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A pressure-stabilized Lagrange-Galerkin method is implemented in a parallel domain decomposition system in this work, and the
new stabilization strategy is proved to be effective for large Reynolds number and Rayleigh number simulations. The symmetry of
the stiffness matrix enables the interface problems of the linear system to be solved by the preconditioned conjugate method, and
an incomplete balanced domain preconditioner is applied to the flow-thermal coupled problems. The methodology shows good
parallel efficiency and high numerical scalability, and the new solver is validated by comparing with exact solutions and available
benchmark results. It occupies less memory than classical product-type solvers; furthermore, it is capable of solving problems of
over 30 million degrees of freedom within one day on a PC cluster of 80 cores.

1. Introduction

The Lagrange-Galerkin method raises wide concern about
the finite-element simulation of fluid dynamics. Based on the
approximation of the material derivative along the trajectory
of fluid particle, the method is natural in the simulation to
physical phenomena, and it is demonstrated to be uncondi-
tionally stable for a wide class of problems [1–5]. A number of
researches about the Lagrange-Galerkinmethodwere done in
the case of single processor element (PE) (cf. [6–8]); the sym-
metry of the matrices and good stability of the scheme were
reported; using a numerical integration based on a division of
each element, Rui and Tabata [9] developed a second scheme
for convection-diffusion problem; Massarotti et al. [10] used
a second-order characteristic curve method, and a special
iteration was used to keep the symmetry of the stiffness
matrix.The Lagrange-Galerkin method uses an implicit time
discretization, and therefore an element searching algorithm
is necessary to implement it. The element searching may
become very expensive when the geometry is complicated or
the mesh size is very small. Due to its doubtable efficiency
and feasibility for complex simulations in the case of single
PE, rare research has been done to implement it in parallel, by
which the enormous computation power enables us to solve
more challenging simulation problems.

The present study is concentrated on improving the
solvability of the Lagrange-Galerkin method on large scale
and complex problems by domain decompositions. Piecewise
linear interpolations are thus employed for velocity, pressure,
and temperature; therefore, the so-called inf-sup condition
[11] should be satisfied, which is the first difficulty to be
overcome in this work. Stabilization methods for incom-
pressible flow problems were reported by many researchers
(cf. [12–15]). Park and Sung proposed a stabilization for
Rayleigh-Bénard convection by using feedback control [16];
for consistently stabilized finite element methods, Barth et al.
classified the stabilization techniques and studied influence of
the stabilization parameter in convergence [17]; Bochev et al.
stated the requirements on choice of stabilization parameter
if time step and mesh are allowed to vary independently
[18]. As far as we know, it may not be enough to investigate
what stabilization techniques are efficient for nonsteady
and nonlinear flow problems approximated by Lagrange-
Galerkin methods in a domain decomposition system, where
the interface problem can be solved by preconditioned
conjugate gradient (PCG) method. In this paper, a pressure-
stabilization method, which keeps the symmetry of the
linear system and is effective for high Reynolds number and
Rayleigh number simulations, is introduced to implement
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the Lagrange-Galerkin method in a domain decomposition
system.

The element searching algorithm in a domain decompo-
sition system using unstructured grids is the second difficulty
to implement the Lagrange-Galerkin method in a domain
decomposition system (cf. [5, 19]). Minev et al. reported an
optimized binary searching algorithm for single PE by storing
the necessary data structures in away similar to theCSR com-
pact storage format; however, the element information data
is stored distributedly in the domain decomposition system
by the skyline format, and a different way needs to be found
to overcome the extra difficulty caused by the parallel com-
puting algorithm. This step is critical, in the sense that it can
be very computationally expensive and can thus make the
entire algorithm impractical.

The remainder of this paper is organized as fol-
lows: in Section 2, the formula of the governing equation
and the pressure-stabilization Lagrange-Galerkin method is
described; Section 3 focuses on the parallel implementation
of this scheme. Numerical results and comparisons with
classical asymmetric product typemethods in [20] are shown
in Section 4. Conclusions are drawn in Section 5.

2. Formulation

2.1. The Governing Equations. Let Ω be a three-dimensional
polyhedral domain with the boundary 𝜕Ω. The conservation
equations of mass and momentum are governed by

𝜕𝑢

𝜕𝑡
+ (𝑢 ⋅ ∇) 𝑢 − 2]∇ ⋅ 𝐷 (𝑢) + ∇𝑝 = 𝑓

buoyancy

in Ω × (0, 𝑡) ,

∇ ⋅ 𝑢 = 0 in Ω × (0, 𝑡) ,

𝑢 = 𝑢̂ on Γ
1
× (0, 𝑡) ,

3

∑

𝑗=0

𝜎
𝑖𝑗
𝑛
𝑗
= 0 on 𝜕Ω

Γ
1
× (0, 𝑡)

