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This paper is concernedwith the leader-following consensus problem inmean-square for a class of discrete-timemultiagent systems.
The multiagent systems under consideration are the directed and contain arbitrary discrete time-delays. The communication links
are assumed to be time-varying and stochastic. It is also assumed that some agents in the network are well informed and act as
leaders, and the others are followers. By introducing novel Lyapunov functionals and employing some new analytical techniques,
sufficient conditions are derived to guarantee the leader-following consensus inmean-square for the concernedmultiagent systems,
so that all the agents are steered to an anticipated state target. A numerical example is presented to illustrate the main results.

1. Introduction

In recent years, themultiagent distributed coordination prob-
lem has attracted many researchers since it has broad appli-
cations in satellite formation flying, cooperative search of
unmanned air vehicles, scheduling of automated highway
systems, air traffic control, and distributed optimization of
multiplemobile robotic systems. Inmany applications involv-
ing multiagent systems, one of the most fundamental prob-
lems is that groups of agents need to agree upon certain quan-
tities of interest, which is called the consensus or agreement
problem in the literature. Consensus problems have a long
history in the field of computer science [1], many distributed
control and estimation strategies are designed based on
consensus algorithms [2–8], and consensus problems are
used to model many different phenomena involving infor-
mation flow among agents, including flocking, swarming,
synchronization, distributed decisionmaking, and schooling;
see, for example, the survey paper [9]. Consensus problems
for networkeddynamic systemshave been extensively studied
in the last few years [10–12].

Usually, algebraic graph theory [13] acts as a good frame-
work for analyzing consensus problems; see, for example,
[10, 11, 14, 15]. In this framework, each agent is modeled as
a vertex of a graph, and an edge of the graph joins node 𝑖

to node 𝑗 if agent 𝑗 is receiving information from agent 𝑖.
The models and algorithms for consensus have been recently
reported by a number of investigators. In [16], Vicsek et
al. proposed a simple discrete-time model to simulate a
group of autonomous agents moving in the plane with the
same speed but different headings. Vicsek’s model in essence
is a simplified version of the model introduced earlier by
Reynolds [17]. Based on the algebraic graph theory [18], it
has been shown that the network connectivity is a key factor
in reaching consensus [11, 14, 15]. It has also been proved
that consensus in a network with a dynamically changing
topology can be reached if and only if the time-varying
network topology contains a spanning tree frequently enough
as the network evolves with time [11, 14]. Recently, stochastic-
approximation-type algorithms with a decreasing step size
are developed, and almost sure convergence is established for
consensus seeking; see, for example, [19] and the references
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therein. It has been recognized that time-delay is unavoidable
in signal transmission and is also one of the main sources
for causing instability and poor performances of systems [20–
22]. Recently, the multiagent networks with time-delay have
started to receive some initial attention [15, 23, 24].

On the other hand, in many multiagent systems, some
agents are well informed and served as leaders, and the
others track the leaders and act as followers. It was reported
that the leader-following configuration is an energy saving
mechanism [25]whichwas found inmany biological systems,
and it can also enhance the communication and orientation
of the flock [26]. The leader-following consensus has been an
active area of research [14, 27, 28]. Such a leader-following
consensus problem is considered and proved in [14] that
if all the agents were jointly connected with their leader,
their states would converge to that of the leader as time
goes on. Reference [28] studied a leader-following consensus
problem for a multiagent system with a varying-velocity
leader and time-varying delays, where the interaction graph
among the followers was switching and balanced. Reference
[27] investigated the leader-following consensus problem
of higher-order multiagent systems. Unfortunately, so far,
the delayed networks considered for the leader-following
consensus problem are almost continuous-time multiagent
systems, and the leader-following consensus problems for
discrete-timemultiagent systems with time-delay and random
communication links have received little research attention.
Hence, it is our intention in this paper to tackle such an
important yet challenging problem.

In this paper, we will investigate the leader-following
consensus problem for the discrete-time directed multiagent
systems with time-delay and random communication links.
By constructing new Lyapunov functionals and employing
some analytical techniques, sufficient conditions for the
leader-following consensus in mean-square are established
for multiagent system, so that all the agents are steered to
an anticipated state target. A numerical example is used to
illustrate the proposed theory.

2. Problem Formulation

Throughout this paper, N and Z
+
stand for the natural

numbers and the positive integer set, respectively; R, R𝑛,
and R𝑛×𝑚 denote, respectively, the set of real numbers, the
𝑛 dimensional Euclidean space, and the set of all 𝑛 × 𝑚 real
matrices. The superscript 𝑇 represents the transpose for a
matrix, and | ⋅ | may stand for any absolute value of real
numbers or the standard Euclidean norm from the context.
In an underlying probability space (Ω,F,P), E[⋅] and Var[⋅]
denote, respectively, themean and the variance for a random
variable, and E[𝑥 | 𝑦] will mean the expectation of 𝑥

conditional on 𝑦.
Consider 𝑛 agents distributed according to a directed

graph G = (V,E) with a set of nodesV = {1, 2, . . . , 𝑛}, a set
of edges E ∈ V × V, and a weighted adjacency matrix 𝐴 =

[𝑎
𝑖𝑗
] with nonnegative adjacency elements 𝑎

𝑖𝑗
. In G, the 𝑖th

node represents 𝑖th agent, and a directed edge (simply called
an edge) from node 𝑖 to node 𝑗 denoted as an ordered pair
(𝑖, 𝑗) ∈ E represents a unidirectional information exchange

link fromnode 𝑖 to node 𝑗; that is, agent 𝑗 can receive or obtain
information from agent 𝑖, but not necessarily vice versa. The
set of neighbors of node 𝑖 is denoted by N

