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This paper considers the ERM scheme for quantile regression. We conduct error analysis for this learning algorithm by means of
a variance-expectation bound when a noise condition is satisfied for the underlying probability measure. The learning rates are
derived by applying concentration techniques involving the ℓ2-empirical covering numbers.

1. Introduction

In this paper, we study empirical risk minimization scheme
(ERM) for quantile regression. Let 𝑋 be a compact metric
space (input space) and 𝑌 = R. Let 𝜌 be a fixed but unknown
probability distribution on 𝑍 := 𝑋 × 𝑌 which describes
the noise of sampling. The conditional quantile regression
aims at producing functions to estimate quantile regression
functions. With a prespecified quantile parameter 𝜏 ∈ (0, 1),
a quantile regression function𝑓

𝜏,𝜌
is defined by its value𝑓

𝜏,𝜌
(𝑥)

to be a 𝜏-quantile of 𝜌(⋅ | 𝑥), that is, a value 𝑡 ∈ 𝑌 satisfying

𝜌 ((−∞, 𝑡] | 𝑥) ≥ 𝜏, 𝜌 ([𝑡,∞) | 𝑥) ≥ 1 − 𝜏, 𝑥 ∈ 𝑋, (1)

where 𝜌(⋅ | 𝑥) is the conditional distribution of 𝜌 at 𝑥 ∈ 𝑋.
We consider a learning algorithm generated by ERM

scheme associated with pinball loss and hypothesis spaceH.
The pinball loss 𝐿

𝜏
: R → [0,∞) is defined by

𝐿
𝜏
(𝑟) = {

(𝜏 − 1) 𝑟, if 𝑟 ≤ 0,
𝜏𝑟, if 𝑟 ≥ 0.

(2)

The hypothesis spaceH is a compact subset of𝐶(𝑋). So there
exists some𝑀 > 0 such that ‖𝑓‖

𝐶(𝑋)
≤ 𝑀 for any 𝑓 ∈H. We

assume without loss of generality ‖𝑓‖
𝐶(𝑋)

≤ 1 for any 𝑓 ∈H.
The ERM scheme for quantile regression is defined with

a sample z = {(𝑥
𝑖
, 𝑦

𝑖
)}
𝑚

𝑖=1
∈ 𝑍

𝑚 drawn independently from 𝜌

as follows:

𝑓z = argmin
𝑓∈H

1

𝑚

𝑚

∑

𝑖=1

𝐿
𝜏
(𝑦

𝑖
− 𝑓 (𝑥

𝑖
)) . (3)

A family of kernel based learning algorithms for quantile
regression has been widely studied in a large literature [1–4]
and references therein. The form of the algorithms is a
regularized scheme in a reproducing kernelHilbert spaceH

𝐾

(RKHS, see [5] for details) associated with a Mercer kernel
𝐾. Given a sample z the kernel based regularized scheme for
quantile regression is defined by

𝑓z,𝜆 = arg min
𝑓∈H𝐾

{
1

𝑚

𝑚

∑

𝑖=1

𝐿
𝜏
(𝑦

𝑖
− 𝑓 (𝑥

𝑖
)) + 𝜆

𝑓


2

𝐾
} . (4)

In [1, 3, 4], error analysis for general H
𝐾
has been done.

Learning with varying Gaussian kernel was studied in [2].
ERM scheme (3) is very different from kernel based

regularized scheme (4). The output function 𝑓z produced
by the ERM scheme has a uniform bound, under our
assumption, ‖𝑓z‖𝐶(𝑋) ≤ 1. However, we cannot expect it for
𝑓z,𝜆. It is easy to see that 𝜆‖𝑓z,𝜆‖

2

𝐾
≤ ∑

𝑚

𝑖=1
|𝑦
𝑖
| by choosing 𝑓 =

0. It happens often that ‖𝑓z,𝜆‖𝐾 → ∞ as 𝜆 → 0. The lack of
a uniform bound for𝑓z,𝜆 has a serious negative impact on the
learning rates. So in the literature of kernel based regularized
schemes for quantile regression, values of the output function
𝑓z,𝜆 are always projected onto the interval [−1, 1], and error
analysis is conducted for the projected function, not𝑓z,𝜆 itself.