,

𝑢 = 𝑢
0

in Ω, at 𝑡 = 0,

(1)

where Γ
1
⊂ 𝜕Ω and

𝑓
buoyancy

= 𝛽 (𝑇
𝑟
− 𝑇) 𝑔 (2)

is the gravity force per unit mass derived on the basis of
Boussinesq approximation. 𝑔 is the gravity [m/s2], 𝛽, 𝑇,
and 𝑇

𝑟
are the thermal expansion coefficient [1/𝐾], the

temperature [𝐾], and the reference temperature [𝐾], and
𝑢, 𝑡, ], and 𝑝 are velocity vector [m/s], time [s], kinematic
viscosity coefficient [m2/s], and kinematic pressure [m2/s2],
respectively. 𝜎

𝑖𝑗
is the stress tensor [N/m2] defined by

𝜎
𝑖𝑗
(𝑢, 𝑝) ≡ −𝑝𝛿

𝑖𝑗
+ 2]𝐷

𝑖𝑗
(𝑢) ,

𝐷
𝑖𝑗
(𝑢) ≡

1

2
(
𝜕𝑢
𝑖

𝜕𝑥
𝑗

+

𝜕𝑢
𝑗

𝜕𝑥
𝑖

) , 𝑖, 𝑗 = 1, 2, 3,

(3)

with the Kronecker delta 𝛿
𝑖𝑗
.

The fluid is assumed to be incompressible according to
Boussinesq approximation, and the density is assumed to be
constant except in the gravity force term where it depends on
temperature according to the indicated linear law; see (2).The
energy equation is

𝜕𝑇

𝜕𝑡
+ 𝑢 ⋅ ∇𝑇 − 𝑎Δ𝑇 = 𝑆 in Ω × (0, 𝑡) ,

𝑇 = 𝑇̂ on Γ
2
× (0, 𝑡) ,

𝑎
𝜕𝑇

𝜕𝑛
= 0 on 𝜕Ω

Γ
2
× (0, 𝑡)

,

𝑇 = 𝑇
0

in Ω, at 𝑡 = 0,

(4)

where Γ
2
⊂ 𝜕Ω, 𝑎 is the thermal diffusion coefficient [m2/s],

and 𝑆 is the source term with the unit of [𝐾/s].

2.2. The Lagrange-Galerkin Finite-Element Method. Some
preliminaries are arranged for the derivation of a finite
element scheme of (1) and (4). Let the subscript ℎ denote
the representative length of the triangulation, and let I

ℎ
≡

{𝐾} denote a triangulation of Ω consisting of tetrahedral
elements. Given that 𝑔 is a vector valued function on Γ

1
, the

finite element spaces are as follows:

𝑋
ℎ
≡ {V
ℎ
∈ 𝐶
0
(Ω)
3

; V
ℎ

󵄨󵄨󵄨󵄨𝐾
∈ 𝑃
1
(𝐾)
3
, ∀𝐾 ∈ I

ℎ
} ,

𝑀
ℎ
≡ {𝑞
ℎ
∈ 𝐶
0
(Ω) ; 𝑞

ℎ

󵄨󵄨󵄨󵄨𝐾
∈ 𝑃
1
(𝐾) , ∀𝐾 ∈ I

ℎ
} ,

𝑉
ℎ
(𝑔) ≡ {V

ℎ
∈ 𝑋
ℎ
; V
ℎ
(𝑃) = 𝑔 (𝑃) , ∀𝑃 ∈ Γ

1
} ,

Θ
ℎ
(𝑏) ≡ {𝜃

ℎ
∈ 𝑀
ℎ
; 𝜃
ℎ
(𝑃) = 𝑏 (𝑃) , ∀𝑃 ∈ Γ

2
} ,

𝑉
ℎ
≡ 𝑉
ℎ
(0) , Θ

ℎ
≡ Θ
ℎ
(0) , 𝑄

ℎ
= 𝑀
ℎ
.

(5)

Let (⋅, ⋅) defines the 𝐿
2
inner product; the continuous

bilinear forms 𝑎 and 𝑏 are introduced by

𝑎 (𝑢, V) ≡ 2] (𝐷 (𝑢) , 𝐷 (V)) ,

𝑏 (𝑢, V) ≡ − (∇ ⋅ 𝑢, 𝑞) ,

(6)

respectively.
Let Δ𝑡 be the time increment, and let 𝑁

𝑡
≡ [𝑡/Δ𝑡] be the

total step number. Let the superscript 𝑛 denote the time step;
a finite element approximation of (1) is described as follows:
find {(𝑢𝑛