𝑖
= {𝑗 : (𝑗, 𝑖) ∈

E}. A weighted adjacency 𝐴 = [𝑎
𝑖𝑗
] ∈ R𝑛×𝑛 of a weighted

directed graph is defined such that 𝑎
𝑖𝑗
is a positive weight if

only (𝑗, 𝑖) ∈ E (so there is no edge between a node and itself;
that is, 𝑎

𝑖𝑖
= 0, for all 𝑖 ∈ V). In other words, 𝑎

𝑖𝑗
> 0, if

𝑗 ∈ N
𝑖
, otherwise 𝑎

𝑖𝑗
= 0. A directed path (simply called

a path) of length 𝑘 from V
𝑡
to V
𝑙
(𝑡, 𝑙 ∈ V) is a sequence of

edges (𝑖
0
, 𝑖
1
), (𝑖
1
, 𝑖
2
), . . . , (𝑖

𝑘
, 𝑖
𝑘+1

) with 𝑖
0

= 𝑡, 𝑖
𝑘+1

= 𝑙 and
(𝑖
𝑠
, 𝑖
𝑠+1

) ∈ E for 𝑠 = 0, 1, . . . , 𝑘. A graph G is said to be
strongly connected if there exists a path between any two
distinct nodes in it. For convenience of presentation, the two
names, agent and node, will be used interchangeably.

Now consider the dynamics of 𝑛 agents distributed over
a directed graph G. Let 𝑥

𝑖
(𝑘) ∈ R denote the state of node

𝑖 at time 𝑘, x(𝑘) = [𝑥
1
(𝑘), 𝑥
2
(𝑘), . . . , 𝑥

𝑛
(𝑘)]
𝑇 the state of

the system accordingly, and let 𝐴 = [𝑎
𝑖𝑗
] be the weighted

adjacency matrix associated with the graph. In general, the
dynamics of discrete-time multiagent network with fixed
topology are described by

𝑥
𝑖
(𝑘 + 1) = 𝑥

𝑖
(𝑘) + ∑

𝑗∈N𝑖

𝑎
𝑖𝑗
(𝑥
𝑗
(𝑘 − 𝜏

𝑖𝑗
) − 𝑥
𝑖
(𝑘)) , 𝑖 ∈ V,

(1)

where 𝜏
𝑖𝑗

∈ Z+ is the time-delay of the information transmis-
sion from node V

𝑗
to node V

𝑖
.

Remark 1. The consensus problem for the multiagent system
(1) is considered in [29], and the consensus problem for its
continuous-time counterpart (analogue)

�̇�
𝑖
(𝑡) = ∑

𝑗∈N𝑖

𝑎
𝑖𝑗
(𝑥
𝑗
(𝑡 − 𝜏
𝑖𝑗
) − 𝑥
𝑖
(𝑡)) , 𝑖 ∈ V (2)

is investigated in [24], and system (1) without time-delays is
also investigated extensively; see, for example, [10, 19] and the
references therein.

In multiagent network (1), it is assumed that there is no
communication failure between agents. However, during sig-
nal exchange of the sensor nodes, an important uncertainty
feature is signal losses, whichmay be caused by the temporary
extreme deterioration of the link quality, for instance, due to
blocking objects traveling between the transmitter or receiver
[30].Therefore, we consider the general casewhere each com-
munication link is subject to some probability distribution.
Assume that weighted adjacency matrix𝐴

(𝑘)
= [𝑎
(𝑘)

𝑖𝑗
] is time-

varying with 𝑎
(𝑘)

𝑖𝑗
being random variable. Denote 𝑎

𝑖𝑗
= E[𝑎

(𝑘)

𝑖𝑗
]

and 𝜎
𝑖𝑗

= Var[𝑎(𝑘)
𝑖𝑗

]. As usual, we assume that (𝑗, 𝑖) ∈ E if and
only if 𝑎

𝑖𝑗
> 0, and the set of neighbors of node 𝑖 is denoted

byN
𝑖
= {𝑗 : (𝑗, 𝑖) ∈ E}.

Now, the dynamics of discrete-time multiagent network
with random communication links are given by

𝑥
𝑖
(𝑘 + 1) = 𝑥

𝑖
(𝑘) + ∑

𝑗∈N𝑖

𝑎
(𝑘)

𝑖𝑗
(𝑥
𝑗
(𝑘 − 𝜏

𝑖𝑗
) − 𝑥
𝑖
(𝑘)) , 𝑖 ∈ V,

(3)
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where, as in the previous discussion, 𝜏
𝑖𝑗

∈ Z+ is the time-
delay of the information transmission from node V

𝑗
to node

V
𝑖
. For convenience, we let 𝜏

𝑖𝑖
= 0, (𝑖 ∈ V), hereafter.

In practical applications, it is often important to steer
the state of each agent in a network to a fixed objective. In
this paper, we will consider the regulation of the multiagent
network (3) so that all agents can reach a common objective.
Suppose that there are some agents acting as leaders and well
informed. Specifically, let 𝑥

∗ be the anticipated state target.
If necessary, we can relabel the agents, and without loss of
generality, we assume that the first 𝑖

0
agents serve as leaders,

and the other ones act as followers. Consider the following
controlled multiagent network:

𝑥
𝑖
(𝑘 + 1) =

{{{{{{{{{

{{{{{{{{{

{

𝑥
𝑖
(𝑘) + ∑

𝑗∈N𝑖

𝑎
(𝑘)

𝑖𝑗
(𝑥
𝑗
(𝑘 − 𝜏

𝑖𝑗
) − 𝑥
𝑖
(𝑘))

−𝛼
𝑖
(𝑥
𝑖
(𝑘) − 𝑥

∗
) , 1 ≤ 𝑖 ≤ 𝑖

0
,

𝑥
𝑖
(𝑘) + ∑

𝑗∈N𝑖

𝑎
(𝑘)

𝑖𝑗
(𝑥
𝑗
(𝑘 − 𝜏

𝑖𝑗
) − 𝑥
𝑖
(𝑘)) ,

𝑖
0
+ 1 ≤ 𝑖 ≤ 𝑛,

(4)

where 𝛼
𝑖
> 0 are given constants.