In this paper, we aim at establishing convergence and
learning rates for the error ‖𝑓z − 𝑓𝜏,𝜌‖𝐿𝑟

𝜌𝑋

in the space 𝐿𝑟
𝜌𝑋
.

Here 𝑟 > 0 depends on the pair (𝜌, 𝜏)which will be decided in
Section 2 and 𝜌

𝑋
is themarginal distribution of 𝜌 on𝑋. In the

rest of this paper, we assume 𝑌 = [−1, 1] which in turn leads
to values of the target function 𝑓

𝜏,𝜌
lie in the same interval.
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2. Noise Condition and Main Results

There has been a large literature in learning theory (see [6]
and references therein) devoted to the least square regression.
It aims at learning the regression function𝑓

𝜌
(𝑥) = ∫

𝑌
𝑦𝑑𝜌(𝑦 |

𝑥). The identity Els(𝑓) − Els(𝑓𝜌) = ‖𝑓 − 𝑓
𝜌
‖
2

𝐿
2

𝜌𝑋

for the
generalization error Els(𝑓) = ∫

𝑍
(𝑦 − 𝑓(𝑥))

2
𝑑𝜌 leads to a

variance-expectation bound with the form of E𝜉2 ≤ 4E𝜉,
where 𝜉 = (𝑦 − 𝑓(𝑥))

2
− (𝑦 − 𝑓

𝜌
(𝑥))

2 on (𝑍, 𝜌). It plays
an essential role in error analysis of kernel based regularized
schemes.

However, this identity relation and expectation-variance
bound fail in the setting of the quantile regression.The reason
is that the pinball loss is lack of strong convexity. If we add
some noise condition on distribution 𝜌 named 𝜏-quantile of
𝑝-average type 𝑞 (see Definition 1), we can also get a similar
identity relation which in turn enables us to have a variance-
expectation bound stated in the following which is proved by
Steinwart and Christman [1].

Definition 1. Let 𝑝 ∈ (0,∞] and 𝑞 ∈ [1,∞). A distribution 𝜌
on𝑋× [−1, 1] is said to have a 𝜏-quantile of 𝑝-average type 𝑞
if for 𝜌

𝑋
-almost every 𝑥 ∈ 𝑋, there exist a 𝜏-quantile 𝑡∗ ∈ R

and constants 𝛼
𝜌(⋅|𝑥)

∈ (0, 2], 𝑏
𝜌(⋅|𝑥)

> 0 such that for each
𝑠 ∈ [0, 𝛼

𝜌(⋅|𝑥)
],

𝜌 ((𝑡
∗
− 𝑠, 𝑡

∗
) | 𝑥) ≥ 𝑏

𝜌(⋅|𝑥)
𝑠
𝑞−1
,

𝜌 ((𝑡
∗
, 𝑡
∗
+ 𝑠) | 𝑥) ≥ 𝑏

𝜌(⋅|𝑥)
𝑠
𝑞−1
,

(5)

and that the function 𝛾 on 𝑋 defined by 𝛾(𝑥) = 𝑏
𝜌(⋅|𝑥)

𝛼
𝑞−1

𝜌(⋅|𝑥)

satisfies 𝛾−1 ∈ 𝐿𝑝
𝜌𝑋
.

We also need capacity of the hypothesis spaceH for our
learning rates. Here in this paper, we measure the capacity by
empirical covering numbers.

Definition 2. Let (M, 𝑑) be a pseudometric space and 𝑆 be a
subset ofM. For every 𝜀 > 0, the covering numberN(𝑆, 𝜀, 𝑑)
of 𝑆with respect to 𝜀 and 𝑑 is defined as the minimal number
of balls of radius 𝜀 whose union covers 𝑆, that is,

N (𝑆, 𝜀, 𝑑)

=min {ℓ∈N : 𝑆 ⊂ ∪ℓ
𝑗=1
𝐵 (𝑠

𝑗
, 𝜀) for some {𝑠

𝑗
}
ℓ

𝑗=1
⊂M} ,

(6)

where 𝐵(𝑠
𝑗
, 𝜀) = {𝑠 ∈M : 𝑑(𝑠, 𝑠

𝑗
) ≤ 𝜀} is a ball inM.