ℎ
, 𝑝
𝑛

ℎ
)}
𝑁
𝑡

𝑛=1
∈ 𝑉
ℎ
(𝑔)×𝑄

ℎ
, such that for (V

ℎ
, 𝑞
ℎ
) ∈ 𝑉
ℎ
×𝑄
ℎ
,

(

𝑢
𝑛

ℎ
− 𝑢
𝑛−1

ℎ
∘ 𝑋
1
(𝑢
𝑛−1

ℎ
, Δ𝑡)

Δ𝑡
, V
ℎ
) + 𝑎 (𝑢

𝑛

ℎ
, V
ℎ
)

+ 𝑏 (V
ℎ
, 𝑝
𝑛

ℎ
) = (𝑓

𝑛
, V
ℎ
) ,

𝑏 (𝑢
𝑛

ℎ
, 𝑞
ℎ
) = 0,

(7)

where 𝑋
1
(⋅, ⋅) denotes a first-order approximation of a parti-

cle’s position [5], and the notation ∘ denotes the composition
of functions.
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For the purpose of large scale computation, a piecewise
equal-order interpolation for velocity and pressure is used,
as can be seen from (5). Pressure stabilization is thus
needed to keep the necessary link between 𝑉

ℎ
and 𝑄

ℎ
. A

penaltyGalerkin least-squares (GLS) stabilizationmethod for
pressure is proved in [12] to hold the same asymptotic error
estimates as the method of Hughes et al. [21] and it is com-
putationally cheap. For P1/P1 elements, the stabilization is
reduced to

∑

𝐾∈I
ℎ

𝛿
𝐾
ℎ
2

𝐾
(∇𝑝
𝑛

ℎ
, −∇𝑞
ℎ
)
𝐾
, (8)

which does no modification to the momentum equation
because of vanishing of the second-order derivate term.Here,
ℎ
𝐾
denotes the maximum diameter of an element 𝐾. Unlike

[6, 12], where a constant 𝛿 (>0) is used as the stabilization
parameter, an element-wise stabilization parameter

𝛿
𝐾
=

{{{{{

{{{{{

{

𝛼,

for log
10
[Max {󵄩󵄩󵄩󵄩󵄩∇𝑝

𝑛−1

ℎ

󵄩󵄩󵄩󵄩󵄩2
}
4

𝑖=1
] ≤ 1,

𝛼 × log
10
[Max {󵄩󵄩󵄩󵄩󵄩∇𝑝

𝑛−1

ℎ

󵄩󵄩󵄩󵄩󵄩2
}
4

𝑖=1
] ,

otherwise

(9)

is used in this work, where ∇𝑝
𝑛−1

ℎ
is gradient of the FEM

approximated pressure at 𝑡𝑛−1 and 𝑖 is the number of the nodal
point in a tetrahedral element. Since 𝛼 is very important to
balance the accuracy and convergence of the scheme, it is
discussed in Section 4.1.The localized stabilization parameter
is designed to be adaptive to the pressure gradient, and thus
it has a better control on the pressure field.

By adding (8) to (7), a pressure-stabilized FEMscheme for
Navier-Stokes problems is achieved. The nonsteady iteration
loops for solving (1) and (4) and then reads the following.

Step 1. Compute the particle’s coordinates by

𝑋
1
(𝑢
𝑛−1

ℎ
, Δ𝑡) ≡ 𝑥 − 𝑢

𝑛−1

ℎ
Δ𝑡, (10)

and search the element holding the particle at 𝑡𝑛−1.

Step 2. Find 𝑇
𝑛

ℎ
by

(

𝑇
𝑛

ℎ
− 𝑇
𝑛−1

ℎ
∘ 𝑋
1
(𝑢
𝑛−1

ℎ
, Δ𝑡)

Δ𝑡
, 𝜃
ℎ
) + (𝑎∇𝑇

𝑛

ℎ
, ∇𝜃
ℎ
) = (𝑆

𝑛
, 𝜃
ℎ
) .

(11)

Step 3. Find (𝑢
𝑛

ℎ
, 𝑝
𝑛

ℎ
) by

(

𝑢
𝑛

ℎ
− 𝑢
𝑛−1

ℎ
∘ 𝑋
1
(𝑢
𝑛−1

ℎ
, Δ𝑡)

Δ𝑡
, V
ℎ
) + 𝑎
0
(𝑢
𝑛

ℎ
, V
ℎ
)

+ 𝑏 (V
ℎ
, 𝑝
𝑛

ℎ
) + 𝑏 (𝑢

𝑛

ℎ
, 𝑞
ℎ
)

+ ∑

𝐾∈I
ℎ

𝛿
𝐾
ℎ
2

𝐾
(∇𝑝
𝑛

ℎ
, −∇𝑞
ℎ
)
𝐾

= (𝑓
𝑛
, V
ℎ
) + (𝛽 (𝑇

𝑟
− 𝑇
𝑛

ℎ
) 𝑔, V
ℎ
) .