Definition 2. The multiagent network (3) is said to reach
leader-following consensus on a state target 𝑥

∗ in mean-
square if for any solution x(𝑘) = (𝑥

1
(𝑘), 𝑥
2
(𝑘), . . . , 𝑥

𝑛
(𝑘))
𝑇 of

system (4), it always holds that

lim
𝑘→∞

E[𝑥
𝑖
(𝑘) − 𝑥

∗

]
2

= 0. (5)

In this paper, we will investigate the leader-following
consensus problem in mean-square for discrete-time multia-
gent system (3). By constructing novel Lyapunov functionals
and employing some new analytical techniques, sufficient
conditions are established to ensure the leader-following
consensus in mean-square for multiagent system (3).

3. Main Results and Proofs

This section is devoted to the leader-following consensus
analysis for system (3), and let usmake somenecessary prepa-
rations before introducing our main results.

Assume that {𝑎(𝑘)
𝑖𝑗

: (𝑗, 𝑖) ∈ E, 𝑘 ∈ Z+} are independent
with respect to (𝑖, 𝑗) and 𝑘 and also independent of the initial
states.

Let 𝐵
(𝑘)

= [𝑏
(𝑘)

𝑖𝑗
] with 𝑏

(𝑘)

𝑖𝑗
= 𝑎
(𝑘)

𝑖𝑗
for 𝑗 ∈ N

𝑖
, 𝑏(𝑘)
𝑖𝑖

= 1 −

∑
𝑗∈N𝑖

𝑎
(𝑘)

𝑖𝑗
, otherwise 𝑏

(𝑘)

𝑖𝑗
= 𝑎
(𝑘)

𝑖𝑗
= 0. Then, (4) is rewritten as

𝑥
𝑖
(𝑘 + 1) =

{{{{{{{

{{{{{{{

{

𝑛

∑

𝑗=1

𝑏
(𝑘)

𝑖𝑗
𝑥
𝑗
(𝑘 − 𝜏

𝑖𝑗
) − 𝛼
𝑖
(𝑥
𝑖
(𝑘) − 𝑥

∗

) ,

1 ≤ 𝑖 ≤ 𝑖
0
,

𝑛

∑

𝑗=1

𝑏
(𝑘)

𝑖𝑗
𝑥
𝑗
(𝑘 − 𝜏

𝑖𝑗
) , 𝑖

0
+ 1 ≤ 𝑖 ≤ 𝑛.

(6)

Denote 𝐵 = (𝑏
𝑖𝑗
)
def
= E[𝐵

(𝑘)
], and Δ𝐵

(𝑘)
= [�̃�
(𝑘)

𝑖𝑗
]
def
= 𝐵
(𝑘)

−

𝐵. Then, all row sums of both 𝐵
(𝑘) and 𝐵 are one, and all row

sums of Δ𝐵
(𝑘) are zero; namely,

𝑛

∑

𝑗=1

𝑏
(𝑘)

𝑖𝑗
= 1,

𝑛

∑

𝑗=1

𝑏
𝑖𝑗

= 1,

𝑛

∑

𝑗=1

�̃�
(𝑘)

𝑖𝑗
= 0, 𝑖 ∈ V. (7)

Also denote the variance of random variable 𝑏
(𝑘)

𝑖𝑗
by 𝜎
2

𝑖𝑗
,

where 𝜎
𝑖𝑗
is its standard deviation. Notice that E[�̃�

(𝑘)

𝑖𝑗
]
2

is
the variance of random variable 𝑏

(𝑘)

𝑖𝑗
, and �̃�

(𝑘)

𝑖𝑗
for 𝑗 ̸= 𝑖 is

dependent with respect to (𝑖, 𝑗) and 𝑘. Therefore, we have

E[�̃�
(𝑘)

𝑖𝑗
]
2

= Var [𝑏(𝑘)
𝑖𝑗

] = 𝜎
2

𝑖𝑗
, 𝑗 ̸= 𝑖, (8)

E [�̃�
(𝑘)

𝑖𝑗
�̃�
(𝑘)

𝑖𝑙
] = 0, 𝑙 ̸= 𝑗, 𝑗 ̸= 𝑖, 𝑙 ̸= 𝑖, (9)

E [�̃�
(𝑘)

𝑖𝑖
�̃�
(𝑘)

𝑖𝑗
] = E[−∑

𝑙 ̸= 𝑖

�̃�
(𝑘)

𝑖𝑙
�̃�
(𝑘)

𝑖𝑗
]

= −E[�̃�
(𝑘)

𝑖𝑗
]
2

= −𝜎
2

𝑖𝑗
, 𝑗 ̸= 𝑖,

(10)

E[�̃�
(𝑘)

𝑖𝑖
]
2

= E[

[

−∑

𝑗 ̸= 𝑖

�̃�
(𝑘)

𝑖𝑗

]

]

2

= ∑

𝑙 ̸= 𝑖

E[�̃�
(𝑘)

𝑖𝑗
]
2

= ∑

𝑗 ̸= 𝑖

𝜎
2

𝑖𝑗
.

(11)

For the interaction topology of multiagent system (3), we
make the following assumption.

Assumption 3. The graph G = (V,E) is strongly connected;
namely, the matrix 𝐵 is irreducible.

Lemma 4 (see [31]). Let 𝐴 = [𝑎
𝑖𝑗
] ∈ R𝑛×𝑛 be a nonnegative

matrix; that is, 𝑎
𝑖𝑗

≥ 0, and let 𝜌(𝐴) be the spectral radius
(called the Perron root of 𝐴). In addition, suppose that 𝐴 is
strongly connected, then there is a positive vector 𝑥 such that
𝐴𝑥 = 𝜌(𝐴)𝑥.