Definition 3. Let F be a set of functions on 𝑋, x = (𝑥
𝑖
)
𝑘

𝑖=1
⊂

𝑋
𝑘 and F|x = {(𝑓(𝑥𝑖))

𝑘

𝑖=1
: 𝑓 ∈ F} ⊂ R𝑘. Set N

2,x(F, 𝜀) =

N(F|x, 𝜀, 𝑑2). The ℓ2-empirical covering number of F is
defined by

N
2
(F, 𝜀) = sup

𝑘∈N

sup
x∈𝑋𝑘

N
2,x (F, 𝜀) , 𝜀 > 0. (7)

Here 𝑑
2
is the normalized ℓ2-metric on the Euclidean space

R𝑘 given by

𝑑
2
(a, b)=(1

𝑘

𝑘

∑

𝑖=1

𝑎𝑖−𝑏𝑖


2

)

1/2

for a=(𝑎
𝑖
)
𝑘

𝑖=1
, b=(𝑏

𝑖
)
𝑘

𝑖=1
∈R

𝑘
.

(8)

Assumption. Assume that the empirical covering number of
the hypothesis space H is bounded for some 𝑎 > 0 and 𝜄 ∈
(0, 2),

logN
2
(H, 𝜀) ≤ 𝑎𝜀

−𝜄
, ∀𝜀 > 0. (9)

Theorem 4. Assume that 𝜌 satisfies (5) with some 𝑝 ∈ (0,∞]
and 𝑞 ∈ [1,∞). Denote 𝑟 = 𝑝𝑞/(𝑝 + 1). One further assumes
that 𝑓

𝜏,𝜌
is uniquely defined. If 𝑓

𝜏,𝜌
∈ H and H satisfies (9)

with 𝜄 ∈ (0, 2), then for any 0 < 𝛿 < 1, with confidence 1 − 𝛿,
one has


𝑓z − 𝑓𝜏,𝜌

𝐿𝑟
𝜌𝑋

≤ �̃�𝑚
−𝜗 log 2

𝛿
, (10)

where

𝜗 =
2 (𝑝 + 1)

4𝑞 (𝑝 + 1) − (2 − 𝜄)min {2 (𝑝 + 1) , 𝑝𝑞}
(11)

and �̃� is a constant independent of𝑚 and 𝛿.

Remark 5. In the ERM scheme, we can choose 𝑓
𝜏,𝜌

∈ H
which in turn makes the approximation error described by
(23) equal to zero. However, it is impossible for the kernel
based regularized scheme because of the appearance of the
penalty term 𝜆‖𝑓‖

2

𝐾
.

If 𝑞 ≤ 2, all conditional distributions around the quantile
behave similar to the uniform distribution. In this case 𝑟 =
𝑝𝑞/(𝑝 + 1) ≤ 2 and 𝜃 = min{2/𝑞, 𝑝/(𝑝 + 1)} = 𝑝/(𝑝 + 1) for
all 𝑝 > 0. Hence, 𝜗 = 2(𝑝 + 1)/((2 + 𝜄)𝑝𝑞 + 4𝑞). Furthermore,
when 𝑝 is large enough, the parameter 𝑟 tends to 𝑞 and the
power index for the above learning rate arbitrarily approaches
to 2/(2 + 𝜄)𝑞 which shows that the learning rate power index
for ‖𝑓z−𝑓𝜏,𝜌‖

𝑞

𝐿
𝑞

𝜌𝑋

is arbitrarily close to 2/(2+𝜄) independent of
𝑞. In particular, 𝜄 can be arbitrarily small whenH is smooth
enough. In this case, the power index of the learning rates
2/(2 + 𝜄) can be arbitrarily close to 1 which is the optimal
learning rate for the least square regression.

Let us take some examples to demonstrate the abovemain
result.