(12)

Step 4. Compute the relative error by a 𝐻1 × 𝐿
2
× 𝐻
1 norm

defined by

󵄩󵄩󵄩󵄩(𝑢, 𝑝, 𝑇)
󵄩󵄩󵄩󵄩𝐻1×𝐿2×𝐻1

≡
1

√Re
‖𝑢‖
𝐻
1
(Ω)
3

+
󵄩󵄩󵄩󵄩𝑝

󵄩󵄩󵄩󵄩𝐿2
+ ‖𝑇‖𝐻1(Ω),

(13)

where Re denotes the Reynolds number, and set

diff =

󵄩󵄩󵄩󵄩󵄩
(𝑢
𝑛
, 𝑝
𝑛
, 𝑇
𝑛
) − (𝑢

𝑛−1
, 𝑝
𝑛−1

, 𝑇
𝑛−1

)
󵄩󵄩󵄩󵄩󵄩𝐻1×𝐿2×𝐻1

󵄩󵄩󵄩󵄩(𝑢
𝑛−1, 𝑝𝑛−1, 𝑇𝑛−1)

󵄩󵄩󵄩󵄩𝐻1×𝐿2×𝐻1

≤ ErrNS

(14)

as the steady-state criterion; if (14) is satisfied or the number
of loops reaches the maximum, then stop the iteration;
otherwise, repeat Steps 1–3.

As can be seen from Steps 2 and 3, both (1) and (4)
are approximated by the Lagrange-Galerkin method, and the
searching algorithm only needs to be performed once in a
nonsteady loop. It can also be seen that the solver is also
flexible, and it can solve pure Navier-Stokes problems by
setting the body force in (2) to external force and omitting
Step 2.

3. Implementation

3.1. A Parallel Domain Decomposition System. To begin with
the parallel domain decomposition method, the domain
decomposition is introduced briefly as follows. The whole
domain is decomposed into a number of subdomainswithout
overlapping, and the solution of each subdomain is super-
imposed on the equation of the inner boundary of the
subdomains. By static condensation, the linear system

𝐾𝑢 = 𝑓 (15)

is written as

[
[
[
[
[
[
[
[
[

[

𝐾
(1)

𝐼𝐼
0 ⋅ ⋅ ⋅ 0 𝐾

(1)

𝐼𝐵
𝑅
(1)

𝐵

0 d
...

...
... d

...
...

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝐾
(𝑁)

𝐼𝐼
𝐾
(𝑁)

𝐼𝐵
𝑅
(𝑁)

𝐵

𝑅
(1)𝑇

𝐵
𝐾
(1)𝑇

𝐼𝐵
⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 𝑅

(𝑁)𝑇

𝐵
𝐾
(𝑁)𝑇

𝐼𝐵
𝐾
𝐵𝐵

]
]
]
]
]
]
]
]
]

]

[
[
[
[
[
[
[
[
[

[

𝑢
(1)

𝐼

...

...
𝑢
(𝑁)

𝐼

𝑢
𝐵

]
]
]
]
]
]
]
]
]

]

=

[
[
[
[
[
[
[
[
[

[

𝑓
(1)

𝐼

...

...
𝑓
(𝑁)

𝐼

𝑓
𝐵

]
]
]
]
]
]
]
]
]

]

,

(16)

where 𝐾 is the stiffness matrix, 𝑢 denotes the unknowns (𝑢
and 𝑝), and 𝑓 is the force vector. 𝑅 is the restriction operator
consists of 0-1 matrix. The superscripts (𝑁) means the
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𝑁th subdomain, and subscript 𝐼 and 𝐵 relate to the element
of the inner boundary, and interface boundary respectively.

From (16), it can be observed that the interface problems

𝑁

∑

𝑖=1

𝑅
(𝑖)
𝑇

𝐵
(𝐾
(𝑖)

𝐵𝐵
− 𝐾
(𝑖)
𝑇

𝐼𝐵
𝐾
(𝑖)
−1

𝐼𝐼
𝐾
(𝑖)

𝐼𝐵
)𝑅
(𝑖)

𝐵
𝑢
𝐵

=

𝑁

∑

𝑖=1

𝑅
(𝑖)
𝑇

𝐵
(𝑓
(𝑖)

𝐵
− 𝐾
(𝑖)
𝑇

𝐼𝐵
𝐾
(𝑖)
−1

𝐼𝐼
𝑓
(𝑖)

𝐼
)

(17)

and the inner problems

𝑢
(𝑖)

𝐼
= 𝐾
(𝑖)
−1

𝐼𝐼
(𝑓
(𝑖)

𝐼
− 𝐾
(𝑖)
𝑇

𝐼𝐵
𝑅
(𝑖)

𝐵
𝑢
𝐵
) , 𝑖 = 1, . . . , 𝑁 (18)

can be solved separately [22]. In this work, the interface
problems are solved first iteratively, and the inner problems
are then solved by substituting 𝑢

𝐵
in to (18).