From Lemma 4, it follows readily that there exists a
positive left eigenvector 𝜉 = [𝜉

1
, 𝜉
2
, . . . , 𝜉

𝑛
]
𝑇 of 𝐵 such that

𝜉
𝑇

𝐵 = 𝜉
𝑇

,

𝑛

∑

𝑗=1

𝜉
𝑖
= 1. (12)

In the sequel, we denote

𝜉 = max {𝜉
𝑖
: 1 ≤ 𝑖 ≤ 𝑛} , (13)

𝜉 = min {𝜉
𝑖
: 1 ≤ 𝑖 ≤ 𝑛} , (14)

𝜎 = max {𝜎
𝑖𝑗

: (𝑗, 𝑖) ∈ E} , (15)
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𝛼 = min {𝛼
𝑖
: 1 ≤ 𝑖 ≤ 𝑖

0
} , (16)

𝛾 = min {𝑎
𝑖𝑗

: 1 ≤ 𝑖 ≤ 𝑖
0
, 𝑗 ∈ N} , (17)

N̂
𝑖
= N
𝑖
∪ {𝑖} . (18)

Also, we make the following assumption.

Assumption 5. Assume that
𝑛0

⋃

𝑖=1

N̂
𝑖
= V, 𝛼

𝑖
≤ 𝑏
𝑖𝑖

for 1 ≤ 𝑖 ≤ 𝑖
0
. (19)

Remark 6. Notice that in Assumption 5 the condition
⋃
𝑛0

𝑖=1
N̂
𝑖
= Vmeans that the set of the first 𝑖

0
nodes and their

neighbors contains all the nodes of the network.

We are now in a position to introduce the main results of
this paper.

Theorem7. Consider the multiagent systems (3) and (4). Sup-
pose that Assumptions 3 and 5 are satisfied, and assume that
𝜎 < √𝛼𝜉𝛾/(4(𝑛 − 1)𝜉) holds. Then, the multiagent network
(3) reaches leader-following consensus on the state target 𝑥∗ in
mean-square.

Proof. Let 𝐶 = [𝑐
𝑖𝑗
] with

𝑐
𝑖𝑗

= {
𝑏
𝑖𝑗
− 𝛼
𝑖
, for 1 ≤ 𝑖 ≤ 𝑖

0
, 𝑗 = 𝑖,

𝑏
𝑖𝑗
, otherwise,

(20)

and denote 𝑒
𝑖
(𝑘) = 𝑥

𝑖
(𝑘) − 𝑥

∗. Then, the controlled network
(6) can be rewritten as

𝑒
𝑖
(𝑘 + 1) =

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑒
𝑗
(𝑘 − 𝜏

𝑖𝑗
)

+

𝑛

∑

𝑗=1

�̃�
(𝑘)

𝑖𝑗
𝑒
𝑗
(𝑘 − 𝜏

𝑖𝑗
) , 𝑖 ∈ V.

(21)

Let 𝜙 is the initial value of network (21), and denote byF
𝑘

the 𝜎-algebras consisting of all events induced by the random
variables 𝜙, 𝑎

(𝑠)

𝑖𝑗
with 0 ≤ 𝑠 ≤ 𝑘 − 1, (𝑗, 𝑖) ∈ E; that is, F

𝑘
=

𝜎(𝜙, 𝑎
(𝑠)

𝑖𝑗
, 0 ≤ 𝑠 ≤ 𝑘 − 1, (𝑗, 𝑖) ∈ E). Also denote 𝜏 = max{𝜏

𝑖𝑗
:

(𝑖, 𝑗) ∈ E}, and e
𝑘
(𝑠) = [𝑒

1
(𝑘 + 𝑠), 𝑒

2
(𝑘 + 𝑠), . . . , 𝑒

𝑛
(𝑘 + 𝑠)]

𝑇,
−𝜏 ≤ 𝑠 ≤ 0.

To prove that the multiagent network (3) reaches leader-
following consensus on the state target 𝑥∗ in mean-square, it
suffices to prove themean-square stability of (21). To this end,
we construct the following Lyapunov functional:

𝑉 (e
𝑘
) = 𝑉
1
(e
𝑘
) + 𝑉
2
(e
𝑘
) + 𝑉
3
(e
𝑘
) , (22)

where

𝑉
1
(e
𝑘
) =

𝑛

∑

𝑖=1

𝜉
𝑖
𝑒
2

𝑖
(𝑘) , (23)

𝑉
2
(e
𝑘
) =

𝑛

∑

𝑖=1

𝜉
𝑖

𝑛

∑

𝑗=1

∑

𝑙≥𝑗

𝑐
𝑖𝑗
𝑐
𝑖𝑙
𝑉
𝑖𝑗𝑙

(e
𝑘
) , (24)

𝑉
3
(e
𝑘
) =

𝑛

∑

𝑖=1

𝜉
𝑖
∑

𝑗 ̸= 𝑖

2𝜎
2

𝑖𝑗

𝑘−1

∑

𝑠=𝑘−𝜏𝑖𝑗

𝑒
2

𝑗
(𝑠) (25)

with

𝑉
𝑖𝑗𝑙

(e
𝑘
) =

𝑘−1

∑

𝑠=𝑘−𝜏𝑖𝑗

𝑒
2

𝑗
(𝑠) +

𝑘−1

∑

𝑠=𝑘−𝜏𝑖𝑙

𝑒
2

𝑙
(𝑠) . (26)

Then, for system (21), using (8)–(11), we conduct the following
computation:

E [𝑉
1
(e
𝑘+1

) | F
𝑘
] − 𝑉
1
(e
𝑘
)

= E[

[

𝑛

∑

𝑖=1

𝜉
𝑖
(

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑒
𝑗
(𝑘 − 𝜏

𝑖𝑗
) +

𝑛

∑

𝑗=1

�̃�
(𝑘)

𝑖𝑗
𝑒
𝑗
(𝑘 − 𝜏

𝑖𝑗
))

2

]

]

−

𝑛

∑

𝑖=1

𝜉
𝑖
𝑒
2

𝑖
(𝑘)

=

𝑛

∑

𝑖=1

𝜉
𝑖
E[

[

(

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
𝑒
𝑗
(𝑘 − 𝜏

𝑖𝑗
))

2

]

]

+

𝑛

∑

𝑖=1

𝜉
𝑖
E[

[

(

𝑛

∑

𝑗=1

�̃�
(𝑘)

𝑖𝑗
𝑒
𝑗
(𝑘 − 𝜏

𝑖𝑗
))

2

]

