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We investigate synchronization between two discrete-time networks with mutual couplings, including inner synchronization
inside each network and outer synchronization between two networks. We then obtain a synchronized criterion for the inner
synchronization inside each network by themethod of linearmatrix inequality and derive a relationship between the inner and outer
synchronization. Finally, we show numerical examples to verify our theoretical analysis and discuss the effect of coupling strengths,
node dynamics, and topological structures on the inner and outer synchronization. Compared to the inner synchronization inside
each network, the outer synchronization between two networks is difficult to achieve.

1. Introduction

Network synchronization, as a collective behavior existing
inside a network, has been widely studied since the birth of
small-world and scale-free networks [1–3]. The main focus
is to investigate the interplay between the complexity in the
overall topology and the local dynamics of the coupled nodes
[4–6]. The topological structures may be globally connected,
random, small-world, and scale-free.There aremany applica-
tions using the synchronization of networks [7], for instance,
secure communication and multirobot coordination control.
Apart from the complete synchronization appearing inside a
network, there are some other types of synchronization, such
as phase synchronization, generalized synchronization, lag
synchronization, and cluster synchronization [8–12].

Generally, we refer to synchronization happening
between two networks as outer synchronization [13], which is
distinguished from inner synchronization inside a network.
Compared to the inner synchronization, outer synchro-
nization of two networks is more complex, which involves
more system parameters. In 2007, Li et al. first proposed the
concept of outer synchronization and applied the open-plus-
closed-loop method to realize the outer synchronization
between two networks with identical topologies [13]. Shortly
later, using the adaptive control method, Tang et al. achieved

the outer synchronization between two networks with
different topological structures [14]. In [15], Wu et al. studied
the generalized outer synchronization between two networks
with different dimensions of node dynamics. In addition,
there are many works on the outer synchronization, that
is, introducing the noise, time delay, fractional order node
dynamics, and unknown parameters [16–21].

In the above-mentioned works on the outer synchro-
nization, the researchers usually applied the control methods
to realize the outer synchronization and did not study
the inner synchronization inside a network. In reality, the
mutual coupling forms between two networks are colorful;
for instance, Wu et al. investigated the outer synchronization
between two networks with two active forms nonlinear
signals and reciprocity [22]; however, these two coupling
forms do not make the outer synchronization happen. In
addition, the inner synchronization inside each network
was not considered. In [23], Sorrentino and Ott provided a
method to study the inner synchronization of two groups.The
problem of collective behaviors inside a network and between
two networks is of broad interest. For example, in subway
systems, when the trains reach the platform, the outer and
inner doors simultaneously open or close, showing that both
inner and outer synchronization happen [24]. It is also found
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that present studies on the synchronization between two
networks with various couplings aremuch less, then studying
the effect of various couplings on the synchronization is
interesting and meaningful.

Inspired by the above discussions, we study synchroniza-
tion between two discrete-time networks with mutual cou-
plings, including inner synchronization inside each network
and outer synchronization between them. By the Lyapunov
stability theory and linear matrix inequality, we obtain a
synchronous theorem on the inner synchronization inside
each network and a relationship between the inner and outer
synchronization. Numerical simulations show that the inner
synchronization is easier to achieve than the outer synchro-
nization. In addition, given themutual couplingmatrices and
appropriate node dynamics, we can adjust coupling strengths
to realize the inner and outer synchronization simultane-
ously. In Section 2, network models and synchronization
analysis are presented, and numerical examples are shown
in Section 3. Finally, the discussions are included in the last
section.

2. Model Presentation and
Synchronization Analysis

In this paper, we investigate the synchronization between
two discrete-time networks with mutual couplings. The
dynamical equations are described as follows:

𝑥
𝑖 (
𝑡 + 1) = 𝑓 (𝑥

𝑖 (
𝑡)) + 𝑚

𝑥

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
(𝑦
𝑗 (

𝑡) − 𝑥
𝑗 (

𝑡)) ,

𝑖 = 1, 2, . . . , 𝑁,

𝑦
𝑖 (
𝑡 + 1) = 𝑔 (𝑦

𝑖 (
𝑡)) + 𝑚

𝑦

𝑁

∑

𝑗=1

𝑏
𝑖𝑗
(𝑥
𝑗 (

𝑡) − 𝑦
𝑗 (

𝑡)) ,

𝑖 = 1, 2, . . . , 𝑁,

(1)