Example 6. Let H be a unit ball of the sobolev space 𝐻𝑠

with 𝑠 > 0. Observe that the empirical covering number is
bounded above by the uniform covering number defined in
Definition 2. Hence we have (see [6, 7])

logN
2
(H, 𝜀) ≤ 𝐶

𝑠
(
1

𝜀
)

𝑛/𝑠

, (12)

where 𝑛 is the dimension of the input space𝑋 and 𝐶
𝑠
> 0.
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Under the same assumptions asTheorem 4, we get that by
replacing 𝜄 by 𝑛/𝑠, for any 0 < 𝛿 < 1, with confidence 1 − 𝛿,


𝑓z − 𝑓𝜏,𝜌

𝐿𝑟
𝜌𝑋

≤ �̃�𝑚
−𝜗 log 2

𝛿
, (13)

where

𝜗 =
2 (𝑝 + 1)

4𝑞 (𝑝 + 1) − (2 − 𝑛/𝑠)min {2 (𝑝 + 1) , 𝑝𝑞}
(14)

and �̃� is a constant independent of𝑚 and 𝛿.
We carry out the same discussions on the case of 𝑞 ≤ 2

and large enough 𝑝 as Remark 5. Therefore the power index
of the learning rates for ‖𝑓z − 𝑓𝜏,𝜌‖

𝑞

𝐿
𝑞

𝜌𝑋

is arbitrarily close to
2/(2+𝑛/𝑠) independent of 𝑞. Furthermore, 𝑠 can be arbitrarily
large if the Sobolev space is smooth enough. In this special
case, the learning rate power index arbitrarily approaches to
1.

Example 7. Let H be a unit ball of the reproducing kernel
Hilbert space H

𝜎
generated by a Gaussian kernel (see [5]).

Reference [7] tells us that

logN (H, 𝜀) ≤ 𝐶
𝑛,𝜎
(log 1

𝜀
)

𝑛+1

, ∀𝜀 > 0, (15)

where 𝐶
𝑛,𝜎
> 0 depends only on 𝑛 and 𝜎 > 0. Obviously, the

right-hand side of (15) is bounded by 𝐶
𝑛,𝜎
(1/𝜀)

𝑛+1.
So from Theorem 4, we can get different learning rates

with power index

𝜗 =
2 (𝑝 + 1)

4𝑞 (𝑝 + 1) − (1 − 𝑛)min {2 (𝑝 + 1) , 𝑝𝑞}
. (16)

If 𝑞 ≤ 2 and 𝑝 is large enough, the power index of the
learning rates for ‖𝑓z −𝑓𝜏,𝜌‖

𝑞

𝐿
𝑞

𝜌𝑋

is arbitrarily close to 2/(3+𝑛)
which is very slow if 𝑛 is large. However, in most data sets the
data are concentrated on amuch lower dimensionalmanifold
embedded in the high dimensional space. In this setting an
analysis that replaces 𝑛 by the intrinsic dimension of the
manifold would be of great interest (see [8] and references
therein).

3. Error Analysis

Define the noise-free error called generalization error associ-
ated with the pinball loss 𝐿

𝜏
as

E
𝜏
(𝑓) = ∫

𝑍

𝐿
𝜏
(𝑦 − 𝑓 (𝑥)) 𝑑𝜌 for 𝑓 : 𝑋 → [−1, 1] .

(17)

Then the measurable function 𝑓
𝜏,𝜌

is a minimizer of E
𝜏
.

Obviously, 𝑓
𝜏,𝜌
(𝑥) ∈ [−1, 1].

We need the following results from [1] for our error
analysis.

Proposition 8. Let 𝐿
𝜏
be the pinball loss. Assume that 𝜌

satisfies (5) with some 𝑝 ∈ (0,∞] and 𝑞 ∈ [1,∞). Then for
all 𝑓 : 𝑋 → [−1, 1] one has

𝑓 − 𝑓

𝜏,𝜌

𝐿𝑟
𝜌𝑋

≤ 2
1−1/𝑞

𝑞
1/𝑞

𝛾
−1

1/𝑞

𝐿
𝑝

𝜌𝑋

(E
𝜏
(𝑓) −E

𝜏
(𝑓

𝜏,𝜌
))

1/𝑞

.

