from (26) we have 𝑐
3
=

9/10 and 𝑎
33
= 1/30. This method is denoted as SIHM3(4)

which is given below:

−1 0

0 0 0

9

10

3

100

19

24

1

30

5

57

22

27

50

513
.

(34)

With this solution, the norms of the principal local
truncation error coefficient for 𝑦

𝑛
are given by


𝜏
(5)2

= 1.863 × 10
−2
, (35)

where ‖ 𝜏(5) ‖
2
are the error equations for the fifth-order

methods. This formula has dispersive order six and zero
dissipation with a dispersion constant (13/302400)𝐻7 +
𝑂(𝐻
9
). The interval of periodicity of the method is (0, 2.96).

Meanwhile, to derive the three-stage fifth-order SIHM
method, the algebraic conditions (27) to (30) and equation
(32) with dispersion relation of order six (𝑞 = 6), equation
(19), and zero dissipation conditions (𝛽

1
= 𝛾, 𝛽

2
= 0)

are solved simultaneously. This involves seven equations
and seven unknowns need to be solved; hence it has a
unique solution.This method is denoted as SIHM3(5) whose
coefficients are given below:

−1 0

0 0 0

1
1

30

14

15

1

30

1

12

5

6

1

12
.

(36)

With this solution, the norm of the principal local
truncation error coefficient for 𝑦

𝑛
is given by


𝜏
(6)2

= 1.147 × 10
−1
, (37)

where ‖ 𝜏(6) ‖
2
are the error equations for the sixth-order

method. This formula has dispersive order six and zero
dissipation with a dispersion constant (13/302400)𝐻7 +
𝑂(𝐻
9
). The interval of periodicity of the method is (0, 2.96).

3.2. SIHM Order Five with Four Stages. The SIHM method
of order five is obtained by considering the order conditions
up to order five which are (27) to (30) and (32) together with
dispersion relations up to order eight, ((19) and (20)). Solving
all the conditions simultaneously, and then the following
family of solutions in terms of free parameters 𝑎

41
and 𝑏
3
is

obtained:

𝑎
31
=
360𝑎
41
𝑏
3
− 30𝑎
41
+ 1

360𝑏
3

,

𝑎
32
=
−360𝑎

41
𝑏
3
+ 30𝑎
41
− 1 + 360𝑏

2

3
+ 330𝑏

3

360𝑏
3

,

𝑎
42
=
−360𝑎

41
𝑏
3
+ 30𝑎
41
− 29 + 360𝑏

2

3
+ 330𝑏

3

30 (12𝑏
3
− 1)

,

𝑎
43
= −

−1 + 20𝑏
3

20 (12𝑏
3
− 1)

,

𝑎
33
= −𝑏
3
+
1

12
, 𝑎

44
= −𝑏
3
+
1

12
,

𝑏
1
=
1

12
, 𝑏

2
=
5

6
, 𝑏

4
= −𝑏
3
+
1

12
,

𝑐
3
= 1, 𝑐

4
= 1.

(38)
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Table 1: Summary of the properties of the SIHM3(4), SIHM3(5), and SIHM4(5) methods.

Method 𝑞 𝑟 ‖𝜏
(𝑝+1)

‖
2

DPC DSC S.I/P.I
SIHM3(4) 6 ∞ 1.863 × 10

−2
13/302400 — (0, 2.96)

SIHM3(5) 6 ∞ 1.147 × 10
−1

13/302400 — (0, 2.96)
SIHM4(5) 8 5 9.772 × 10

−2
241/881798400 277/44089920 (0, 5.75)

Note that DPC is dispersion constant, DSC is dissipation constant, P.I is periodicity interval, and S.I is stability interval.

By minimizing the error norm expression, we have 𝑎
41
=

150617/771120 and 𝑏
3
= 23/324.

With this solution, the norm of the principal local
truncation error coefficient for 𝑦

𝑛
is given by


𝜏
(6)2

= 9.772 × 10
−2
. (39)

This fifth-order formula is dispersive order eight and dis-
sipative order five with dispersion and dissipation constants
are (241/881798400)𝐻9 + 𝑂(𝐻11) and (277/44089920)𝐻6 +
𝑂(𝐻
8
) respectively.Thismethod is denoted as SIHM4(5), the

coefficients are given below (see:The SIHM4(5)method) and
the interval of absolute stability of the method is (0, 5.75).

−1 0

0 0 0

1
199

38556

1403

1428

1

81

1
150617

771120

18583

28560

17

120

1

81

1

12

5

6

23

324

1

81
.