where the node dynamical equations are 𝑥
𝑖
(𝑡 + 1) = 𝑓(𝑥

𝑖
(𝑡))

and 𝑦
𝑖
(𝑡 + 1) = 𝑔(𝑦

𝑖
(𝑡)), 𝑖 = 1, . . . , 𝑁. 𝑓(⋅) : 𝑅

𝑛
→ 𝑅
𝑛 and

𝑔(⋅) : 𝑅
𝑛

→ 𝑅
𝑛 are continuously differential functions. 𝑥

𝑖
(𝑦
𝑖
)

is an 𝑛-dimensional state vector.𝑁 is the number of network
nodes. 𝑚

𝑥
and 𝑚

𝑦
are the coupling strengths. 𝐴 = (𝑎

𝑖𝑗
)
𝑁×𝑁

and 𝐵 = (𝑏
𝑖𝑗
)
𝑁×𝑁

represent the mutual coupling matrices
between these two networks, whose entries 𝑎

𝑖𝑗
denote the

intensity from 𝑖 in network𝑋 to 𝑗 in network 𝑌; analogously,
the entries of 𝐵 are the same defined as 𝐴.

Let us now consider the possibility whether the indi-
vidual networks achieve inner synchronization; that is,
lim
𝑡→+∞

‖𝑥
𝑖
(𝑡) − 𝑥

𝑠
(𝑡)‖ = 0 and lim

𝑡→+∞
‖𝑦
𝑖
(𝑡) − 𝑦

𝑠
(𝑡)‖ =

0, 𝑖 = 1 . . . , 𝑁, where ‖ ⋅ ‖ denotes the Euclidean norm of a
vector. If there exist such synchronous states, satisfying

𝑁
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𝑗=1

𝑎
𝑖𝑗
= 𝛾
𝑥
, ∀𝑖 ∈ 𝑋,

𝑁

∑

𝑗=1

𝑏
𝑖𝑗
= 𝛾
𝑦
, ∀𝑖 ∈ 𝑌,

(2)

without loss of generality, we set 𝛾
𝑥
= 𝛾
𝑦
= 1.

Thus the synchronized state equations are

𝑥
𝑠 (

𝑡 + 1) = 𝑓 (𝑥
𝑠 (

𝑡)) + 𝑚
𝑥
(𝑦
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(3)

Linearizing the synchronous states around 𝑥
𝑠
and 𝑦

𝑠
, we

obtain

𝛿𝑥
𝑖 (
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𝑠 (
𝑡)) 𝛿𝑥𝑖 (
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+ 𝑚
𝑥
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𝑎
𝑖𝑗
(𝛿𝑦
𝑗 (

𝑡) − 𝛿𝑥
𝑗 (

𝑡)) , 𝑖 = 1, 2, . . . , 𝑁,

𝛿𝑦
𝑖 (
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𝑡)) , 𝑖 = 1, 2, . . . , 𝑁,

(4)

where 𝛿𝑥
𝑖
(𝑡) = 𝑥

𝑖
(𝑡) − 𝑥

𝑠
(𝑡), 𝛿𝑦

𝑖
(𝑡) = 𝑦

𝑖
(𝑡) − 𝑦

𝑠
(𝑡),𝐷𝑓(𝑥

𝑠
(𝑡)),

and 𝐷𝑔(𝑦
𝑠
(𝑡)) are the Jacobians of 𝑓(𝑥(𝑡)), 𝑔(𝑦(𝑡)) at 𝑥

𝑠

and 𝑦
𝑠
, respectively. Assume 𝐴 = 𝐵 and let 𝛿𝑥(𝑡) =

∈ 𝑅
𝑛×𝑁 and 𝛿𝑦(𝑡) = [𝛿𝑦

1
(𝑡), . . . , 𝛿𝑦

𝑁
(𝑡)] ∈ 𝑅

𝑛×𝑁. Then (4)
is rewritten as

𝛿𝑥 (𝑡 + 1) = 𝐷𝑓 (𝑥
𝑠 (

𝑡)) 𝛿𝑥 (𝑡) + 𝑚
𝑥
(𝛿𝑦 (𝑡) − 𝛿𝑥 (𝑡)) 𝐴

𝑇
,

𝛿𝑦 (𝑡 + 1) = 𝐷𝑔 (𝑦
𝑠 (

𝑡)) 𝛿𝑦 (𝑡) + 𝑚
𝑦
(𝛿𝑥 (𝑡) − 𝛿𝑦 (𝑡)) 𝐴

𝑇
.