The Lagrange-Galerkin method keeps the symmetry of
the stiffness matrix, and the GLS pressure-stabilization term
in (8) also produces a symmetric matrix; therefore,𝐾 is sym-
metric in (15), and a PCG method is employed to get the 𝑢

𝐼

in (18), and to avoid drawback of the classical domain decom-
positionmethod, such as Neumann-Neumann and diagonal-
scaling, a balanced domain decomposition preconditioner is
used to prevent the growing of condition number with the
number of subdomains. An identity matrix is chosen as the
coarse matrix, and the coarse problem is solved incompletely
by omitting the fill-ins in some sensitive places during
the Cholesky factorization. By using this inexact balanced
domain decomposition preconditioning, the coarse matrix is
sparser and thus easier to be solved; therefore, the new solver
is expected to have better solvability on large scale computa-
tion models.

3.2. The Lagrange-Galerkin Method in Parallel. The element
searching algorithm requires a global-wise element informa-
tion to determine the position of one particle in the previous
time step. However, in the parallel domain decomposition
system, the whole domain is split into several parts one
processor element (PE) works only on the current part, and
it does not contain any element information of other parts.
Each part is further divided into many subdomains, and the
domain decomposition is performed by the PE in charge of
the part.This parallelity causes a computational difficulty: for
each time step, the particle is not limited within one part;
therefore, exchanging the data between different PEs is
necessary, which demands the PEs to communicate in the
subdomain-wise computation.

In order to know the position of a particle at 𝑡
𝑛−1, a

neighbour elements list is created at the beginning of the
analysis. Based on the information of neighbour elements and
the coordinates calculated by (10), it is possible to find the
element holding this particle at 𝑡𝑛−1. A 2-dimensional search-
ing algorithm is present as follows (𝜆

𝑖
is the barycentric coor-

dinates, and 𝑛𝑒(𝜆
𝑖
) is the neighbour element; see Figure 1):

Part interface

ei

ecurrent

R2

ne (𝜆1)

ne (𝜆2)

ne (𝜆3)

Figure 1: A searching algorithm.

(1) initialize: 𝑒
0
= 𝑒current;

(2) iterate 𝑖 = 0, 1, . . . ,Maxloops;
If 𝜆
1
, 𝜆
2
, 𝜆
3
> 0, return 𝑒

𝑖
;

else if 𝑛𝑒(Min{𝜆
1
, 𝜆
2
, 𝜆
3
}) ̸= boundary

𝑒
𝑖+1

= 𝑛𝑒(Min{𝜆
1
, 𝜆
2
, 𝜆
3
});

else break;
(3) return 𝑒

𝑖
.

The request of the old solutions, which is the 𝑢𝑛−1
ℎ

in (10),
is relatively trivial when using single PEs or simply solving the
problem parallel using symmetric multiprocessing; however,
in the domain decomposition system, the particle is not
limited within one part; it may pass the interface of different
parts, as can be seen from Figure 1. Because one PE only has
the elements information that belongs to the current part,
communications between PEs are necessary. However, the
number of total elements in one subdomainmay be different,
which means that some point to point communication
techniques, such as MPI Send/MPI Recv or MPI Sendrecv
in MPICH, cannot be used in element wise computation. In
the previous research [23], a global variable to store all the
old solutions is constructed. This method maintains a high
computation speed but costs a hugememory usage. To reduce
the memory consumption, a request-response system is used
in this work. In the computation, the searching algorithm is
performed first, and the element that contains the current
particle in the previous time step is thus known; therefore,
the PE to get 𝑢

𝑛−1

ℎ
from is also known. However, as the

sender does not know which PE requires message from itself,
the receiver has to send its request to the sender first; after
the request is detected, the sender sends the message to the
receiver. The procedure is as follows:

(1) by scanning all the particles in the current subdomain,
an array including all the data that is needed by the
current PE is sent to all the other PEs.

(2) All PEs check if there is any request to itself. If it exists,
PEs will prepare an array of the needed data and send
it.

(3) The current PE receives the data sent by other PEs.

Data transferred byMPI communication should be pack-
aged properly to avoid the overflow of MPI buffer in case
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Figure 3: Numerical scalability.

of large-scale computation. Nonblocking communication is
employed, and as the 3 steps are performed subsequently,
thus the computation time and communication time will be
overlapped.