(40)

Table 1 shows a comparison of the properties of the
methods derived.

4. Problems Tested and Numerical Results

In this section, SIHM3(4) is compared with five other fourth-
order methods: DIRKN three-stage fourth-order derived by
Senu et al. [10], DIRKN three-stage fourth-order derived by
Sommeijer [13], Classical Runge-Kutta fourth-order given
in Dormand [14], explicit three-stage fourth-order hybrid
method derived by Franco [3], and Classical RKN fourth
order given in Hairer et al. [15]. The fifth-order methods,
SIHM3(5) and SIHM4(5) are compared with four other
methods: DIRKN four-stage fourth-order derived by Senu et
al. [7], Classical Runge-Kutta fifth order derived by Butcher
[16], explicit four-stage fifth-order hybrid method derived
by Franco [3], and Classical RKN fifth-order method given
from Hairer et al. [15]. All the problems were executed for
𝑡end = 10

4 except for Orbital problem 𝑡end = 100. The test
problems used are listed below.

Problem 1 (Chawla and Rao [17]). We have

𝑦


(𝑡) = −100𝑦 (𝑡) , 𝑦 (0) = 1, 𝑦


(0) = −2. (41)

Exact solution is 𝑦 = − (1/5) sin(10𝑡) + cos(10𝑡)

Problem 2 (Attili et al. [18]). We have

𝑦


(𝑡) = −64𝑦 (𝑡) , 𝑦 (0) =
1

4
, 𝑦



(0) = −
1

2
. (42)

Exact solution is 𝑦 = (√17/16) sin(8𝑡 + 𝜃), 𝜃 = 𝜋 − tan−1(4)

Problem 3 (Lambert and Watson [5]). We have

𝑑
2
𝑦
1
(𝑡)

𝑑𝑡2
= −V
2
𝑦
1
(𝑡) + V

2
𝑓 (𝑡) + 𝑓



(𝑡) ,

𝑑
2
𝑦
2
(𝑡)

𝑑𝑡2
= −V
2
𝑦
2
(𝑡) + V

2
𝑓 (𝑡) + 𝑓



(𝑡) ,

𝑦
1
(0) = 𝑎 + 𝑓 (0) , 𝑦



1
(0) = 𝑓



(0) ,

𝑦
2
(0) = 𝑓 (0) , 𝑦



2
(0) = V𝑎 + 𝑓



(0) .

(43)

Exact solution is 𝑦
1
(𝑡) = 𝑎 cos(V𝑡) + 𝑓(𝑡), 𝑦

2
(𝑡) = 𝑎 sin(V𝑡) +

𝑓(𝑡), and 𝑓(𝑡) is chosen to be 𝑒−0.05𝑡 and parameters V and 𝑎
are 20 and 0.1 respectively.

Problem 4 (an almost periodic orbit problem given in Stiefel
and Bettis [19]). We have

𝑦


1
(𝑡) + 𝑦

1
(𝑡) = 0.001 cos (𝑡) ,

𝑦
1
(0) = 1, 𝑦



1
(0) = 0,

𝑦


2
(𝑡) + 𝑦

2
(𝑡) = 0.001 sin (𝑡) ,

𝑦
2
(0) = 0, 𝑦



2
(0) = 0.9995.

(44)

Exact solution is 𝑦
1
= cos(𝑡) + 0.0005𝑡 sin(𝑡), 𝑦

2
= sin(𝑡) −

0.0005𝑡 cos(𝑡).

Problem 5 (inhomogeneous system studied by Franco [1]).
We have

𝑦


(𝑡) + (
13 −12

−12 13
)𝑦 (𝑡) = (

𝑔
1
(𝑡)

𝑔
2
(𝑡)
) ,

𝑦 (0) = (
1

0
) , 𝑦



(0) = (
−4

8
) ,

𝑔
1
(𝑡) = 9 cos (2𝑡) − 12 sin (2𝑡) ,

𝑔
2
(𝑡) = −12 cos (2𝑡) + 9 sin (2𝑡) .

(45)

Exact solutions are

𝑦 (𝑡) = (
sin (𝑡) − sin (5𝑡) + cos (2𝑡)
sin (𝑡) + sin (5𝑡) + sin (2𝑡)) . (46)
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Figure 1: The efficiency curves for SIHM3(4) method for Chawla
and Rao problem with ℎ = 0.125/2𝑖, 𝑖 = 3, . . . , 7.