(18)

Furthermore, with

𝜃 = min{2
𝑞
,
𝑝

𝑝 + 1
} ∈ (0, 1] ,

𝐶
𝜃
= 2

2−𝜃
𝑞
𝜃
𝛾
−1

𝜃

𝐿
𝑝

𝜌𝑋

> 0,

(19)

one has

E {(𝐿
𝜏
(𝑦 − 𝑓 (𝑥)) − 𝐿

𝜏
(𝑦 − 𝑓

𝜏,𝜌
(𝑥)))

2

}

≤ 𝐶
𝜃
(E

𝜏
(𝑓) −E

𝜏
(𝑓

𝜏,𝜌
))
𝜃

, ∀𝑓 : 𝑋 → 𝑌.

(20)

The above result implies that we can get convergence rates
of 𝑓z in the space 𝐿𝑟

𝜌𝑋
by bounding the excess generalization

error E
𝜏
(𝑓z) −E

𝜏
(𝑓

𝜏,𝜌
).

To bound E
𝜏
(𝑓z) − E

𝜏
(𝑓

𝜏,𝜌
), we need a standard error

decomposition procedure [6] and a concentration inequality.

3.1. Error Decomposition. Define the empirical error associ-
ated with the pinball loss 𝐿

𝜏
as

Ez,𝜏 (𝑓) =
1

𝑚

𝑚

∑

𝑖=1

𝐿
𝜏
(𝑦

𝑖
− 𝑓 (𝑥

𝑖
)) for 𝑓 : 𝑋 → [−1, 1] .

(21)

Define

𝑓H = argmin
𝑓∈H

E
𝜏
(𝑓) = argmin

𝑓∈H
{E

𝜏
(𝑓) −E

𝜏
(𝑓

𝜏,𝜌
)} . (22)

Lemma 9. Let 𝐿
𝜏
be the pinball loss, 𝑓z be defined by (3) and

𝑓H ∈H by (22). Then

E
𝜏
(𝑓z) −E

𝜏
(𝑓

𝜏,𝜌
)

≤[E
𝜏
(𝑓z) −E

𝜏
(𝑓

𝜏,𝜌
)]−[Ez,𝜏 (𝑓z) −Ez,𝜏 (𝑓𝜏,𝜌)]

+[Ez,𝜏 (𝑓H)−Ez,𝜏 (𝑓𝜏,𝜌)]−[E𝜏
(𝑓H) −E

𝜏
(𝑓

𝜏,𝜌
)]

+E
𝜏
(𝑓H) −E

𝜏
(𝑓

𝜏,𝜌
) .

(23)

Proof. The excess generalization error can be written as

E
𝜏
(𝑓z) −E

𝜏
(𝑓

𝜏,𝜌
) = [E

𝜏
(𝑓z) −Ez,𝜏 (𝑓z)]

+ [Ez,𝜏 (𝑓z) −Ez,𝜏 (𝑓H)]

+ [Ez,𝜏 (𝑓H) −E
𝜏
(𝑓H)]

+ [E
𝜏
(𝑓H) −E

𝜏
(𝑓

𝜏,𝜌
)] .

(24)

The definition of 𝑓z implies that Ez,𝜏(𝑓z) − Ez,𝜏(𝑓H) ≤

0. Furthermore, by subtracting and adding E
𝜏
(𝑓

𝜏,𝜌
) and

Ez,𝜏(𝑓𝜏,𝜌) in the first term and third term, we see that
Lemma 9 holds true.
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We call the term (23) approximation error. It has been
studied in [9].

3.2. Concentration Inequality and Sample Error. Let us recall
the one-sided Bernstein inequality as follows.

Lemma 10. Let 𝜉 be a random variable on a probability space
𝑍with variance 𝜎2 satisfying |𝜉−E(𝜉)| ≤ 𝑀

𝜉
for some constant

𝑀
𝜉
. Then for any 0 < 𝛿 < 1, with confidence 1 − 𝛿, one has

1

𝑚

𝑚

∑

𝑖=1

𝜉 (𝑧
𝑖
) − E (𝜉) ≤

2𝑀
𝜉
log (1/𝛿)
3𝑚

+ √
2𝜎

2 log (1/𝛿)
𝑚

.

