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Various closed-formheteroclinic breather solutions including classical heteroclinic, heteroclinic breather andAkhmediev breathers
solutions for coupled Schrödinger-Boussinesq equation are obtained using two-soliton and homoclinic test methods, respectively.
Moreover, various heteroclinic structures of waves are investigated.

1. Introduction

The existence of the homoclinic and heteroclinic orbits is
very important for investigating the spatiotemporal chaotic
behavior of the nonlinear evolution equations (NEEs). In
recent years, exact homoclinic and heterclinic solutions were
proposed for some NEEs like nonlinear Schrödinger equa-
tion, Sine-Gordon equation, Davey-Stewartson equation,
Zakharov equation, and Boussinesq equation [1–7].

The coupled Schrödinger-Boussinesq equation is consid-
ered as

𝑖𝐸
𝑡

+ 𝐸
𝑥𝑥

+ 𝛽
1
𝐸 − 𝑁𝐸 = 0,

3𝑁
𝑡𝑡

− 𝑁
𝑥𝑥𝑥𝑥

+ 3(𝑁
2
)
𝑥𝑥

+ 𝛽
2
𝑁
𝑥𝑥

− (|𝐸|
2
)
𝑥𝑥

= 0,

(1)

with the periodic boundary condition

𝐸 (𝑥, 𝑡) = 𝐸 (𝑥 + 𝑙, 𝑡) , 𝑁 (𝑥, 𝑡) = 𝑁 (𝑥 + 𝑙, 𝑡) , (2)

where 𝑙, 𝛽
1
, 𝛽
2
are real constants, 𝐸(𝑥, 𝑡) is a complex func-

tion, and 𝑁(𝑥, 𝑡) is a real function. Equation (1) has also
appeared in [8] as a special case of general systems governing
the stationary propagation of coupled nonlinear upper-
hybrid and magnetosonic waves in magnetized plasma. The
complete integrability of (1) was studied by Chowdhury et al.

[9], and 𝑁-soliton solution, homoclinic orbit solution, and
rogue solution were obtained by Hu et al. [10], Dai et al. [11–
13], and Mu and Qin [14].

2. Linear Stability Analysis

It is easy to see that (𝑒
𝑖𝜃0 , 𝛽
1
) is a fixed point of (1), and 𝜃

0
is

an arbitrary constant.We consider a small perturbation of the
form

𝐸 = 𝑒
𝑖𝜃0 (1 + 𝜖) , 𝑁 = 𝛽

1
(1 + 𝜙) , (3)

where |𝜖(𝑥, 𝑡)| ≪ 1, |𝜙(𝑥, 𝑡)| ≪ 1. Substituting (3) into (1), we
get the linearized equations

𝑖𝜖
𝑡

+ 𝜖
𝑥𝑥

− 𝛽
1
𝜙 = 0,

3𝜙
𝑡𝑡

− 𝜙
𝑥𝑥𝑥𝑥

+ (𝛽
2

+ 2𝛽
2

1
) 𝜙
𝑥𝑥

− 𝜖
𝑥𝑥

− 𝜖
𝑥𝑥

= 0.

(4)

Assume that 𝜖 and 𝜙 have the following forms:

𝜖 = 𝐺𝑒
𝑖𝜇𝑛𝑥+𝜎𝑛𝑡 + 𝐻𝑒

−𝑖𝜇𝑛𝑥+𝜎𝑛𝑡,

𝜙 = 𝐶 (𝑒
𝑖𝜇𝑛𝑥+𝜎𝑛𝑡 + 𝑒

−𝑖𝜇𝑛𝑥+𝜎𝑛𝑡) ,

(5)

where 𝐺, 𝐻 are complex constants, and 𝐶 is a real number;
𝜇
𝑛

= 2𝜋𝑛/𝑙, and 𝜎
𝑛
is the growth rate of the 𝑛th modes.
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Substituting (5) into (4), we have

𝐺 (𝑖𝜎
𝑛

− 𝜇
2

𝑛
) = 𝛽
1
𝐶,

𝐻 (𝑖𝜎
𝑛

− 𝜇
2

𝑛
) = 𝛽
1
𝐶,

(3𝜎
2

𝑛
− 𝜇
4

𝑛
− 𝜇
2

𝑛
(𝛽
2

+ 2𝛽
2

1
)) 𝐶 = − (𝐺 + 𝐻) ]

2

𝑛
,

(3𝜎
2

𝑛
− 𝜇
4

𝑛
− 𝜇
2

𝑛
(𝛽
2

+ 2𝛽
2

1
)) 𝐶 = − (𝐻 + 𝐺) 𝜇

2

𝑛
.