Time (seconds)
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Figure 2: The efficiency curves for SIHM3(4) method for Attili
problem with ℎ = 0.5/2𝑖, 𝑖 = 1, . . . , 5.

Problem 6 (Allen and Wing [20]). We have

𝑦


(𝑡) = −𝑦 (𝑡) + 𝑡, 𝑦 (0) = 1 , 𝑦


(0) = 2 . (47)

Exact solution is 𝑦 = sin(𝑡) + cos(𝑡) + 𝑡.

Problem 7 (inhomogeneous problem studied by Papadopou-
los et al. [21]). We have

𝑦


(𝑡) = −V
2
𝑦 (𝑡) + (V

2
− 1) sin (𝑡) ,

𝑦 (0) = 1, 𝑦


(0) = V + 1,

(48)

where V ≫ 1.

Exact solution is 𝑦(𝑡) = cos(V𝑡) + sin(V𝑡) + sin(𝑡).
Numerical result is for the case V = 10.

Time (seconds)
100806040200
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RK4
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DIRKN(HS)
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EXHBRD4
SIHM3(4)

lo
g 1
0

(M
A

XE
)

Figure 3: The efficiency curves for SIHM3(4) method for Lambert
and Watson problem with ℎ = 0.5/2𝑖, 𝑖 = 1, . . . , 5.
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181614121086420
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−8

−9

−10

lo
g 1
0

(M
A

XE
)

RK4
RKN4
DIRKN(HS)

DIRKN(S1)
EXHBRD4
SIHM3(4)

Figure 4:The efficiency curves for SIHM3(4)method for An almost
Periodic Orbit problem with ℎ = 0.125/2𝑖, 𝑖 = 1, . . . , 5.

Problem 8 (orbital problem studied by van der Houwen and
Sommeijer [22]). We have

𝑦


1
(𝑡) = −4𝑡

2
𝑦
1
−

2𝑦
2

√𝑦2
1
+ 𝑦2
2

,

𝑦
1
(𝑡
0
) = 0, 𝑦


(𝑡
0
) = −√2𝜋,

(49)

𝑦


2
(𝑡) = −4𝑡

2
𝑦
2
+

2𝑦
1

√𝑦2
1
+ 𝑦2
2

,

𝑦
2
(𝑡
0
) = 1, 𝑦


(𝑡
0
) = 0, √

𝜋

2
≤ 𝑡 ≤ 𝑡end.

(50)

Exact solution is 𝑦
1
(𝑡) = cos(𝑡2), 𝑦

2
(𝑡) = sin(𝑡2)
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Figure 5: The efficiency curves for SIHM3(4)method for Inhomo-
geneous system with ℎ = 0.125/2𝑖, 𝑖 = 1, . . . , 5.
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Figure 6:The efficiency curves for SIHM3(4)method for Allen and
Wing problem with ℎ = 0.125/2𝑖, 𝑖 = 2, . . . , 6.

The following notations are used in Figures 1–16.

(i) SIHM3(4): a semi-implicit hybrid method of order
four with dispersive order six and zero dissipation.

(ii) SIHM3(5): a semi-implicit hybrid method of order
five with dispersive order six and zero dissipation.

(iii) SIHM4(5): a semi-implicit hybrid method of order
five with dispersive order eight and dissipative order
five.

(iv) DIRKN(S1): a three-stage fourth-order dispersive
order six method with “small” dissipation constant

Time (seconds)
80706050403020100

0
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−4

−6

−8

−10

lo
g 1
0

(M
A

XE
)

RK4
RKN4
DIRKN(HS)

DIRKN(S1)
EXHBRD4
SIHM3(4)

Figure 7: The efficiency curves for SIHM3(4)method for Inhomo-
geneous problem with ℎ = 0.125/2𝑖, 𝑖 = 2, . . . , 6.
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43.532.521.510.50

0

2
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−6

RK4
RKN4
DIRKN(HS)

DIRKN(S1)
EXHBRD4
SIHM3(4)

lo
g 1
0

(M
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XE
)

Figure 8: The efficiency curves for SIHM3(5) and SIHM4(5)
methods for Orbital problem with ℎ = 0.125/2𝑖, 𝑖 = 4, . . . , 8.

and principal local truncation errors derived by Senu
et al. [7].

(v) DIRKN(HS): a three-stage fourth-order derived by
Sommeijer [13].

(vi) DIRKN(S2): a four-stage fourth-order dispersive
order eight method with “small” dissipation constant
derived by Senu et al. [10].