(25)

Proposition 11. Let 𝑓H ∈ H. Assume that 𝜌 on 𝑋 × [−1, 1]
satisfies the variance bound (20)with index 𝜃 indicated in (19).
For any 0 < 𝛿 < 1, with confidence 1 − 𝛿/2, (3.6) can be
bounded as

[Ez,𝜏 (𝑓H) −Ez,𝜏 (𝑓𝜏,𝜌)] − [E𝜏
(𝑓H) −E

𝜏
(𝑓

𝜏,𝜌
)]

≤
4 log (2/𝛿)

3𝑚
+ (

2𝐶
𝜃
log (2/𝛿)
𝑚

)

1/(2−𝜃)

+E
𝜏
(𝑓H) −E

𝜏
(𝑓

𝜏,𝜌
) .

(26)

Proof. Let 𝜉(𝑧) = 𝐿
𝜏
(𝑦 − 𝑓H(𝑥)) − 𝐿𝜏(𝑦 − 𝑓𝜏,𝜌(𝑥)) which

satisfies |𝜉| ≤ 2 and in turn |𝜉−E(𝜉)| ≤ 2.The variance bound
(20) implies that

E(𝜉 − E (𝜉))2 ≤ E𝜉2 ≤ 𝐶
𝜃
(E

𝜏
(𝑓H) −E

𝜏
(𝑓

𝜏,𝜌
))

𝜃

. (27)

Using (25) on the random variable 𝜉(𝑧) = 𝐿
𝜏
(𝑦 − 𝑓H(𝑥)) −

𝐿
𝜏
(𝑦 − 𝑓

𝜏,𝜌
(𝑥)), we can get the desired bound (28) with the

help of Young’s inequality.

Let us turn to estimate the sample error (3.5) involving
the function 𝑓z which runs over a set of functions since z is
a random sample itself. To estimate it, we use a concentra-
tion inequality below involving empirical covering numbers
[10–12].

Lemma 12. Let F be a class of measurable functions on 𝑍.
Assume that there are constants 𝐵, 𝑐 > 0 and 𝛼 ∈ [0, 1] and
‖𝑓‖

∞
≤ 𝐵 and E𝑓2 ≤ 𝑐(E𝑓)

𝛼 for every 𝑓 ∈ F. If (7) holds,
then there exists a constant 𝑐

𝜄
depending only on 𝜄 such that for

any 𝑡 > 0, with probability at least 1 − 𝑒−𝑡, there holds

E𝑓 −
1

𝑚

𝑚

∑

𝑖=1

𝑓 (𝑧
𝑖
) ≤

1

2
𝜂
1−𝛼
(E𝑓)

𝛼

+ 𝑐


𝜄
𝜂 + 2(

𝑐𝑡

𝑚
)

1/(2−𝛼)

+
18𝐵𝑡

𝑚
, ∀𝑓 ∈ F,

(28)

where

𝜂 := max{𝑐(2−𝜄)/(4−2𝛼+𝜄𝛼)( 𝑎
𝑚
)

2/(4−2𝛼+𝜄𝛼)

,

𝐵
(2−𝜄)/(2+𝜄)

(
𝑎

𝑚
)

2/(2+𝜄)

} .

(29)

We apply Lemma 12 to a function setF, where

F = {𝐿
𝜏
(𝑦 − 𝑓 (𝑥)) − 𝐿

𝜏
(𝑦 − 𝑓

𝜏,𝜌
(𝑥)) : 𝑓 ∈H} . (30)

Proposition 13. Assume 𝜌 on𝑋×[−1, 1] satisfies the variance
bound (20)with index 𝜃 indicated in (19). IfH satisfies (9)with
𝜄 ∈ (0, 2), then for any 0 < 𝛿 < 1, with confidence 1 − 𝛿/2, one
has

[E
𝜏
(𝑓) −E

𝜏
(𝑓

𝜏,𝜌
)]

− [Ez,𝜏 (𝑓) −Ez,𝜏 (𝑓𝜏,𝜌)]

≤
1

2
[E

𝜏
(𝑓) −E

𝜏
(𝑓

𝜏,𝜌
)]

+ 𝐶
𝜄,𝜃
log 2

𝛿
(
1

𝑚
)

2/(4−2𝜃+𝜄𝜃)

, ∀𝑓 ∈H,

(31)

where

𝐶
𝜄,𝜃
= (

1

2
+ 𝑐



𝜄
)max {𝐶(2−𝜄)/(4−2𝜃+𝜄𝜃)

𝜃
𝑎
2/(4−2𝜃+𝜄𝜃)

,

2
(2−𝜄)/(2+𝜄)

𝑎
2/(2+𝜄)

} + 2𝐶
1/(2−𝜃)

𝜃
+ 36.