]

−

𝑛

∑

𝑖=1

𝜉
𝑖
𝑒
2

𝑖
(𝑘)

=

𝑛

∑

𝑖=1

𝜉
𝑖

[

[

𝑛

∑

𝑗=1

𝑐
2

𝑖𝑗
𝑒
2

𝑗
(𝑘 − 𝜏

𝑖𝑗
)

+

𝑛

∑

𝑗=1

∑

𝑙>𝑗

2𝑐
𝑖𝑗
𝑐
𝑖𝑙
𝑒
𝑗
(𝑘 − 𝜏

𝑖𝑗
) 𝑒
𝑙
(𝑘 − 𝜏

𝑖𝑙
) ]

]

−

𝑛

∑

𝑖=1

𝜉
𝑖
𝑒
2

𝑖
(𝑘)

+

𝑛

∑

𝑖=1

𝜉
𝑖

[

[

𝑛

∑

𝑗=1

E[�̃�
(𝑘)

𝑖𝑗
]
2

𝑒
2

𝑗
(𝑘 − 𝜏

𝑖𝑗
)

+

𝑛

∑

𝑗=1

∑

𝑙>𝑗

2E [�̃�
(𝑘)

𝑖𝑗
�̃�
(𝑘)

𝑖𝑙
] 𝑒
𝑗
(𝑘 − 𝜏

𝑖𝑗
) 𝑒
𝑙
(𝑘 − 𝜏

𝑖𝑙
) ]

]

=

𝑛

∑

𝑖=1

𝜉
𝑖

[

[

𝑛

∑

𝑗=1

𝑐
2

𝑖𝑗
𝑒
2

𝑗
(𝑘 − 𝜏

𝑖𝑗
)

+

𝑛

∑

𝑗=1

∑

𝑙>𝑗

2𝑐
𝑖𝑗
𝑐
𝑖𝑙
𝑒
𝑗
(𝑘 − 𝜏

𝑖𝑗
) 𝑒
𝑙
(𝑘 − 𝜏

𝑖𝑙
) ]

]

−

𝑛

∑

𝑖=1

𝜉
𝑖
𝑒
2

𝑖
(𝑘)
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+

𝑛

∑

𝑖=1

𝜉
𝑖

[

[

∑

𝑗 ̸= 𝑖

𝜎
2

𝑖𝑗
𝑒
2

𝑖
(𝑘) + ∑

𝑗 ̸= 𝑖

𝜎
2

𝑖𝑗
𝑒
2

𝑗
(𝑘 − 𝜏

𝑖𝑗
)

+ ∑

𝑗 ̸= 𝑖

2E [�̃�
(𝑘)

𝑖𝑖
�̃�
(𝑘)

𝑖𝑗
] 𝑒
𝑖
(𝑘 − 𝜏

𝑖𝑖
) 𝑒
𝑗
(𝑘 − 𝜏

𝑖𝑗
)]

]

=

𝑛

∑

𝑖=1

𝜉
𝑖

[

[

𝑛

∑

𝑗=1

𝑐
2

𝑖𝑗
𝑒
2

𝑗
(𝑘 − 𝜏

𝑖𝑗
)

+

𝑛

∑

𝑗=1

∑

𝑙>𝑗

2𝑐
𝑖𝑗
𝑐
𝑖𝑙
𝑒
𝑗
(𝑘 − 𝜏

𝑖𝑗
) 𝑒
𝑙
(𝑘 − 𝜏

𝑖𝑙
)]

]

−

𝑛

∑

𝑖=1

𝜉
𝑖
𝑒
2

𝑖
(𝑘)

+

𝑛

∑

𝑖=1

𝜉
𝑖

[

[

∑

𝑗 ̸= 𝑖

𝜎
2

𝑖𝑗
𝑒
2

𝑖
(𝑘) + ∑

𝑗 ̸= 𝑖

𝜎
2

𝑖𝑗
𝑒
2

𝑗
(𝑘 − 𝜏

𝑖𝑗
)

−∑

𝑗 ̸= 𝑖

2𝜎
2

𝑖𝑗
𝑒
𝑖
(𝑘) 𝑒
𝑗
(𝑘 − 𝜏

𝑖𝑗
)]

]

.

(27)

It is not difficult to see that
E [𝑉
2
(e
𝑘+1

) | F
𝑘
] − 𝑉
2
(e
𝑘
)

=

𝑛

∑

𝑖=1

𝜉
𝑖

𝑛

∑

𝑗=1

∑

𝑙>𝑗

𝑐
𝑖𝑗
𝑐
𝑖𝑙
(𝑒
2

𝑗
(𝑘) − 𝑒

2

𝑗
(𝑘 − 𝜏

𝑖𝑗
)

+𝑒
2

𝑙
(𝑘) − 𝑒

2

𝑙
(𝑘 − 𝜏

𝑖𝑙
))

+

𝑛

∑

𝑖=1

𝜉
𝑖

𝑛

∑

𝑗=1

𝑐
2

𝑖𝑗
(𝑒
2

𝑗
(𝑘) − 𝑒

2

𝑗
(𝑘 − 𝜏

𝑖𝑗
)) ,

(28)

E [𝑉
3
(e
𝑘+1

) | F
𝑘
] − 𝑉
3
(e
𝑘
)

=

𝑛

∑

𝑖=1

𝜉
𝑖
∑

𝑗 ̸= 𝑖

2𝜎
2

𝑖𝑗
(𝑒
2

𝑗
(𝑘) − 𝑒

2

𝑗
(𝑘 − 𝜏

𝑖𝑗
)) .