(6)

Solving (6), we obtain that

𝜎
2

𝑛
=

𝜇
2

𝑛
(𝛽
2

+ 2𝛽
2

1
) − 2𝜇

4

𝑛
± √Δ

6
, (7)

with

Δ = 4𝜇
8

𝑛
+ 𝜇
4

𝑛
(𝛽
2

+ 2𝛽
2

1
)
2

− 4𝜇
6

𝑛
(𝛽
2

+ 2𝛽
2

1
)

+ 12𝜇
4

𝑛
(𝜇
4

𝑛
+ 𝜇
2

𝑛
(𝛽
2

+ 2𝛽
2

1
) − 2𝛽

1
) .

(8)

Obviously, (7) implies that 𝜇
2

𝑛
(𝛽
2

+ 2𝛽
2

1
) − 2𝜇

4

𝑛
> 0; then,

𝜇
2

𝑛
<

𝛽
2

+ 2𝛽
2

1

2
. (9)

3. Various Heterclinic Breather Solutions

Set

𝐸 (𝑥, 𝑡) = 𝑒
−𝑖𝑎𝑡

𝑢 (𝑥, 𝑡) , 𝑁 (𝑥, 𝑡) = V
0

+ V (𝑥, 𝑡) . (10)

Substituting (10) into (1), we get

𝑖𝑢
𝑡

+ 𝑢
𝑥𝑥

+ (𝑎 + 𝛽
1

− V
0
) 𝑢 = 𝑢V,

3V
𝑡𝑡

− V
𝑥𝑥𝑥𝑥

+ (6V
0

+ 𝛽
2
) V
𝑥𝑥

+ 3(V
2
)
𝑥
𝑥 = (|𝑢|

2
)
𝑥𝑥

.

(11)

We can choose 𝑎, V
0
such that 𝑎 + 𝛽

1
− V
0

= 0.
By using the following transformation

𝑢 =
𝑔 (𝑥, 𝑡)

𝑓 (𝑥, 𝑡)
, V = −2(ln 𝑓 (𝑥, 𝑡))

𝑥𝑥
. (12)

Equation (11) can be reduced into the following bilinear form:

(𝑖𝐷
𝑡

+ 𝐷
2

𝑥
) 𝑔 ⋅ 𝑓 = 0,

(3𝐷
2

𝑡
+ (6V
0

+ 𝛽
2
) 𝐷
2

𝑥
− 𝐷
4

𝑥
− 𝜆) 𝑓 ⋅ 𝑓 + 𝑔𝑔

∗
= 0,

(13)

where 𝑔(𝑥, 𝑡) is an unknown complex function and 𝑓(𝑥, 𝑡) is
a real function, 𝑔

∗ is conjugate function of 𝑔(𝑥, 𝑡), and 𝜆 is an
integration constant.TheHirota bilinear operators 𝐷

𝑚

𝑥
𝐷
𝑛

𝑡
are

defined by

𝐷
𝑚

𝑥
𝐷
𝑛

𝑡
𝑓 (𝑥, 𝑡) ⋅ 𝑔 (𝑥, 𝑡)

= (
𝜕

𝜕𝑥
−

𝜕

𝜕𝑥
)

𝑚

(
𝜕

𝜕𝑡
−

𝜕

𝜕𝑡
)

𝑛

[𝑓 (𝑥, 𝑡) 𝑔 (𝑥

, 𝑡

)]
𝑥

=𝑥, 𝑡

= 𝑡

.

(14)

We use three test functions to investigate the variation
of the heterclinic solution for the coupled Schrödinger-
Boussinesq equation (1). (1) We seek the following forms of
the heterclinic solution:

𝑔 = 1 + 𝑏
1
cos (𝑝𝑥) 𝑒

Ω𝑡+𝛾
+ 𝑏
2
𝑒
2Ω𝑡+2𝛾

,

𝑓 = 1 + 𝑏
3
cos (𝑝𝑥) 𝑒

Ω𝑡+𝛾
+ 𝑏
4
𝑒
2Ω𝑡+2𝛾

,

(15)

where 𝑏
1
, 𝑏
2
are complex numbers and 𝑏

3
, 𝑏
4
are real numbers.