4. Numerical Results and Discussion

The parallel efficiency of new solver is firstly evaluated in
this section, and to validate the scheme, exact solutions and
available benchmark results classical computational models
are compared. The CG convergence is judged by Euclidian
norm with a tolerance of 10−6, and for nonsteady iteration,
ErrNS = 10

−4 is set as the criterion, using the 𝐻1 × 𝐿
2
× 𝐻
1

norm defined in (13). For pure Navier-Stokes problems, a
similar 𝐻

1
× 𝐿
2 norm, which is related to velocity and

pressure, is employed to judge the steady state.

4.1. Efficiency Test. The BDD serious preconditioners were
employed in this work; they are very efficient, and their
iteration numbers are about 1âĄĎ10 of the normal domain
decomposition preconditioners (cf. [23]). The inexact pre-
conditioner mentioned in Section 3 also shows good conver-
gence and is more suitable for large scale computations [24].

It was set as the default preconditioner for all the following
computations of this research.

The penalty methods are not consistent since the sub-
stitution of an exact solution into the discrete equations
(12) leaves a residual that is proportional to the penalty
parameter (cf. [17]); therefore, 𝛿

𝐾
should be determined

carefully. Numerical experiments of a lid-driven cavity flow
were tested, and the mesh size was 62 × 62 × 62. The total
degrees of freedom (DOF) are 1,000,188, and the results
are given by Figure 2. For the purpose of higher accuracy,
𝛿
𝐾
is expected to be small; however, the convergence turns

worse when 𝛿
𝐾
goes small, as can be seen from Figure 2(a).

In Figure 2(b), a constant 𝛿 = 0.005 is used for different
Reynolds numbers, and no convergence is achieved within
10000 PCG loops for Re = 10

6; and the comparison shows
that the 𝛿

𝐾
performs much better than a constant 𝛿 = 0.005

when 𝛼 is set to 0.005.
The parallel efficiency is assessed firstly by freezing the

mesh size of test problem and refining the domain decom-
position by decreasing the subdomain size and therefore
increasing the number of subdomains; the comparison of the
numerical scalability of the current scheme with and without
the preconditioner is assessed by Figure 3. It can be seen that
with the preconditioning technique, the iterative procedure
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of current scheme converges rapidly, and the convergence is
independent of the number of subdomains.

Based on the paralyzed Lagrange-Galerkin method, the
new solver makes a symmetric stiffness matrix, therefore
only the lower/upper triangular matrix needs to be saved.
Moreover, nonblocking MPI communication is used instead
of constructing global arrays to keep the old solutions,
and the current solver is expected to reduce the memory
consumption without sacrificing the computation speed.The
usage of time and memory of solving the thermal driven
cavity problem by different solvers is compared, and the
results are given by Figure 4.

The test problem was solved by the new solver and
the ADV sFlow 0.5 [25], which contains some nonsym-
metric product-type solvers like GPBiCG, BiCGSTAB, and
BiCGSTAB2 [20]. The ADV sFlow 0.5 employed a domain
decomposition system similar to the work; however, no
precondition technique is used because of the non-symmetry
of the stiffness matrix in (15). The comparisons of elapsed
time and memory occupation of the new solver and that of
product-type solvers in ADV sFlow 0.5 are show in Figures
4(a) and 4(b). As can be seen, the current scheme reduces
the demand of computation time and memory consumption
remarkably, and it is more suitable for large scale problems
than product-type solvers.

The parallel scalability of the searching algorithm is
also a concern for us, as it characterizes the ability of an
algorithm to deliver larger speed-up using a larger number
of PEs. To know this, the number of subdomains in one part
is fixed, and computations on the test problem of various
mesh sizes are performed by the new scheme. The speed-
up is shown in Figure 5. Three models were tested by the
searching algorithm. With an increase in the mesh size
of the computation model, the parallel scalability of the
searching algorithm tends to be better. An explanation to this
is that when the DOF increase, the number of elements in
one subdomain is also increasing; therefore, the searching
algorithm is accelerated more efficiently. However, too many
elements in one subdomain will occupy more memory, and a
trade-off strategy is necessary for parameterization.

4.2. Validation Tests. In this section, a variety of test problems
have been presented in order to prove the capability of the
parallel Lagrange-Galerkin algorithm. Benchmarks test of
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Navier-Stokes problems are in Sections 4.2.1, 4.2.2, and 4.2.3,
and flow-thermal coupled problems are in Sections 4.2.4 and
4.2.5.

4.2.1. A Plane Couette Flow. The solver for Navier-Stokes
equations in (1) was first tested with a 3D plane Couette
flow. Under ideal conditions, the model is of infinite length;
therefore, 4 times of the height is used as the length of the
model see Figure 6. A constant velocity (𝑢̂, 0, 0) is applied
on the upper horizontal face, and no-slip conditions are set
on the lower horizontal face. A pressure gradient is imposed
along 𝑥

1
for all the faces as essential boundary conditions.

An unstructured 3D mesh was generated by ADVEN-
TURE TetMesh [25], and the local density around the plane
of 𝑥
1
= 2, where the data was picked from, was enriched.