(vii) RKN4: a classical RKN method order four in [14].
(viii) RK4: a classical RK method order four in [14].
(ix) RKN5: a five-stage fifth-order RKN method derived

by Butcher [16].
(x) RK6: a seven-stage sixth-order RKmethod derived by

Hairer et al. [15].
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Figure 9: The efficiency curves for SIHM3(5) and SIHM4(5)
methods for Chawla and Rao problem with ℎ = 0.125/2

𝑖
, 𝑖 =

3, . . . , 7.
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Figure 10: The efficiency curves for SIHM3(5) and SIHM4(5)
methods for Attili problem with ℎ = 0.125/2𝑖, 𝑖 = 1, . . . , 5.

(xi) EXHBRD4: a explicit three-stage fourth-order hybrid
method derived by Franco [3].

(xii) EXHBRD5: a explicit four-stage fifth-order hybrid
method derived by Franco [3].

In order to evaluate the effectiveness of the semi-implicit
hybrid methods, we solved several problems which have
oscillatory solutions. To make a comparison of SIHM and
other existing methods, one measure of the accuracy is
examined using the absolute error which is defined by

Absolute error = max {𝑦 (𝑡𝑛) − 𝑦𝑛
} , (51)

where 𝑦(𝑡
𝑛
) is the exact solution and 𝑦

𝑛
is the computed

solution.
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Figure 11: The efficiency curves for SIHM3(5) and SIHM4(5)
methods for Lambert and Watson problem with ℎ = 0.125/2
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Figure 12:The efficiency curves for SIHM3(5) and SIHM4(5)meth-
ods for An almost Periodic Orbit problem with ℎ = 0.125/2

𝑖
, 𝑖 =

1, . . . , 5.

For comparison purposes, in analyzing the numerical
results, methods of the same order will be compared. The
results are given in Figures 1–16. We present the efficiency
curves where the common logarithm of the maximum global
error along the integration versus the CPU time is taken.
From Figures 1, 2, 3, 4, 5, 6, 7, and 8, we observed that
the new SIHM3(4) is the most efficient for integrating
second-order differential equations possessing oscillatory
solutions, followed by diagonally implicit DIRKN(S1), orig-
inal explicit hybrid method EXHBRD4, and other methods
like DIRKN(HS), RKN4, and RK4.



Abstract and Applied Analysis 9

302520151050
Time (seconds)

RKN5
RK6
DIRKN(S2)

EXHBRD5
SIHM4(5)
SIHM3(5)

0

−2

−4

−6

−8

−10

lo
g 1
0

(M
A

XE
)

Figure 13: The efficiency curves for SIHM3(5) and SIHM4(5)
methods for Inhomogeneous system with ℎ = 0.9/2𝑖, 𝑖 = 1, . . . , 5.
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Figure 14: The efficiency curves for SIHM3(5) and SIHM4(5)
methods for Allen and Wing problem with ℎ = 0.125/2

𝑖
, 𝑖 =

1, . . . , 5.

From Figures 9, 10, 11, 12, 13, 14, 15, and 16, for the
fifth-order methods we observed that SIHM4(5) is the most
efficient, followed by SIHM3(5) and EXHBRD5 and the rest
of the methods. Even though the new methods are semi-
implicit and fairly expensive in terms of time consumed, they
are still more efficient compared to the explicit counterpart.

5. Conclusion

In this paper three-stage semi-implicit hybrid methods of
order four and five are developed and denoted by SIHM3(4)
and SIHM3(5), respectively, they have dispersion order six
and zero dissipation.We also developedmethod of four-stage
and fifth order denoted by SIHM4(5) which has dispersion
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Figure 15: The efficiency curves for SIHM3(5) and SIHM4(5)
methods for Inhomogeneous problem with ℎ = 0.125/2
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Figure 16: The efficiency curves for SIHM3(5) and SIHM4(5)
methods for Orbital problem with ℎ = 0.125/2𝑖, 𝑖 = 4, . . . , 8.

order eight and dissipation order five. All the three methods
developed are suitable for solving second-order IVPs which
are oscillatory in nature. From the efficiency curves shown
in Figures 1–16, we can conclude that all the methods are very
efficient compared to the well-known existingmethods of the
same order in the scientific literature.

References

[1] J. M. Franco, “An explicit hybrid method of Numerov type
for second-order periodic initial-value problems,” Journal of
Computational and Applied Mathematics, vol. 59, no. 1, pp. 79–
90, 1995.