(29)

From (27)–(29), it follows that

E [𝑉 (e
𝑘+1

) | F
𝑘
] − 𝑉 (e

𝑘
)

=

𝑛

∑

𝑖=1

𝜉
𝑖

[

[

𝑛

∑

𝑗=1

𝑐
2

𝑖𝑗
𝑒
2

𝑗
(𝑘)

+

𝑛

∑

𝑗=1

∑

𝑙>𝑗

𝑐
𝑖𝑗
𝑐
𝑖𝑙
(𝑒
2

𝑗
(𝑘) − 𝑒

2

𝑗
(𝑘 − 𝜏

𝑖𝑗
)

+ 𝑒
2

𝑙
(𝑘) − 𝑒

2

𝑙
(𝑘 − 𝜏

𝑖𝑙
)

+ 2𝑒
𝑗
(𝑘 − 𝜏

𝑖𝑗
) 𝑒
𝑙
(𝑘 − 𝜏

𝑖𝑙
)) ]

]

−

𝑛

∑

𝑖=1

𝜉
𝑖
𝑒
2

𝑖
(𝑘)

+

𝑛

∑

𝑖=1

𝜉
𝑖

[

[

∑

𝑗 ̸= 𝑖

𝜎
2

𝑖𝑗
𝑒
2

𝑖
(𝑘) + ∑

𝑗 ̸= 𝑖

𝜎
2

𝑖𝑗
𝑒
2

𝑗
(𝑘)

+ ∑

𝑗 ̸= 𝑖

𝜎
2

𝑖𝑗
(𝑒
2

𝑗
(𝑘) − 𝑒

2

𝑗
(𝑘 − 𝜏

𝑖𝑗
)

− 2𝑒
𝑖
(𝑘) 𝑒
𝑗
(𝑘 − 𝜏

𝑖𝑗
))]

]

=

𝑛

∑

𝑖=1

𝜉
𝑖

[

[

𝑛

∑

𝑗=1

𝑐
2

𝑖𝑗
𝑒
2

𝑗
(𝑘)

+

𝑛

∑

𝑗=1

∑

𝑙>𝑗

𝑐
𝑖𝑗
𝑐
𝑖𝑙
(𝑒
2

𝑗
(𝑘) + 𝑒

2

𝑙
(𝑘)

− (𝑒
𝑗
(𝑘 − 𝜏

𝑖𝑗
)

− 𝑒
𝑙
(𝑘 − 𝜏

𝑖𝑙
))
2

)]

]

−

𝑛

∑

𝑖=1

𝜉
𝑖
𝑒
2

𝑖
(𝑘)

+

𝑛

∑

𝑖=1

𝜉
𝑖

[

[

∑

𝑗 ̸= 𝑖

𝜎
2

𝑖𝑗
𝑒
2

𝑖
(𝑘) + ∑

𝑗 ̸= 𝑖

𝜎
2

𝑖𝑗
𝑒
2

𝑗
(𝑘)

+ ∑

𝑗 ̸= 𝑖

𝜎
2

𝑖𝑗
(𝑒
2

𝑖
(𝑘) + 𝑒

2

𝑗
(𝑘)

−(𝑒
𝑖
(𝑘) + 𝑒

𝑗
(𝑘 − 𝜏

𝑖𝑗
))
2

)]

]

≤

𝑛

∑

𝑖=1

𝜉
𝑖

[

[

𝑛

∑

𝑗=1

𝑐
2

𝑖𝑗
𝑒
2

𝑗
(𝑘)

+

𝑛

∑

𝑗=1

∑

𝑙>𝑗

𝑐
𝑖𝑗
𝑐
𝑖𝑙
(𝑒
2

𝑗
(𝑘) + 𝑒

2

𝑙
(𝑘))]

]

−

𝑛

∑

𝑖=1

𝜉
𝑖
𝑒
2

𝑖
(𝑘)

+ 2

𝑛

∑

𝑖=1

𝜉
𝑖

[

[

∑

𝑗 ̸= 𝑖

𝜎
2

𝑖𝑗
𝑒
2

𝑖
(𝑘) + ∑

𝑗 ̸= 𝑖

𝜎
2

𝑖𝑗
𝑒
2

𝑗
(𝑘)]

]

.

(30)

A straightforward computation yields that
𝑛

∑

𝑖=1

𝜉
𝑖

[

[

𝑛

∑

𝑗=1

𝑐
2

𝑖𝑗
𝑒
2

𝑗
(𝑘) +

𝑛

∑

𝑗=1

∑

𝑙>𝑗

𝑐
𝑖𝑗
𝑐
𝑖𝑙
(𝑒
2

𝑗
(𝑘) + 𝑒

2

𝑙
(𝑘))]

]

=

𝑛

∑

𝑖=1

𝜉
𝑖

𝑛

∑

𝑗=1

𝑛

∑

𝑙=1

𝑐
𝑖𝑗
𝑐
𝑖𝑙
𝑒
2

𝑗
(𝑘) .

(31)
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Noticing the equality ∑
𝑛

𝑗=1
𝑏
𝑖𝑗

= 1 (see (7)), it follows
readily that
𝑛

∑

𝑖=1

𝜉
𝑖

𝑛

∑

𝑗=1

𝑛

∑

𝑙=1

𝑐
𝑖𝑗
𝑐
𝑖𝑙
𝑒
2

𝑗
(𝑘)

=

𝑖0

∑

𝑖=1

𝜉
𝑖

𝑛

∑

𝑗=1

𝑛

∑

𝑙=1

𝑐
𝑖𝑗
𝑐
𝑖𝑙
𝑒
2

𝑗
(𝑘)

+

𝑛

∑

𝑖=𝑖0+1

𝜉
𝑖

𝑛

∑

𝑗=1

𝑛

∑

𝑙=1

𝑐
𝑖𝑗
𝑐
𝑖𝑙
𝑒
2

𝑗
(𝑘)

=

𝑖0

∑

𝑖=1

𝜉
𝑖

𝑛

∑

𝑗=1

𝑛

∑

𝑙=1

𝑏
𝑖𝑗
𝑏
𝑖𝑙
𝑒
2

𝑗
(𝑘)

+

𝑛

∑

𝑖=𝑖0+1

𝜉
𝑖

𝑛

∑

𝑗=1

𝑛

∑

𝑙=1

𝑏
𝑖𝑗
𝑐
𝑖𝑙
𝑒
2

𝑗
(𝑘)

