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We give some sufficient conditions for ¥-uniform stability of the trivial solutions of a nonlinear differential system and of nonlinear

Volterra integro-differential systems with time delay.

1. Introduction

Akinyele [1] introduced the notion of ¥-stability of the degree
k with respect to a function ¥ € C(R,-R,), increasing and
differentiable on R and such that W(¢) > 1 fort > 0 and
lim, _,  ¥(t) = b, b € [1,00). Constantin [2] introduced the
notions of degree of stability and degree of boundedness of
solutions of an ordinary differential equation, with respect to
a continuous positive and nondecreasing function ¥ : R, —
R_; some criteria for these notions are proved there too.

Morchato [3] introduced the notions of ¥-stability, W-
uniform stability, and W-asymptotic stability of trivial solu-
tion of the nonlinear system x' = f(t, x). Several new and
sufficient conditions for the mentioned types of stability are
proved for the linear system x' = A(t)x; in this paper
Y is a scalar continuous function. In [4, 5], Diamandescu
gives some suflicient conditions for ¥-asymptotic stability
and ¥-(uniform) stability of the nonlinear Volterra integro-
differential system x = Al)x + f; F(t, s, x(s))ds; in these
papers V¥ is a matrix function. Furthermore, in [6], sufficient
conditions are given for the uniform Lipschitz stability of the
system x' = [t x) + g(t, x).

In paper [7], for the nonlinear system

Yy =f(ty)+g(ty) 1)

and the nonlinear Volterra integro-differential system

t
Z' = f(tz2) +J F(t,s,z(s))ds, 2)
0
by using the knowledge of fundamental matrix and nonlinear
variation of constants, we give some sufficient conditions for
W-(uniform) stability of trivial solution for the system. The
purpose of this paper is to provide sufficient conditions for V-
uniform stability of trivial solutions for the nonlinear delayed
system

X)) = flt,x(®)+gtx(t—1(t)) (3)

and the nonlinear delayed Volterra integro-differential sys-
tems

X ()= ftx®)+gtx(E-1()

t (4)
+ p(thx (D) L g (s x (s — 7 () ds,

X'(t)=ftx®)+gtx(E-1()

t (5)
+p(tx(t-1()) L q(s,x(s))ds,

where f,g,p,q € C[R, x R",R"), f(t,0) = g(t,0) =
p(t,0) = q(t,0) = 0fort € R,,and 7 € C'(R,,R,) with



7(t) < t on R,. The systems studied in [7] do not include
time delay, whereas all the systems studied in this paper have
time delay.

In this paper, we investigate conditions on the functions
f>9> p»q under which the trivial solutions of systems (3),
(4), and (5) are W-stability on R_; the main tool used is the
integral inequalities and the integral technique. Here ¥ is
a matrix function whose introduction allows us to obtain
a mixed behavior for the components of solutions.

Let R" denote the Euclidean n-space. For x = (xi, x,,
x3,...,xn)T € R”, let x| = max{|x,],|x,|,...,|x,|} be the
norm of x. For an n X n matrix A = (aij), we define the norm
|Al = sup<; [l Ax]. It is well known that

n
|A| = max Z |al-j| . (6)
=1

1<i<n

Let¥;, : R, — (0,00), i = 1,2,...
functions and ¥ = diag[¥,,¥V,, ..., ¥,].

Now we give the definitions of W-(uniform) stability that
we will need in the sequel.

, 1, be continuous

Definition I (see [4, 8]). The trivial solution of (3) ((4) or (5))
is said to be \W-stable on R, if for every e > O and any t, € R,
there exists § = 8(¢, t;) > 0 such that any solution x(¢) of (3)
((4) or (5)), which satisfies the inequality [[¥(t,)x(t,)l < J,
exists and satisfies the inequality [|¥(#)x(t)|| < e for all t > ¢,,.