(32)
Proof. Take 𝑔 ∈ F with the form 𝑔(𝑧) = 𝐿

𝜏
(𝑦 − 𝑓(𝑥)) −

𝐿
𝜏
(𝑦 − 𝑓

𝜏,𝜌
(𝑥)) where 𝑓 ∈H. Hence E𝑔 = E

𝜏
(𝑓) −E

𝜏
(𝑓

𝜏,𝜌
)

and (1/𝑚)∑𝑚

𝑖=1
𝑔(𝑧

𝑖
) = Ez,𝜏(𝑓) −Ez,𝜏(𝑓𝜏,𝜌).

The Lipschitz property of the pinball loss 𝐿
𝜏
implies that

𝑔 (𝑧)
 ≤

𝑓 (𝑥) − 𝑓

𝜏,𝜌
(𝑥)

≤ 2. (33)

For 𝑔
1
, 𝑔

2
∈ F, we have
𝑔1 (𝑧) − 𝑔2 (𝑧)



=
𝐿𝜏 (𝑦 − 𝑓1 (𝑥)) − 𝐿𝜏 (𝑦 − 𝑓2 (𝑥))



≤
𝑓1 (𝑥) − 𝑓2 (𝑥)

 ,

(34)

where 𝑓
1
, 𝑓

2
∈H. It follows that

N
2,z (F, 𝜀) ≤N

2,x (H, 𝜀) . (35)
Hence

logN
2
(F, 𝜀) ≤ 𝑎𝜀

−𝜄
. (36)

Applying Lemma 12 with 𝐵 = 2, 𝛼 = 𝜃, and 𝑐 = 𝐶
𝜃
, we

know that for any 0 < 𝛿 < 1, with confidence 1 − 𝛿/2, there
holds

E𝑓 −
1

𝑚

𝑚

∑

𝑖=1

𝑔 (𝑧
𝑖
)

≤
1

2
𝜂
1−𝜃
(E𝑔)

𝜃

+ 𝑐


𝜄
𝜂+2(

𝐶
𝜃
log (2/𝛿)
𝑚

)

1/(2−𝜃)

+
36 log (2/𝛿)

𝑚

≤
1

2
E𝑔 + (

1

2
+ 𝑐



𝜄
) 𝜂 + 2(

𝐶
𝜃
log (2/𝛿)
𝑚

)

1/(2−𝜃)

+
36 log (2/𝛿)

𝑚
.

(37)
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Here

𝜂 ≤ max {𝐶(2−𝜄)/(4−2𝜃+𝜄𝜃)
𝜃

𝑎
2/(4−2𝜃+𝜄𝜃)

, 2
(2−𝜄)/(2+𝜄)

𝑎
2/(2+𝜄)

}

× (
1

𝑚
)

2/(4−2𝜃+𝜄𝜃)

.

(38)

Note that

(
1

2
+ 𝑐



𝜄
) 𝜂 + 2(

𝐶
𝜃
log (2/𝛿)
𝑚

)

1/(2−𝜃)

+
36 log (2/𝛿)

𝑚

≤ 𝐶
𝜄,𝜃
log 2

𝛿
(
1

𝑚
)

2/(4−2𝜃+𝜄𝜃)

,

(39)

where 𝐶
𝜄,𝜃
is indicated in (32). Then our desired bound holds

true.

Proposition 14. Assume 𝜌 on𝑋×[−1, 1] satisfies the variance
bound (20)with index 𝜃 indicated in (19). IfH satisfies (9)with
𝜄 ∈ (0, 2)Then for any 0 < 𝛿 < 1, with confidence 1 − 𝛿, there
holds

E
𝜏
(𝑓z) −E

𝜏
(𝑓

𝜏,𝜌
)

≤ 2 (E
𝜏
(𝑓H) −E

𝜏
(𝑓

𝜏,𝜌
))

+
8 log (2/𝛿)

3𝑚
+ 2(

2𝐶
𝜃
log (2/𝛿)
𝑚

)

1/(2−𝜃)

+ 2𝐶
𝜄,𝜃
log 2

𝛿
(
1

𝑚
)

2/(4−2𝜃+𝜄𝜃)

.