(5)

Further, let 𝛿(𝑡) = [
𝛿𝑥(𝑡)

𝛿𝑦(𝑡)
] ∈ 𝑅
2𝑛×𝑁; then (5) reads

𝛿 (𝑡 + 1) = D𝛿 (𝑡) +W𝛿 (𝑡) 𝐴
𝑇
, (6)

whereD = [
𝐷𝑓(𝑥
𝑠
(𝑡)) 0

0 𝐷𝑔(𝑦
𝑠
(𝑡))

] andW = [
−𝑚
𝑥
𝐼
𝑛
𝑚
𝑥
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𝑛
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𝑦
𝐼
𝑛
−𝑚
𝑦
𝐼
𝑛

], where
𝐼
𝑛
is an identity matrix of size 𝑛 and𝐴

𝑇 denotes the transpose
of 𝐴. Generally, the coupling matrix can be decomposed into
𝐴
𝑇

= Φ𝐽Φ
−1, where 𝐽 is the Jordan canonical form with

complex eigenvalues𝜆 ∈ 𝐶 andΦ contains the corresponding
eigenvectors 𝜙. Denote 𝜂(𝑡) = 𝛿(𝑡)Φ; we obtain

𝜂 (𝑡 + 1) = D𝜂 (𝑡) +W𝜂 (𝑡) 𝐽, (7)

where 𝐽 is a block diagonal matrix; that is,

𝐽 =
[

[

𝐽
1

d
𝐽
ℎ

]

]

, (8)

and 𝐽
𝑘
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𝑘
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value 𝜆
𝑘
of 𝐴𝑇; that is,
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=
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...
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...
0 0 ⋅ ⋅ ⋅ 𝜆

𝑘
1
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𝑘

]

]

]

]

]

]

]

. (9)



Abstract and Applied Analysis 3

Let 𝜂(𝑡) = [𝜂
1
(𝑡), 𝜂
2
(𝑡), . . . , 𝜂

ℎ
(𝑡)] and 𝜂

𝑘
(𝑡) = [𝜂

𝑘,1
(𝑡), 𝜂
𝑘,2

(𝑡),

. . . , 𝜂
𝑘,𝑁
𝑘

(𝑡)]. We can rewrite (7) in a component form as

𝜂
𝑘,1 (

𝑡 + 1) = (D + 𝜆
𝑘
W) 𝜂
𝑘,1 (

𝑡) , (10)

𝜂
𝑘,𝑝+1 (

𝑡 + 1) = (D + 𝜆
𝑘
W) 𝜂
𝑘,𝑝+1 (

𝑡) +W𝜂
𝑘,𝑝 (

𝑡) ,

1 ≤ 𝑝 ≤ 𝑁
𝑘
− 1,

(11)

where 𝑘 = 1, 2, . . . , ℎ.
Firstly, we study the system of (10). Let 𝜂

𝑘,1
(𝑡) = 𝜇

𝑘,1
(𝑡) +

𝑗]
𝑘,1

(𝑡), 𝜆
𝑘
= 𝛼
𝑘
+ 𝑗𝛽
𝑘
, where 𝛼

𝑘
, 𝛽
𝑘
∈ 𝑅, 𝜇

𝑘,1
, ]
𝑘,1

∈ 𝑅
2𝑛, 𝑗 is

and the imaginary unit. Then (10) reads

𝜇
𝑘,1 (

𝑡 + 1) = (D + 𝛼
𝑘
W) 𝜇
𝑘,1 (

𝑡) − 𝛽
𝑘
W]
𝑘,1 (

𝑡) ,

]
𝑘,1 (

𝑡 + 1) = (D + 𝛼
𝑘
W) ]
𝑘,1 (

𝑡) + 𝛽
𝑘
W𝜇
𝑘,1 (

𝑡) .