Definition 2 (see [4, 8]). The trivial solution of (3) ((4) or (5))
is said to be W-uniformly stable on R, if it is ¥-stable on R,
and the previous § is independent of t,,.

2. V-Stability of the Systems
To prove our theorems, we need the following lemmas.

Lemma 3. Let h,k,p,q € C(R, x R,,R,) with (t,s) +—
o,h(t,s), 0,k(t,s), o,p(t,s), o,q(t,s) € CR, x R,,R,).
Assume, in addition, that b € C(R,,R,) and « € C'(R,,R,)
are nondecreasing functions and o(t) < t fort > 0. Ifu €
C(R,,R,) satisfies

t o(t)
u(t)sb(t)+J h(t,s)u(s)ds+J k(t,s)u(s)ds
0

0

t a(s) (7)
+j p(t,s)u(s)(J q(s,v)u(v)dv) ds,
0 0
fort >0, and b(t) j; R(s)Q(s)ds < 1, then
W)« bOQW 0

T1-b® [[RE)Qs)ds

a(t)

where Q(t) = exp(fot h(t,s)ds + 0

2 pt ([ qs, v)dvyds.

k(t,s)ds), R(t) = (d/dt)
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Proof. Let T > 0 be fixed and denote

t o(t)
x(t) = L h(t,s)u(s)ds+ J k(t,s)u(s)ds

0

t os)
+J p(t,s)u(s)(J q(s,v)u(v)dv)ds, t>0,
0 0
9)

then u(t) < b(t) + x(t), and x is nondecreasing on R, . For
t € [0, T1], by calculations we get the following:

X (t) = [h t,ut)+ Lt 0.k (t,s)u(s) ds]

0

a(t)
+ [k(t,a(t))u(oc ) o (t)+J t 0,k (t,s) u(s) ds]

a(t)
+[p(t,t)u(t)J qtv)u(v)dv

0

t als)
+ j o,p(t,s)ul(s) (J q(s,v)u(v) dv) ds]
0 0

t o(t)
S[b(T)+x(t)]|:% (J h(t,s) ds+J k(t,s)ds)]
0 0
d t o(s)
+[6(T) + X(f)]za JO p(t,s) <L q(s,v) dv) ds.
(10)

Suppose that b(0) > 0 (if b(0) = 0, carry out the following
arguments with b(t) + ¢ instead of b(t), where ¢ > 0 is an
arbitrary small constant, and subsequently pass to the limit
as e — 0 to complete the proof), then we get
X' (1)
[b(T) +x ()

t a(t)
J h(t,s)ds+J- k(t,s)ds)

0 0

d t a(s)
< = L p(ts) (L q(s,v) dv) ds.

v d
b(T) +x(t) dt

(11)
Let
(t) = ;
T M x@)
t a(t)
q(t) = J h(t,s)ds+ J k(t,s)ds,
0 0
Q) =exp(q(t)) (12)

a(t)
:exp(Jth(t,s)ds+J t k(t,s)ds),

0 0

t a(s)
R(t) = % L p(ts) (L q(s,v)dv) ds,
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then, we have
) d
z (t)+z(t) 24 (t) | = =R(t). (13)
Multiplying the above inequality by e7® = Q(t), we get

4 QM) 2 -QORE. (14)

Consider now the integral on the interval [0, t] to obtain

t

2()Q 1) zz(m—j Qs)R(s)ds,

0

0<t<T, (15)

SO
=t
D+ x0
1 ¢ 1
ol eoros]gg

) 1-b(T) [, Q(s) R(s)ds
- b(T)Q(t)

for0 <t <T.Lett =T, since b(T) fOT Q(s)R(s)ds < 1, then
we have

bmQm
1-b(T) [, Q(s)R(s)ds

Since T' > 0 was arbitrarily chosen, considering u(t) < b(t) +
x(t), we get (8). O

b(T) +x (T) <

17)

Lemma 4. Let h,k,p,q,b,a be as in Lemma3. If u €
C(R,,R,) satisfies

t alt)
u(t)sb(t)+J h(t,s)u(s)ds+J k(t,s)u(s)ds
0

0

o(t) s (18)
+J p(t,s)u(s)(J q(s, v)u(v)dv> ds,
0 0
fort >0, and b(t) _f; R(s)Q(s)ds < 1, then
W)« bOQW 20, go

T1-b® [[RE)Qs)ds

where Q(t) =

(d/d) [

exp(_[oth(t,s)ds + j:(t) k(t,s)ds), R(t) =
pt,s)(f, q(s, v)dv)ds.