−

𝑖0

∑

𝑖=1

𝛼
𝑖
𝜉
𝑖

[

[

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑒
2

𝑗
(𝑘) + (1 − 𝛼

𝑖
) 𝑒
2

𝑖
(𝑘)]

]

=

𝑛

∑

𝑖=1

𝜉
𝑖

𝑛

∑

𝑗=1

𝑛

∑

𝑙=1

𝑏
𝑖𝑗
𝑏
𝑖𝑙
𝑒
2

𝑗
(𝑘)

−

𝑖0

∑

𝑖=1

𝛼
𝑖
𝜉
𝑖

[

[

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑒
2

𝑗
(𝑘) + (1 − 𝛼

𝑖
) 𝑒
2

𝑖
(𝑘)]

]

=

𝑛

∑

𝑖=1

𝜉
𝑖

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑒
2

𝑗
(𝑘)

−

𝑖0

∑

𝑖=1

𝛼
𝑖
𝜉
𝑖

[

[

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑒
2

𝑗
(𝑘) + (1 − 𝛼

𝑖
) 𝑒
2

𝑖
(𝑘)]

]

=

𝑛

∑

𝑖=1

𝜉
𝑖
𝑒
2

𝑖
(𝑘)

−

𝑖0

∑

𝑖=1

𝛼
𝑖
𝜉
𝑖

[

[

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑒
2

𝑗
(𝑘) + (1 − 𝛼

𝑖
) 𝑒
2

𝑖
(𝑘)]

]

.

(32)

Substituting (31) and (32) into (30) yields that
E [𝑉 (e

𝑘+1
) | F
𝑘
] − 𝑉 (e

𝑘
)

≤ 2

𝑛

∑

𝑖=1

𝜉
𝑖

[

[

∑

𝑗 ̸= 𝑖

𝜎
2

𝑖𝑗
𝑒
2

𝑖
(𝑘) + ∑

𝑗 ̸= 𝑖

𝜎
2

𝑖𝑗
𝑒
2

𝑗
(𝑘)]

]

−

𝑖0

∑

𝑖=1

𝛼
𝑖
𝜉
𝑖

[

[

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑒
2

𝑗
(𝑘) + (1 − 𝛼

𝑖
) 𝑒
2

𝑖
(𝑘)]

]

.

(33)

It is easy to see that
𝑛

∑

𝑖=1

𝜉
𝑖

[

[

∑

𝑗 ̸= 𝑖

𝜎
2

𝑖𝑗
𝑒
2

𝑖
(𝑘) + ∑

𝑗 ̸= 𝑖

𝜎
2

𝑖𝑗
𝑒
2

𝑗
(𝑘)]

]

≤ 𝜉

𝑛

∑

𝑖=1

∑

𝑗 ̸= 𝑖

𝜎
2

𝑖𝑗
𝑒
2

𝑖
(𝑘) + 𝜉

𝑛

∑

𝑖=1

∑

𝑗 ̸= 𝑖

𝜎
2

𝑖𝑗
𝑒
2

𝑗
(𝑘)

≤ 𝜉

𝑛

∑

𝑖=1

∑

𝑗 ̸= 𝑖

𝜎
2

𝑖𝑗
𝑒
2

𝑖
(𝑘) + 𝜉

𝑛

∑

𝑗=1

∑

𝑖 ̸= 𝑗

𝜎
2

𝑖𝑗
𝑒
2

𝑗
(𝑘)

≤ 2 (𝑛 − 1) 𝜉𝜎
2

𝑛

∑

𝑖=1

𝑒
2

𝑖
(𝑘) ,

(34)

and
𝑖0

∑

𝑖=1

𝛼
𝑖
𝜉
𝑖

[

[

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
𝑒
2

𝑗
(𝑘) + (1 − 𝛼

𝑖
) 𝑒
2

𝑖
(𝑘)]

]

=

𝑖0

∑

𝑖=1

𝛼
𝑖
𝜉
𝑖

[

[

∑

𝑗∈N𝑖

𝑏
𝑖𝑗
𝑒
2

𝑗
(𝑘)

+ (1 + 𝑏
𝑖𝑖
− 𝛼
𝑖
) 𝑒
2

𝑖
(𝑘) ]

]

≥ 𝛼𝜉𝛾

𝑖0

∑

𝑖=1

∑

𝑗∈N̂𝑖

𝑒
2

𝑗
(𝑘)

≥ 𝛼𝜉𝛾

𝑛

∑

𝑖=1

𝑒
2

𝑖
(𝑘) .

(35)

Substituting (34) into (33) results in
E [𝑉 (e

𝑘+1
) | F
𝑘
] − 𝑉 (e

𝑘
)

≤ (4 (𝑛 − 1) 𝜉𝜎
2

− 𝛼𝜉𝛾) |e (𝑘)|
2

,

(36)

which implies that
E [𝑉 (e

𝑘+1
)] − E [𝑉 (e

𝑘
)]

≤ (4 (𝑛 − 1) 𝜉𝜎
2

− 𝛼𝜉𝛾)E [|e (𝑘)|
2

] .

(37)

Employing the Lyapunov stability theory, we can deduce
that lim

𝑘→∞
E[𝑉(e

𝑘
)] = 0. This completes the proof of the

theorem.

Remark 8. In Theorem 7, the condition 𝜎 < √𝛼𝜉𝛾/4(𝑛 − 1)𝜉

always holds when 𝜎 is sufficiently small. In particular, when
the interaction topology of multiagent system is determinis-
tic, the system (3) and the controlled network (4) are reduced,
respectively, to
𝑥
𝑖
(𝑘 + 1) = 𝑥

𝑖
(𝑘) + ∑

𝑗∈N𝑖

𝑎
𝑖𝑗
(𝑥
𝑗
(𝑘 − 𝜏

𝑖𝑗
) − 𝑥
𝑖
(𝑘)) , 𝑖 ∈ V,

(38)

𝑥
𝑖
(𝑘 + 1) =

{{{{{{{{{

{{{{{{{{{

{

𝑥
𝑖
(𝑘) + ∑

𝑗∈N𝑖

𝑎
𝑖𝑗
(𝑥
𝑗
(𝑘 − 𝜏

𝑖𝑗
) − 𝑥
𝑖
(𝑘))

−𝛼
𝑖
(𝑥
𝑖
(𝑘) − 𝑥

∗
) , 1 ≤ 𝑖 ≤ 𝑖

0
,

𝑥
𝑖
(𝑘) + ∑

𝑗∈N𝑖

𝑎
𝑖𝑗
(𝑥
𝑗
(𝑘 − 𝜏

𝑖𝑗
) − 𝑥
𝑖
(𝑘)) ,

𝑖
0
+ 1 ≤ 𝑖 ≤ 𝑛.