(12)

Construct the Lyapunov function as

𝑉 (𝑡) = 𝜇
𝑇

𝑘,1
(𝑡) 𝜇𝑘,1 (

𝑡) + ]𝑇
𝑘,1

(𝑡) ]𝑘,1 (𝑡) . (13)

Then,
Δ𝑉 (𝑡) = 𝑉 (𝑡 + 1) − 𝑉 (𝑡)

= 𝜇
𝑇

𝑘,1
(𝑡 + 1) 𝜇𝑘,1 (

𝑡 + 1) + ]𝑇
𝑘,1

(𝑡 + 1) ]𝑘,1 (𝑡 + 1)

− 𝜇
𝑇

𝑘,1
(𝑡) 𝜇𝑘,1 (

𝑡) − ]𝑇
𝑘,1

(𝑡) ]𝑘,1 (𝑡)

= [

𝜇
𝑘,1 (

𝑡)

]
𝑘,1 (

𝑡)
]

𝑇

𝑀
𝑘
[

𝜇
𝑘,1 (

𝑡)

]
𝑘,1 (

𝑡)
] ,

(14)

where𝑀
𝑘
= 𝑃
𝑇

𝑘
𝑃
𝑘
−diag{𝐼

2𝑛
, 𝐼
2𝑛
}with𝑃

𝑘
= [

D+𝛼
𝑘
W −𝛽

𝑘
W

𝛽
𝑘
W D+𝛼

𝑘
W ] ,

𝑘 = 1, 2, . . . , ℎ. If 𝑀
𝑘

< 0, 𝑘 = 1, 2, . . . , ℎ, that is, these
matrices are negative definite, then the zero solution of (10)
is asymptotically stable.

Secondly, we study the stability of (11). Let 𝜂
𝑘,𝑝+1

(𝑡) =

𝜇
𝑘,𝑝+1

(𝑡) + 𝑗]
𝑘,𝑝+1

(𝑡); then

𝜇
𝑘,𝑝+1 (

𝑡 + 1) = (D + 𝛼
𝑘
W) 𝜇
𝑘,𝑝+1 (

𝑡)

− 𝛽
𝑘
W]
𝑘,𝑝+1 (

𝑡) +W𝜇
𝑘,𝑝 (

𝑡) ,

1 ≤ 𝑝 ≤ 𝑁
𝑘
− 1,

]
𝑘,𝑝+1 (

𝑡 + 1) = (D + 𝛼
𝑘
W) ]
𝑘,𝑝+1 (

𝑡)

+ 𝛽
𝑘
W𝜇
𝑘,𝑝+1 (

𝑡) +W]
𝑘,𝑝 (

𝑡) ,

1 ≤ 𝑝 ≤ 𝑁
𝑘
− 1.

(15)

Choose the Lyapunov function as

𝑉 (𝑡) = 𝜇
𝑇

𝑘,𝑝+1
(𝑡) 𝜇𝑘,𝑝+1 (

𝑡) + ]𝑇
𝑘,𝑝+1

(𝑡) ]𝑘,𝑝+1 (𝑡) . (16)

Then we obtain
Δ𝑉 (𝑡) = 𝑉 (𝑡 + 1) − 𝑉 (𝑡)

=

[

[

[

[

𝑢
𝑘,𝑝 (

𝑡)

V
𝑘,𝑝 (

𝑡)

𝑢
𝑘,𝑝+1 (

𝑡)

V
𝑘,𝑝+1 (

𝑡)

]

]

]

]

𝑇

𝐿
𝑘

[

[

[

[

𝑢
𝑘,𝑝 (

𝑡)

V
𝑘,𝑝 (

𝑡)

𝑢
𝑘,𝑝+1 (

𝑡)

V
𝑘,𝑝+1 (

𝑡)

]

]

]

]

,

(17)
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Figure 1: The panels exhibit 𝐸
𝑥
, 𝐸
𝑦
, and 𝐸outer at 𝑡 = 400 with

regard to 𝑚
𝑥
for 𝑁 = 10 and 𝑚

𝑦
= 0.2. The bottom one shows that

the inner synchronization inside network𝑋 is easily achieved.When
𝑚
𝑥

≥ 0.5, the inner and outer synchronization simultaneously
appear.

where 𝐿
𝑘
= 𝑄
𝑇

𝑘
𝑄
𝑘
− diag{0, 0,W𝑇W + 𝐼

2𝑛
,W𝑇W + 𝐼

2𝑛
} with

𝑄
𝑘
=

[

[

[

[

0 0 W 0

0 0 0 W
W 0 D + 𝛼

𝑘
W −𝛽

𝑘
W

0 W 𝛽
𝑘
W D + 𝛼

𝑘
W

]

]

]

]

. (18)

If 𝐿
𝑘

< 0, 𝑘 = 1, 2, . . . , ℎ, then the zero solution of
(11) is asymptotically stable. Hence we obtain a synchronized
theorem for networks (1).