The proof is similar to the proof of Lemma 3, we omit the
details.

Theorem 5. If there exist functions a(t,s),b(t,s) € C(R, x
R,,R,) with (t,s) — 0d,alt,s), o,b(t,s) € C(R, xR,,R,)
such that

1Y@ f (s <alts) ¥,
¥ ®g(sx)|<bts)I¥ s,

for0 < s < tand forall x € R". Moreover,

¢
lim sup j (a(t,s)+b(t,s)ds=L,,
t— 00 0 (21)

|‘P(t) ! (s)| <L, for0<s<t,
and |Y(t)x(a(t))] < [|¥Y(«(t))x(x(t))|, where L,, L, are
nonnegative constants. If a(t) = t — (t) is an increasing

diffeomorphism of R,. Then, the trivial solution of system (3)
is Y-uniformly stable on R .

Proof. Suppose that x(t, t, x,) := x(t) is the unique solution
of system (3) which satisfies x(t,) = x,, since

t

x(t) = xq + L f(s,x(s)ds+ L g(s,x(x(s)))ds

r)

r(t) g(a (1), x(r)

=X, + J-to f(s,x(s))ds + o) W

(22)

after performing the change of variables r = «(s) in the
second integral, and a™" is the inverse of the diffeomorphism
o then, it follows that

19 () x (O < [¥ O ¥ (1) ¥ (1) o
+ L ||‘{’ ®) f(s,x (s))|| ds
o(t)
" Joc(to) ! s

¢
< L, ||¥ () x| + Jt a(t,s) ¥ (s)x(s)| ds

¥ o (a7 (r))

¥ (r) x ()l dr,

Ja(t) b (t, ot (r))
atty) o (a7t (r))
(23)

this implies by Lemma 3 that

I (1) x (O < L, ¥ (t) %, exp
t o« b(t,a (1))
X <LO a (t, S) ds+ Ja(to) Wd?’)
= L, [|¥ (to) xo] exp <L (@(t,s) +b(ts)) ds)

< L,e ¥ (t0) x| »
(24)
so for every € > 0, choose § = s/(LzeLl ), then
W (£) x ()]l < Lye™ | ¥ (£,) x| < & (25)

for ['\W(ty)x,ll < 8 and for all 0 < f, < t < oo. Hence, the
conclusion of the theorem follows. O



Theorem 6. Let all the conditions in Theorem 5 hold. Suppose
further that there exist functions m(t,s),n(t,s) € C(R, x
R,,R,) with (t,s) — omlt,s), on(t,s) € C(R, xR,,R,)
such that

2@ p (s ¥ )] <m e )19 () %1,

¥ ®qsx)| <nts) ¥ ),

for 0 < s <t and for all x € R", moreover,

lim sup Jt m(t,s) (an(s, u) du) ds =1L, (27)
0

t— 00 0

where L is a nonnegative constant. Then, the trivial solutions
of systems (4) and (5) are ¥-uniformly stable on R .