𝑏
𝑖

(𝑖 = 1, 2, 3, 4), 𝑝, Ω, 𝛾 will be determined later.
Choosing V

0
= 𝛽
1
, then 𝑎 = 0. Substituting (15) into the

(13), we have the following relations among these constants:

𝜆 = 1, 𝑏
1

=
𝑖Ω + 𝑝

2

𝑖Ω − 𝑝2
𝑏
3
,

𝑏
2

= (
𝑖Ω + 𝑝

2

𝑖Ω − 𝑝2
)

2

𝑏
4
, 𝑏

4
=

Ω
2

+ 𝑝
4

4Ω2
𝑏
2

3
,

(3Ω
2

− 𝑝
4

− (6𝛽
1

+ 𝛽
2
) 𝑝
2
) (Ω
2

+ 𝑝
4
) = 2𝑝

4
.

(16)

Therefore, we have the heterclinic solution for (1) as:

𝐸 (𝑥, 𝑡) =
𝑒
Ω𝑡+𝛾

+ 𝑏
1
cos (𝑝𝑥) + 𝑏

2
𝑒
Ω𝑡+𝛾

√𝑏
4

(2 cosh (Ω𝑡 + 𝛾 + ln√𝑏
4
) + 𝑏
3
cos (𝑝𝑥))

,

𝑁 (𝑥, 𝑡)

= 𝛽
1
+

2𝑏
3
𝑝
2

(2√𝑏
4
cos (𝑝𝑥) cosh (Ω𝑡 + 𝛾 + ln√𝑏

4
) + 𝑏
3
)

𝑏
4
(2 cosh (Ω𝑡 + 𝛾 + ln√𝑏

4
) + 𝑏
3
cos (𝑝𝑥))

2
.

(17)

It is easy to see that (𝐸, 𝑁) → (1, 𝛽
1
) as 𝑡 → −∞ and

(𝐸, 𝑁) → (((𝑖Ω + 𝑝
2
)/(𝑖Ω − 𝑝

2
))
2
, 𝛽
1
) as 𝑡 → +∞. After

giving some constants in (17), we find that the shape of the
heterclinic orbit for Schrödinger-Boussinesq equation likes
the hook, and the orbits are heterclinic to two different fixed
points (see Figure 1 with 𝛽

1
= 1, 𝛽

2
= −2, 𝑝 = 1, and 𝛾 = 1).

(2) We take ansatz of extended homoclinic test approach
for (13) as follows:

𝑓 (𝑥, 𝑡) = 𝑒
−𝑝1(𝑥−𝛼𝑡)−𝜂0 + 𝑏

3
cos (𝑝 (𝑥 + 𝛼𝑡) + 𝜂

1
)

+ 𝑏
4
𝑒
𝑝1(𝑥−𝛼𝑡)+𝜂0 ,

𝑔 (𝑥, 𝑡) = 𝑒
−𝑖𝜃

(𝑒
−𝑝1(𝑥−𝛼𝑡)−𝜂0 + 𝑏

1
cos (𝑝 (𝑥 + 𝛼𝑡) + 𝜂

1
)

+ 𝑏
2
𝑒
𝑝1(𝑥−𝛼𝑡)+𝜂0) ,

(18)

where the parameters 𝑝, 𝑝
1
, 𝛼, 𝜂
0
, 𝜂
1
, 𝑏
𝑠

(𝑠 = 1, 2, 3, 4) will be
determined later, 𝑏

1
and 𝑏
2
are complex numbers, and 𝑏

3
and

𝑏
4
are real numbers. Substituting (18) into (13) and choosing

V
0

= 𝛽
1
, we get the following relations among the parameters:
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Figure 1: Hook heteroclinic orbits for Schrödinger-Boussinesq equation as 𝑡 → −∞ (a) and 𝑡 → +∞ (b).

𝑝
2

= 3𝑝
2

1
, 𝜆 = 1,

𝑝
2

1
=

3

4
𝛼
2

−
1

4
𝛽
2

−
3

2
𝛽
1
, 𝛼

2
=

(𝛽
2

+ 6𝛽
1
)
2

− 2

4 (𝛽
2

+ 6𝛽
1
)

,

𝑏
1

=
𝑏
3

(𝑖𝛼 − 2𝑝
1
)

𝑖𝛼 + 2𝑝
1

, 𝑏
2

=
𝑏
4
(𝑖𝛼 − 2𝑝

1
)
2

(𝑖𝛼 + 2𝑝
1
)
2

,

𝑏
3

= ±

2𝑝
1
√(3𝛼2 − 4𝑝

2

1
) 𝑏
4

𝑝√𝛼2 + 4𝑝
2

1

.