Theorem 1. Consider network systems (1). Assume the mutual
coupling matrices 𝐴 = 𝐵. Let 𝜆

𝑘
= 𝛼
𝑘

+ 𝑗𝛽
𝑘
be the

eigenvalues of 𝐴, where 𝛼
𝑘
, 𝛽
𝑘
∈ 𝑅. If these matrices 𝑀

𝑘
, 𝐿
𝑘
<

0, 𝑘 = 1, 2, . . . , ℎ, then the networks (1) will achieve inner
synchronization inside each network.

Remark 2. Note that Theorem 1 only gives a feasibility of the
inner synchronization inside each network. When the inner
synchronization inside networks 𝑋 and 𝑌 happens, and the
synchronized states ‖𝑥

𝑠
(𝑡)−𝑦

𝑠
(𝑡)‖ → 0 for a large time, then

the outer synchronization between networks𝑋 and 𝑌 will be
achieved.

3. Numerical Examples

In this section, we will give some examples to illustrate
our theoretical results obtained in the previous section. We
mainly investigate the effect of coupling strengths, node
dynamics, and mutual coupling forms on the inner and outer
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Figure 4: The trajectories of 𝐸
𝑥
, 𝐸
𝑦
, and 𝐸outer at 𝑡 = 400 regarding

𝑏
2
with 𝑎

1
= 0.3, 𝑏

1
= 0.2, and 𝑎

2
= 0.5 and 𝑁 = 10,𝑚

𝑥
= 0.2, and

𝑚
𝑦
= 0.3.

𝑥
𝑖2 (

𝑡 + 1) = 𝑏
1
𝑥
𝑖1 (

𝑡)

+ 𝑚
𝑥

𝑁

∑

𝑗=1

𝑎
𝑖𝑗
(𝑦
𝑗2 (

𝑡) − 𝑥
𝑗2 (

𝑡)) , 𝑖 = 1, 2, . . . , 𝑁,

𝑦
𝑖1 (

𝑡 + 1) = 1 + 𝑦
𝑖2 (

𝑡) − 𝑎
2
𝑦
𝑖1(

𝑡)
2

+ 𝑚
𝑦

𝑁

∑

𝑗=1

𝑏
𝑖𝑗
(𝑥
𝑗1 (

𝑡) − 𝑦
𝑗1 (

𝑡)) ,

𝑦
𝑖2 (

𝑡 + 1) = 𝑏
2
𝑦
𝑖1 (

𝑡) + 𝑚
𝑦

𝑁

∑

𝑗=1

𝑏
𝑖𝑗
(𝑥
𝑗2 (

𝑡) − 𝑦
𝑗2 (

𝑡)) ,

𝑖 = 1, 2, . . . , 𝑁, (19)

where the node equations in (19) are bothHenönmaps, which
have colorful dynamical properties, for instance, 𝑎

1
= 0.5

and 𝑏
1

= 0.3; it has a periodic solution. Since the sum of
each row of mutual matrices is one, for simplicity, we take
𝑎
𝑖𝑗

= 𝑏
𝑖𝑗

= 1/𝑁 for 𝑖, 𝑗 = 1, . . . , 𝑁. To measure the extent
to which inner synchronization is achieved, we introduce
two quantities, 𝐸

𝑥
= ‖𝑥

𝑖
(𝑡) − 𝑥

𝑠
(𝑡)‖ and 𝐸

𝑦
= ‖𝑦

𝑖
(𝑡) −

𝑦
𝑠
(𝑡)‖, 𝑖 = 1, . . . , 𝑁. In addition, we denote another quantity

𝐸outer = ‖𝑥
𝑖
(𝑡) − 𝑦

𝑖
(𝑡)‖ for 𝑖 = 1, . . . , 𝑁 to demonstrate

whether outer synchronization happens. Given the values of
𝑎
1

= 0.3, 𝑏
1

= 0.2, 𝑎
2

= 0.5, and 𝑏
2

= 0.3, we first study
the effect of coupling strengths 𝑚

𝑥
and 𝑚

𝑦
on the inner

and outer synchronization. Figure 1 shows that the outer
synchronization does not happenwhen the coupling strength
is 𝑚
𝑥
< 0.5, while the inner synchronization inside network

𝑋 always appears. In the same way, considering the effect of
coupling strength𝑚

𝑦
, the details are shown in Figure 2.