(39)

In this case, 𝜎 = 0; accordingly, the condition 𝜎 <

√𝛼𝜉𝛾/4(𝑛 − 1)𝜉 is always satisfied, and from Theorem 7, we
have the following corollary.
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Corollary 9. Consider the multiagent systems (38) and (39).
Under Assumptions 3 and 5, the multiagent network (38)
reaches leader-following consensus on the state target 𝑥∗.

In the previous discussion, we only consider scalar indi-
vidual states, and it is easy to extend them to the case where
the individual states are vectors. Consider the following
multiagent system of 𝑛 nodes with vector-valued states:

𝑥
𝑖
(𝑘 + 1) = 𝑥

𝑖
(𝑘) + ∑

𝑗∈N𝑖

𝑎
(𝑘)

𝑖𝑗
(𝑥
𝑗
(𝑘 − 𝜏

𝑖𝑗
) − 𝑥
𝑖
(𝑘)) , 𝑖 ∈ V,

(40)

and the controlled network is given by

𝑥
𝑖
(𝑘 + 1) =

{{{{{{{{{

{{{{{{{{{

{

𝑥
𝑖
(𝑘) + ∑

𝑗∈N𝑖

𝑎
(𝑘)

𝑖𝑗
(𝑥
𝑗
(𝑘 − 𝜏

𝑖𝑗
) − 𝑥
𝑖
(𝑘))

−𝛼
𝑖
(𝑥
𝑖
(𝑘) − 𝑥

∗
) , 1 ≤ 𝑖 ≤ 𝑖

0
,

𝑥
𝑖
(𝑘) + ∑

𝑗∈N𝑖

𝑎
(𝑘)

𝑖𝑗
(𝑥
𝑗
(𝑘 − 𝜏

𝑖𝑗
) − 𝑥
𝑖
(𝑘)) ,

𝑖
0
+ 1 ≤ 𝑖 ≤ 𝑛,

(41)

where 𝑥(𝑘) ∈ R𝑛. We have the following results.

Theorem 10. Consider the multiagent systems (40) and (41).
Suppose that Assumptions 3 and 5 are satisfied, and assume
that 𝜎 < √𝛼𝜉𝛾/4(𝑛 − 1)𝜉 holds. Then, the multiagent network
(40) reaches the leader-following consensus on the state target
𝑥
∗ in mean-square.

Proof. The proof of this theorem is similar to that of
Theorem 7. The minor modification is to replace some scalar
multiplication operations by the Kronecker product of matri-
ces, and we omit the details here.

4. A Numerical Example

In this section, we present a numerical example to illustrate
the proposed methods.

Example 1.Consider themultiagent networks (3) and (4), and
for simplicity, we take 𝑛 = 5. The interaction topology
between the agents is shown in Figure 1(a), and other param-
eters are taken as follows:

𝐵 = [𝑏
𝑖𝑗
]
5×5

=

[
[
[
[
[

[

0.4 0 0.2 0.2 0.2

0.5 0.5 0 0 0

0 0.5 0.5 0 0

0 0 0.5 0.5 0

0 0 0 0.5 0.5

]
]
]
]
]

]

,

[𝜏
𝑖𝑗
]
5×5

=

[
[
[
[
[

[

0 0 5 1 2

5 0 0 0 0

0 3 0 0 0

0 0 3 0 0

0 0 0 4 0

]
]
]
]
]

]

.

(42)

Clearly, the network topology is strongly connected, and it is
also obvious that �̂�

1
⋃ N̂
2

= V. Therefore, we can choose

�1

�5

�4

�3

�2

(a) The interaction topology of multiagent system

0 1000 2000 3000 4000 5000 6000

0

1

2

3

4

5

6

7

−1

k

x
i

(b) Consensus on an anticipated state target

Figure 1: Numerical simulation.

𝑖
0

= 2. Assume that 𝜎
13

= 𝜎
14

= 𝜎
15

= 𝜎
21

= 𝜎
32

= 𝜎
43

=

𝜎
54

= 0.03, 𝛼
1
= 𝛼
2
= 0.38, and 𝑥

∗
= 5. By a straightforward

computation, we can get that 𝜉 = [0.1923, 0.2885, 0.2885,

0.1538, 0.0769]
𝑇, and it is also easy to see that 𝜎 = 0.03,

𝛼 = 0.38, 𝛾 = 0.2, 𝜉 = 0.2885, and 𝜉 = 0.0769. In this

case, √𝛼𝜉𝛾/4(𝑛 − 1)𝜉 = 0.0398, and 𝜎 < √𝛼𝜉𝛾/4(𝑛 − 1)𝜉 the
multiagent.Therefore, byTheorem 7, network (3) reaches the
leader-following consensus on an anticipated state target in
mean-square. With the above parameters and a set of initial
values produced in a stochastic way, the numerical simulation
shown in Figure 1(b)matcheswell with the theoretical results.

5. Conclusions

Wehave investigated the leader-following consensus problem
in mean-square for a class of discrete-time multiagent sys-
tems. The network under study is bidirectional and contains
arbitrary time-delays and the random communication links.
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Some agents in the network are well informed and serve as
leaders. By employing novel Lyapunov functionals and ana-
lytical skills, sufficient conditions are established to ensure the
leader-following consensus in mean-square for multiagent
system. A numerical example is given to demonstrate the
proposed approach.
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