10 Abstract and Applied Analysis

[2] L. K. Yap, F. Ismail, M. Suleiman, and S. Md. Amin, “Block
methods based on Newton interpolations for solving special
second order ordinary differential equations directly,” Journal
of Mathematics and Statistics, vol. 4, no. 3, pp. 174–180, 2008.

[3] J. M. Franco, “A class of explicit two-step hybrid methods
for second-order IVPs,” Journal of Computational and Applied
Mathematics, vol. 187, no. 1, pp. 41–57, 2006.

[4] J. P. Coleman, “Order conditions for a class of two-stepmethods
for 𝑦



= 𝑓(𝑥, 𝑦),” IMA Journal of Numerical Analysis, vol. 23,
no. 2, pp. 197–220, 2003.

[5] J. D. Lambert and I. A. Watson, “Symmetric multistep methods
for periodic initial value problems,” Journal of the Institute of
Mathematics and Its Applications, vol. 18, no. 2, pp. 189–202,
1976.

[6] H. Van de Vyver, “A symplectic Runge-Kutta-Nyström method
with minimal phase-lag,” Physics Letters A, vol. 367, no. 1-2, pp.
16–24, 2007.

[7] N. Senu, M. Suleiman, F. Ismail, and M. Othman, “A singly
diagonally implicit Runge-Kutta-Nyström method for solving
oscillatory problems,” IAENG International Journal of Applied
Mathematics, vol. 41, no. 2, pp. 155–161, 2011.

[8] L. Brusa and L. Nigro, “A one-stepmethod for direct integration
of structural dynamic equations,” International Journal for
Numerical Methods in Engineering, vol. 15, no. 5, pp. 685–699,
1980.

[9] P. J. van derHouwen andB. P. Sommeijer, “Explicit Runge-Kutta
(-Nyström) methods with reduced phase errors for computing
oscillating solutions,” SIAM Journal on Numerical Analysis, vol.
24, no. 3, pp. 595–617, 1987.

[10] N. Senu, M. Suleiman, F. Ismail, and M. Othman, “A fourth-
order diagonally implicit Runge-Kutta- Nyström method with
dispersion of high order,” in Proceedings of the 4th International
Conference on Applied Mathematics, Simulation, Modelling
(ASM ’10), pp. 78–82, July 2010.

[11] A. A. Kosti, Z. A. Anastassi, and T. E. Simos, “Construction
of an optimized explicit Runge-Kutta-Nyström method for
the numerical solution of oscillatory initial value problems,”
Computers & Mathematics with Applications, vol. 61, no. 11, pp.
3381–3390, 2011.

[12] A. A. Kosti, Z. A. Anastassi, and T. E. Simos, “An optimized
explicit Runge-Kutta-Nyström method for the numerical solu-
tion of orbital and related periodical initial value problems,”
Computer Physics Communications, vol. 183, no. 3, pp. 470–479,
2012.

[13] B. P. Sommeijer, “A note on a diagonally implicit Runge-
Kutta-Nyström method,” Journal of Computational and Applied
Mathematics, vol. 19, no. 3, pp. 395–399, 1987.

[14] J. R. Dormand, Numerical Methods for Differential Equations,
Library of Engineering Mathematics, CRC Press, Boca Raton,
Fla, USA, 1996.

[15] E. Hairer, S. P. Nørsett, and G. Wanner, Solving Ordinary
Differential Equations 1, Springer, Berlin, Germany, 2010.

[16] J. C. Butcher, Numerical Methods for Ordinary Differential
Equations, John Wiley & Sons, Chichester, UK, 2nd edition,
2008.

[17] M. M. Chawla and P. S. Rao, “High-accuracy 𝑃-stable methods
for 𝑦



= 𝑓(𝑥, 𝑦),” IMA Journal of Numerical Analysis, vol. 5, no.
2, pp. 215–220, 1985.

[18] B. S. Attili, K. Furati, and M. I. Syam, “An efficient implicit
Runge-Kutta method for second order systems,” Applied Math-
ematics and Computation, vol. 178, no. 2, pp. 229–238, 2006.

[19] E. Stiefel and D. G. Bettis, “Stabilization of Cowell’s method,”
Numerische Mathematik, vol. 13, pp. 154–175, 1969.

[20] R. C. Allen, Jr. and G. M. Wing, “An invariant imbedding
algorithm for the solution of inhomogeneous linear two-point
boundary value problems,” Journal of Computational Physics,
vol. 14, pp. 40–58, 1974.

[21] D. F. Papadopoulos, Z. A. Anastassi, and T. E. Simos, “A phase-
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