Abstract and Applied Analysis 5

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

5

3.5

4.5

4

Ex

Ey

Eouter

E
x
,E

y
,E

ou
te
r

N

Figure 5: The plots show 𝐸
𝑥
, 𝐸
𝑦
, and 𝐸outer at 𝑡 = 400 on 𝑁 with

𝑎
1
= 0.3, 𝑏

1
= 0.2, 𝑎

2
= 0.5, and 𝑏

2
= 0.3 and 𝑚

𝑥
= 0.2 and 𝑚

𝑦
= 0.3.

The topologies are 𝑎
𝑖𝑗

= 𝑏
𝑖𝑗

= 1/𝑁, 𝑖, 𝑗 = 1, . . . , 𝑁. Obviously the
inner synchronization inside network 𝑌 and outer synchronization
do not happen for the network size 𝑁 < 40 except some values of
𝑁.

Next, we discuss the effect of node dynamics on the inner
and outer synchronization and take 𝑏

1
= 0.2, 𝑎

2
= 0.5,

and 𝑏
2

= 0.3 and 𝑁 = 10, 𝑚
𝑥

= 0.2, and 𝑚
𝑦

= 0.3.
We then investigate the effect of parameter 𝑎

1
on the inner

and outer synchronization. Similarly, given 𝑎
1

= 0.3, 𝑏
1

=

0.2, and 𝑎
2

= 0.5 and 𝑁 = 10, 𝑚
𝑥

= 0.2, and 𝑚
𝑦

=

0.3, we study the influence of 𝑏
2
. The numerical simulations

are summarized in Figures 3 and 4, showing that the inner
synchronization inside network 𝑋 always happens, while
the inner synchronization inside network 𝑌 and the outer
synchronization only appear for some values of 𝑎

1
or 𝑏
2
.

Finally, we discuss the effect of network size 𝑁 on the
inner and outer synchronization with 𝑎

𝑖𝑗
= 𝑏
𝑖𝑗

= 1/𝑁, 𝑖, 𝑗 =

1, . . . , 𝑁. Taking the values of 𝑎
1

= 0.3, 𝑏
1

= 0.2, 𝑎
2

= 0.5,
and 𝑏

2
= 0.3 and 𝑚

𝑥
= 0.2 and 𝑚

𝑦
= 0.3, we plot the

curves of 𝐸
𝑥
, 𝐸
𝑦
, and 𝐸outer in Figure 5. In the following,

we change the topological structures of mutual coupling
matrices and choose𝐴 = 𝐵 as a randommatrix; the numerics
are shown in Figure 6. It is found that the globally connected
and random topological structures have similar effect on the
inner and outer synchronization. It is noted that the inner
synchronization inside network𝑋 always happens. Apossible
reason is the effect of node dynamics. Furthermore, when the
Henön map behaves chaotically, no synchronization appears.

4. Conclusions

The current study investigated the synchronization between
two discrete-time networks with mutual couplings and
mainly studied inner synchronization inside each network
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Figure 6: The curves of 𝐸
𝑥
, 𝐸
𝑦
, and 𝐸outer at 𝑡 = 400 regarding 𝑁

with 𝑎
1
= 0.3, 𝑏

1
= 0.2, 𝑎

2
= 0.5, and 𝑏

2
= 0.3 and 𝑚

𝑥
= 0.2, and

𝑚
𝑦

= 0.3. The coupling matrix 𝐴(𝐵) is a random matrix satisfying
the sum of each row being one.

and outer synchronization between them. We then obtained
a synchronous theorem on the inner synchronization inside
each network in terms of linear matrix inequality, for the lack
of a criterion on the outer synchronization. When the inner
synchronization is achieved inside each network and the
synchronized states 𝑥

𝑠
and 𝑦

𝑠
are same for a large time, then

the outer synchronization will happen. From the numerical
simulations, we see that the inner and outer synchronization
simultaneously happenwhenwe adjust the values of coupling
strengths and parameters in the node dynamics. The globally
connected and random topologies have similar effect on
the inner and outer synchronization. In addition, outer
synchronization is more difficult to achieve than the inner
synchronization, meaning that the outer synchronization
needs a strong coupling form. Because of the diversity of
coupling forms between two networks, deriving the criteria
on the inner and outer synchronization simultaneously is a
technical challenge, which would be discussed in the future.
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