The total DOF is around 1,024,000. The so-called Brinkman
number [26] is believed to be the dominating parameter of
the flow, and a serious of numerical experiments is done at
various Brinkman number. To simulate the infinity length
better, the exact solution is enforced on both the left face
(𝑥
1

= 0) and the right face (𝑥
1

= 4) as Dirichlet bound-
ary conditions. The comparisons between the computation
results and exact solutions are given by Figure 7. Dotted

0 1

1

1

x1

x2

x3

Figure 8: A lid-driven cavity model.

lines are used to present the results, and they are named as
“Num Res 1(𝐵),” where 𝐵 stands for the Brinkman number.
Crossed lines in Figure 7 present the computation results with
no exact solutions setting on the left and right faces, and they
are named as “Num Res 0(𝐵).”

It can be seen form Figure 7 that both of these two sets
of computation results show good agreement with the exact
solution, and dotted lines are closer to the exact solution,
representing a better simulation to the ideal condition (cf.
[27, 28]).

4.2.2. A Lid-Driven Cavity. The Navier-Stokes problems
solver was then verified by a lid-driven cavity flow. The
ideal gas flows over the upper face of the cube, and no-slip
conditions are applied to all other faces, as in Figure 8.

All the faces of the cube were set with Dirichlet boundary
conditions, and a zero reference pressure was at the centre of
the cube to keep the simulation stable.The pressure profiles of
the scheme using localized stabilization parameter in (9) and
the scheme using constant (𝛿 = 1) parameter are compared,
and the results are show in Figure 9.

Figure 9(a) shows the pressure counters of the scheme
with the localized stabilization parameter in (9) and the
Figure 9(b), shows scheme with a constant parameter. The
model was run at Re = 10

4, and oscillations are viewed
in Figure 9(b); however, the isolines in Figure 9(a) is quite
smooth, showing that the pressure-stabilization term has a
better control on the pressure field at high Reynolds number.

The model was run at different Reynolds numbers with a
128×128×128mesh to test the solvability of the new scheme.
As shown in Figure 10, when the Reynolds number increases,
the eddy at right bottom of plane 𝑥

1
𝑥
3
vanishes, while the

eddy at the left bottom appears due to the increasing in the
speed, and the flow goes more likely around the wall. The
primary eddy goes lower and lower when Reynolds number
becomes higher, and the particle is no longer limited to a
single side of the cavity; it can pass from one side to the other,
and back again violating themirror symmetry, as is seen from
other planes of Figure 10. Similar 3D results for highReynolds
number were reported by [29], and the solvability of the new
solver for high Reynolds number was confirmed.
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Figure 10: Velocity and pressure profiles for different Reynolds number: Re = 1,000 (top), Re = 3,200 (middle), and Re = 12,000 (bottom)
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4.2.3. Backward Facing Step. The solver for Navier-Stokes
equations was then tested with backward facing step, the
fluid considered was air. The problem definition is shown in
Figure 11, and the height of the step ℎ is the characteristic
length. An unstructured 3Dmesh was generated with 419,415

nodal points and 2,417,575 tetrahedral elements, and the local
density of mesh was increased around the step.

A laminar flow is considered to enter the domain at
inlet section, the inlet velocity profile is parabolic, and the
Reynolds number is based on the average velocity at the inlet.
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Figure 13: Primary reattachment lengths.

The total length of the domain is 30 times the step height, so
that the zero pressure is set at the outlet. A full 3D simulation
of the step geometry for 100 ≤ Re ≤ 800 is present in this
paper, and the primary reattachment lengths are predicted.

To determine the reattachment length, the position of
the zero-mean-velocity line was measured. The points of
detachment and reattachment were taken as the extrapolated
zero-velocity line down the wall. The pressure contour in
Figure 12(a) confirms the success of the pressure-stabilization
method; velocity vectors and the primary attachment are
demonstrated in Figure 12(b); similar results have been doc-
umented by many, like in [10, 30].

4

1

1

x1

x2

x3

ThighTlow

Figure 14: The model of infinite plates.

The comparison of primary reattachment length between
current results and other available benchmark results are
show in Figure 13. It is seen that the agreement is excellent
at different Rayleigh numbers (cf. [31, 32]).

4.2.4. Natural Convection of Flat Plates. In order to test
the coupled solver of Navier-Stokes equations and the
convection-diffusion equation, the third application model
was the natural convection between two infinite flat plates.
The geometry is given in 3-dimensional by Figure 14. No-
slip boundary conditions applied on the left and right vertical
walls.The temperature on the left wall is assumed to be lower
and set at 5[𝐾]; the right wall is set at 6[𝐾]. An unstructured
3D mesh about 1 million tetrahedral elements was generated,
and the local grid density around themid-planewas enriched.