(40)

The above bound follows directly from Propositions 11
and 13 with the fact that 𝑓z ∈H.

3.3. Bounding the Total Error. Now we are in a position to
present our general result on error analysis for algorithm (3).

Theorem 15. Assume that 𝜌 satisfies (5)with some 𝑝 ∈ (0,∞]
and 𝑞 ∈ [1,∞). Denote 𝛾 = 𝑝𝑞/(𝑝 + 1). Further assume that
H satisfies (9)with 𝜄 ∈ (0, 2) and𝑓

𝜏,𝜌
is uniquely defined.Then

for any 0 < 𝛿 < 1, with confidence 1 − 𝛿, one has


𝑓z − 𝑓𝜏,𝜌

𝐿𝑟
𝜌𝑋

≤ �̃� inf
𝑓∈H

{E
𝜏
(𝑓) −E

𝜏
(𝑓

𝜏,𝜌
)}

1/𝑞

+ �̃�𝑚
−𝜗 log 2

𝛿
,

(41)

where

𝜗 =
2 (𝑝 + 1)

4𝑞 (𝑝 + 1) − (2 − 𝜄)min {2 (𝑝 + 1) , 𝑝𝑞}
(42)

and �̃� are constant independent of𝑚 and 𝛿.

Proof. Combining (18), (19), and (40), with confidence 1 − 𝛿,
we have

𝑓z−𝑓𝜏,𝜌

𝐿𝑟
𝜌𝑋

≤�̃�(E
𝜏
(𝑓H) −E

𝜏
(𝑓

𝜏,𝜌
))

1/𝑞

+�̃� log 2
𝛿
(
1

𝑚
)

2/𝑞(4−2𝜃+𝜄𝜃)

≤ �̃� inf
𝑓∈H

{E
𝜏
(𝑓) −E

𝜏
(𝑓

𝜏,𝜌
)}

1/𝑞

+ �̃�𝑚
−𝜗 log 2

𝛿
,

(43)

where

𝜗 =
2 (𝑝 + 1)

4𝑞 (𝑝 + 1) − (2 − 𝜄)min {2 (𝑝 + 1) , 𝑝𝑞}
,

�̃� = 2𝑞
1/𝑞

𝛾
−1

1/𝑞

𝐿
𝑝

𝜌𝑋

(
4

3
+ (2𝐶

𝜃
)
1/(2−𝜃)

+ 𝐶
𝜄,𝜃
)

1/𝑞

.

(44)

Proof of Theorem 1. The assumption 𝑓
𝜏,𝜌
∈H implies that

inf
𝑓∈H

{E
𝜏
(𝑓) −E

𝜏
(𝑓

𝜏,𝜌
)} = 0. (45)

Therefore, our desired result comes directly from Theo-
rem 15.

4. Further Discussions

In this paper, we studied ERM algorithm (3) for quantile
regression and provide convergence and learning rates. We
showed some essential differences between ERM scheme and
kernel based regularized scheme for quantile regression. We
also point out the difficulty to deal with quantile regression:
the lack of strong convexity of the pinball loss. To overcome
this difficulty, some noise condition on 𝜌 is proposed to
enable us to get a variance-expectation bound similar to the
one for the least square regression.

In our analysis we just consider 𝑓 ∈ H and ‖𝑓‖
𝐶(𝑋)

≤

1. The case ‖𝑓‖
𝐶(𝑋)

≤ 𝑅 for 𝑅 ≥ 1 would be interesting in
the future work. The approximation error involving 𝑅 can be
estimated by the knowledge of interpolation space.

In our setting, the sample is drawn independently from
the distribution 𝜌. However, in many practical problems, the
i.i.d condition is a little demanding, so it would be interesting
to investigate the ERM scheme for quantile regression with
nonidentical distributions [13, 14] or dependent sampling
[15].
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