(19)

From (19), we get the restrictive conditions with

−√2 < 𝛽
2

+ 6𝛽
1

< 0, 𝑏
4

< 0. (20)

Denote that (𝑖𝛼 − 2𝑝
1
)/(𝑖𝛼 + 2𝑝

1
) = 𝑒

𝑖𝜃0 . Then, sub-
stituting (10) into (1) and employing (19), we obtain the
solution of the coupled Schrödinger-Boussinesq equation as
follows:

𝐸 (𝑥, 𝑡) = 𝑒
𝑖(𝜃0−𝜃)

2√−𝑏
4
sinh (𝑝

1
(𝑥 − 𝛼𝑡) + 𝜂

0
+ ln (√−𝑏

4
) + 𝑖𝜃
0
) − 𝑏
3
cos (𝑝 (𝑥 + 𝛼𝑡) + 𝜂

1
)

2√−𝑏
4
sinh (𝑝

1
(𝑥 − 𝛼𝑡) + 𝜂

0
+ ln (√−𝑏

4
)) − 𝑏

3
cos (𝑝 (𝑥 + 𝛼𝑡) + 𝜂

1
)

,

𝑁 (𝑥, 𝑡) = 𝛽
1

−

8√−𝑏
4
𝑏
3
𝑝
2

1
sinh (𝑝

1
(𝑥 − 𝛼𝑡) + 𝜂

0
+ ln (√−𝑏

4
)) cos (𝑝 (𝑥 + 𝛼𝑡) + 𝜂

1
)

(2√−𝑏
4
sinh (𝑝

1
(𝑥 − 𝛼𝑡) + 𝜂

0
+ ln (√−𝑏

4
)) − 𝑏

3
cos (𝑝 (𝑥 + 𝛼𝑡) + 𝜂

1
))
2

−

2 (−4√−𝑏
4
𝑝𝑝
1
𝑏
3
cosh (𝑝

1
(𝑥 − 𝛼𝑡) + 𝜂

0
+ ln√−𝑏

4
) sin (𝑝 (𝑥 + 𝛼𝑡) + 𝜂

1
) + (4𝑏

4
− 3𝑏
2

3
) 𝑝
2

1
)

(2√−𝑏
4
sinh (𝑝

1
(𝑥 − 𝛼𝑡) + 𝜂

0
+ ln (√−𝑏

4
)) − 𝑏

3
cos (𝑝 (𝑥 + 𝛼𝑡) + 𝜂

1
))
2

,

(21)

where 𝜂
0
, 𝜂
1
are arbitrary numbers.

Solution in (21) is a heteroclinic breather wave solution.
It is easy to see that (𝐸, 𝑁) → (𝑒

−𝑖(𝜃+2𝜃0), 𝛽
1
) as 𝑡 → −∞

and (𝐸, 𝑁) → (𝑒
−𝑖𝜃

, 𝛽
1
) as 𝑡 → +∞. Given some constants

in (21), this kind of the heterclinic orbit likes a spiral, and it
is heterclinic to the points (𝑒

−𝑖(𝜃+2𝜃0), 𝛽
1
) and (𝑒

−𝑖𝜃
, 𝛽
1
) (see

Figure 2 with 𝛽
1

= −1.5, 𝛽
2

= 8, and 𝑏
4

= −4).
Note that (𝑒

−𝑖(𝜃+2𝜃0), 𝛽
1
) and (𝑒

−𝑖𝜃
, 𝛽
1
) are two different

fixed points of (21), which is a heteroclinic solution (see
Figure 3). This wave also contains the periodic wave, and its
amplitude periodically oscillates with the evolution of time,
which shows that this wave has breather effect. The previous
results combined with (21) show that interaction between a

solitary wave and a periodic wave with the same velocity 𝛼

and opposite propagation direction can form a heteroclinic
breather flow. This is a new phenomenon of physics in the
stationary propagation of coupled nonlinear upper-hybrid
and magnetosonic waves in magnetized plasma.