Proof. For that system (4), suppose x(t, £y, x,) := x(t) is the
unique solution of system (4) which satisfies x(¢,) = x,, since

x(t) =x,+ Jt f(s,x(s))ds + L g(s,x(a(s)))ds

+ Jt p(s,x(s)) J-S q W, x (a(u))duds, 0<t,<t,
to 0
(28)

it follows that
I @) x O < ¥ (0¥ (1) ¥ (£) x|

+ J [\ (t) £ (s, x (5))] ds

ty

+

Ja(t) ”‘{’ tg (oc_1 (r),x (r))“ g
alty) o (a7t (r)

+ J [ @® psx6)¥™ o)

< a(s) |‘P(5)q al(r), x(r))"
al (r))

dr) ds

t
< Ly |W (t) x| + J; a(t,s) ¥ (s) x(s)| ds

o) b(t,a" (r))

! L(tu) wla) OOl
t

+ L m(t,s) 'V (s) x (s)]

y <Ja(s) n(s, ol (r)) ¥ (r) x ()l dr) s

0 o (a1 (r))

(29)
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after performing the change of variables r = «a(s) (or r =
«(u)) at some intermediate step, and &' is the inverse of the
diffeomorphism «. Denote

103 -1
Jo b(ta (r))dr>

Q (t) = exp (LO a (t, S) ds + ‘x(to) m

= exp (J (a(t,s) +b(t,s)) ds> o
n(s,oc (r))

di[,[ m(t, s)(L W
d

=5 [ m(t, s)<J n(s,u)du)ds]

This implies by Lemma 3 that
¥ (£) x ()]

R(t) =

)]

Q1)
L, ¥ (to) x| [, Q) R(v) dv
LzeLl

1—L, ||¥ () x| e .[Ot R(v)dv

< L, | ¥ (to) x|

< |1 (to) xo|

= ¥ (t) xo
L, el

X
1= Ly ¥ (o) xof €™ L m(t,s) (f n(s,u)du)ds

LzeL1
1-L,Ly | (t,) x| e

< ¥ (t0) xo
(3D

for L,Ly |[¥(ty)xo| €™ < 1and 0 < £, < t. So, for every e > 0
andt, > 0,let 0 < g < 1/L,L;e" be a constant and choose
0 = min{g, ((1 - qL2L3eL1)s)/LZeL1}, then

(1 —qL2L3eL1)e y LzeLl

= (32)
L,el 1-gL,Lsek

¥ () x ()] <

for [W(ty)x|| < 8 and forall 0 < ¢, <t < co. This proves that
the trivial solution of system (4) is ¥-uniformly stable on R, .

Using Lemma 4, the proof of system (5) is similar to that
of system (4) and the details are left to the readers. O

Remark 7. For ¥; = 1,i = 1,2,...,n, we obtain the theorems
of classical stability and uniform stability.

3. Examples

Example 8. Consider the nonlinear differential system

x; () = x, () + x4 <%> sint,
(33)

x; () =—x, () + x, (%) cost.
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In (33), f(t,x(t) = (x,(8), —x,(1))", gt, x(t/2)) = (x,(/2)
sint, x,(t/2) cost)”. Let W(t) = (e; e‘ft ) then a(t,s) =

bt,s) = e for0 < s <t < oo, itis easy to verify
that L, = 2, L, = 1, and all the assumptions in Theorem 5
satisfied, so the trivial solution of system (33) is y-uniformly
stableon R, .

Example 9. Consider the nonlinear Volterra integro-differ-
ential system as follows:

x; ) =x, @) +x, (@) et J(: X <§> cossds,
(34)

x; t)=-x, ) +x,(t)e”" Lt X, (%) sin s ds.

In (34)) f(t: X(t)) = (xl(t))_xz(t))T) g = 0) p(ta x(t)) =
(xl(t)e_t,xz(t)e_t)T, q(s,x(s/2)) = (x,(s/2) cos s, x,(s/2)
sins)’. Choose the same matrix function ¥(¢), then a(t, s) =
n(t,s) = e 9 bt,s) = 0,mt,s) =e 2 for0<s<t<
00, it is easy to verify that L, = L, = 1, L; = 1/2, and all the
assumptions in Theorem 6 are satisfied, so the trivial solution
of system (34) is y-uniformly stable on R, .
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