The model was run at the size of 20 × 20 × 80 to get
the numerical solutions, and it was compared with the exact
solutions in Figure 15. To simulate the infinity length of the
plate better, the exact solution is enforced on both the upper
face (𝑥

3
= 4) and the lower face (𝑥

3
= 0) as what is

done in Section 4.2.1, and the results are present by a dotted
line (“Num Res 1”) in Figure 12. And the model without
exact solution set as boundary is named as “Num Res 0” in
Figure 15.
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With the parameter setting of ] = 0.5, 𝑇
𝑟
= 5.5, 𝛽 = 1.0,

and 𝑎 = 1, the numerical experiment was performed. Results
of the profile on 𝑢

3
(⋅, 0, 2), which are believed by many to be

very sensitive, are shown in Figure 15. Both “Num Res 0” and
“Num Res 1” are in great agreement with the exact solutions,
and “Num Res 1” is closer to the exact solution, producing a
better simulation to the ideal condition. Similar results have
been documented in [33].

4.2.5. Thermal-Driven Cavity. The new solver is also applied
to a 3-dimensional nonlinear thermal driven cavity flow
problem, which is cavity full of ideal gas; see Figure 16.

No-slip boundary conditions are assumed to prevail on all
the walls of the cavity. Both the horizontal walls are assumed
to be thermally insulated, and the left and right sides are kept
at different temperatures.The cube is divided into 120×120×
120 small cubes, and each small cube contains six tetrahedral
elements. The time step is set to 0.01 s, with Pr = 0.71 and
Ra = 10

4; the steady state is achieved after 0.39 s, as in
Figure 17.

Figures 17(a) and 17(b) show the contour of vorticity and
the velocity vectors at the steady stage, respectively, from the
front view.The temperature contour is shown in Figure 17(c),
and pressure profiles are show in Figure 17(d). The previous
results convince us of the success in solving flow-thermal

coupled problems described by (1) and (4). Similar three-
dimensional results can also be found in [33, 34].Thepressure
profile in Figure 17(d) is smooth and symmetric, implying
that the stabilization item in (8) works well.

In order to further validate the new solver, a comparison
of temperature and velocity profiles of the current solver and
other benchmark results was made. The centreline velocity
results 𝑤(⋅, 0.5, 0.5) and the temperature results 𝑇(⋅, 0.5, 0.5),
which are believed to be very sensitive in this simulation,
are present in diagrams (a) and (b) of Figure 18, respectively.
The velocity results share close resemblance to that of the
ADV sFlow0.5, and they both show themore end-wall effects
compared with the results of 2D case. The three temperature
results show good agreement with each other, and the line
representing the current results is the smoothest, as the
mesh is the finest among the three. Similar results have been
reported by other researchers (cf. [10, 33, 34]).

Thermal convection problems are believed to be domi-
nated by two dimensionless numbers by many researchers,
the Prandtl number and the Rayleigh number. To acquaint
ourselves with the solvability of the new solver and to
challenge applications of higher difficulty, a wide range of
Rayleigh numbers from 10

3 to 10
7 is studied with Pr = 0.71,

and the results for the steady-state solution are presented in
Figure 19. Dimensionless length is used and the variation of
Rayleigh number is determined by changing the characteris-
tic length of the model.

The local Nusselt number (Nu = 𝜕𝑇/𝜕𝑥
1
) is a concern

of many researchers, as they are sensitive to the mesh size.
In Figure 19, the diagram (a) and the diagram (b) represent
the local Nusselt number at the hot wall and the cold
wall, respectively. Similar results can also be found in [10,
30, 35, 36]. The capability of the solver based on domain
decomposed Lagrange-Galerkin scheme for high Rayleigh
number is also confirmed by this figure.

The new solver enables the simulation of large scale
problems, thus models of Rayleigh number up to 10

7 can be
run on small PC cluster. In this simulation, an unstructured
mesh of 30,099,775 DOF is generated, the time step, is 0.01 s
and it takes about 24 hours to finish, using the a small Linux
cluster of 64 PEs (64 cores@2.66GHz).

5. Conclusions

A pressure-stabilized Lagrange-Galerkin method is imple-
mented in a domain decomposition system in this research.
By using localized stabilization parameter, the new scheme
shows better control in the pressure field than constant sta-
bilization parameter; therefore it has good solvability at high
Reynolds number and high Rayleigh number. The reliability
and accuracy of the present numerical results are validated by
comparingwith the exact solutions and recognizednumerical
results. Based on a domain decomposition method, the ele-
ment searching algorithm shows good numerical scalability
and parallel efficiency. The new solver reduces the memory
consumption and is faster than classical product-type solvers.
It is able to solve large scale problems of over 30 million
degrees of freedom within one day by a small PC cluster.
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