(3) Use the following forms of the heterclinic solution
[14]:

𝑔 = 𝑏
1
cosh (𝛼𝑡) + 𝑏

2
cos (𝑝𝑥) + 𝑏

3
sinh (𝛼𝑡) ,

𝑓 = 𝑏
4
cosh (𝛼𝑡) + 𝑏

5
cos (𝑝𝑥) ,

(22)

where 𝑏
1
, 𝑏
2
, 𝑏
3
are complex numbers and 𝑏

4
, 𝑏
5
are real

numbers. 𝑏
𝑖

(𝑖 = 1, 2, 3, 4, 5), 𝑝, 𝛼 will be determined later.
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Figure 2: Spiral heteroclinic orbits for Schrödinger-Boussinesq equation as 𝑡 → −∞ (a) and 𝑡 → +∞ (b).
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Figure 3: One heteroclinic orbit for Schrödinger-Boussinesq equation as 𝑥 = 0.

We also choose V
0

= 𝛽
1
and substitute (22) into (13). We

have the following relations among these constants:

𝑖𝑏
3
𝑏
4
𝛼 = 𝑏
2
𝑏
5
𝑝
2
,

𝑏
5

(𝑏
1

+ 𝑏
3
) (𝑖𝛼 − 𝑝

2
) = 𝑏
2
𝑏
4

(𝑖𝛼 + 𝑝
2
) ,

𝑏
2
𝑏
4

(𝑖𝛼 − 𝑝
2
) = 𝑏
5

(𝑏
1

− 𝑏
3
) (𝑖𝛼 + 𝑝

2
) ,

− 𝑏
2

4
+ 12𝛼

2
𝑏
2

4
− 2𝑏
2

5
cos2 (𝑝𝑥) − 16𝑏

2

5
𝑝
4

− 4𝑏
2

5
𝑝
2

(6𝛽
1

+ 𝛽
2
)

+ 𝑏
1
𝑏
∗

1
− 𝑏
3
𝑏
∗

3
+ 2𝑏
2
𝑏
∗

2
cos2 (𝑝𝑥) = 0.

(23)
Solving (23), we get

𝑏
1

=

(𝑝
4

− 𝛼
2
) 𝑏
2

𝛼√2 (𝛼2 + 𝑝4)

, 𝑏
3

= ±𝑖
√2𝑝
2
𝑏
2

√𝛼2 + 𝑝4
,

𝑏
2

4
=

(𝛼
2

+ 𝑝
4
) 𝑏
2

5

2𝛼2
.

(24)

Therefore, we have the heterclinic solution for (1) as

𝐸 (𝑥, 𝑡) =
𝑏
1
cosh (𝛼𝑡) + 𝑏

2
cos (𝑝𝑥) + 𝑏

3
sinh (𝛼𝑡)

𝑏
4
cosh (𝛼𝑡) + 𝑏

5
cos (𝑝𝑥)

,

𝑁 (𝑥, 𝑡) = 𝛽
1

+ 2
𝑏
5
𝑝
2

(𝑏
4
cos (𝑝𝑥) cosh (𝛼𝑡) + 𝑏

5
)

(𝑏
4
cosh (𝛼𝑡) + 𝑏

5
cos (𝑝𝑥))

2
.

(25)

Giving some special parameters in (25), we see that the shape
of the heterclinic orbits likes the arc (see Figure 4 with 𝛽

1
= 1,

𝛼 = √3, and 𝑝 = √2). The fixed points are (𝐸, 𝑁) → ((𝑏
1

−

𝑏
3
)/𝑏
4
, 𝛽
1
) as 𝑡 → −∞ and (𝐸, 𝑁) → ((𝑏

1
+ 𝑏
3
)/𝑏
4
, 𝛽
1
) as

𝑡 → +∞.

4. Conclusion

In this work, by using three special test functions in two-
soliton method and homoclinic test method, we obtain three
families of heteroclinic breather wave solution heteroclinic
to two different fixed points, respectively. Moreover, we
investigate different structures of these wave solutions. These
results show that the Schrödinger-Boussinesq equation has
the variety of heteroclinic structure. As the further work, we
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Figure 4: Arc Heteroclinic orbit for Schrödinger-Boussinesq equation as 𝑡 → ±∞ at 𝑥 = 10 ∗ (2𝑘 + 1) (a) and 𝑥 = 10 ∗ (4𝑘 + 2) (b), where
𝑘 = 0, 1, 2, . . ..

will consider whether there exist the spatiotemporal chaos for
the coupled Schrödinger-Boussinesq equation or not.
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