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This paper introduces Fourier operational matrices of differentiation and transmission for solving high-order linear differential
and difference equations with constant coefficients. Moreover, we extend our methods for generalized Pantograph equations with
variable coefficients by using Legendre Gauss collocation nodes. In the case of numerical solution of Pantograph equation, an
error problem is constructed by means of the residual function and this error problem is solved by using the mentioned collocation
scheme.When the exact solution of the problem is not known, the absolute errors can be computed approximately by the numerical
solution of the error problem. The reliability and efficiency of the presented approaches are demonstrated by several numerical
examples, and also the results are compared with different methods.

1. Introduction

In the last four decades, numerical methods which are
based on the operational matrices of integration (especially
for orthogonal polynomials and functions) have received
considerable attention for dealing with a huge size of applied
mathematics problems such as system identification, state
space analysis, optimal control, and senstivity analysis.The key
idea of these methods is based on the integral expression

∫
𝑡

0

Φ (𝜏) 𝑑𝜏 ≈ Φ (𝑡) 𝑃, (1)

where Φ(𝑡) = [Φ
1
(𝑡), Φ

2
(𝑡), . . . , Φ

𝑁
(𝑡)] is an arbitrary basis

vector and 𝑃 is a (𝑁 + 1) × (𝑁 + 1) constant matrix,
called the operational matrix of integration. The matrix 𝑃
has already been determined for many types of orthogonal
(or nonorthogonal) bases such as Walsh functions [5–7],
block-pulse functions [8], Laguerre polynomials [9], Cheby-
shev polynomials [10], Legendre polynomials [11], Hermite
polynomials [12], Fourier series [13], Bernstein polynomials
[14], and Bessel series [15]. As a primary research work
which was based on the operational matrices of integration,

one can refer to the work of Corrington [5]. In [5], the
author proposed a method of solving nonlinear differential
and integral equations using a set of Walsh functions as the
basis. His method is aimed at obtaining piecewise constant
solutions of dynamic equations and requires previously pre-
pared tables of coefficients for integrating Walsh functions.
To alleviate the need for such tables, Chen and Hsiao [6, 7]
introduced an operational matrix to perform integration of
Walsh functions. This operational matrix approach has been
applied to various problems such as time-domain analysis
and synthesis of linear systems, piecewise constant-feedback-
gain determination for optimal control of linear systems and
for inverting irrational Laplace transforms.

On the other hand, since the beginning of 1994, the
Bernoulli, Chebyshev, Laguerre, Bernstein, Legendre, Tay-
lor, Hermite, and Bessel matrix methods have been used
in the works [4, 16–28] to solve high-order linear and
nonlinear Fredholm Volterra integro-differential difference
equations and their systems. The main characteristic of
these approaches is based on the operational matrices of
differentiation instead of integration. The best advantage of
these techniques with respect to the integration methods
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is that, in the fundamental matrix relations, there is not
any approximation symbol, meanwhile in the integration
forms such as (1), the approximation symbol could be seen
obviously. In other words,

Φ (𝑡) = Φ (𝑡) 𝐵, (2)

where 𝐵 is the operational matrix of differentiation for any
selected basis such as the above-mentioned polynomials,
functions, and truncated series. The readers can see that
there is no approximation symbol in (2), meanwhile this can
be seen in (1) by using operational matrices of integration.
For justifying this expression, one can refer to this subject
that after the differentiating of an 𝑁th degree polynomial
we usually reach to a polynomial which has less than 𝑁th
degree. However, in the integration processes the degree of
polynomials would be increased.

To the best of our knowledge, this is the first work
concerning the Fouriermatrixmethod for solving high-order
linear ordinary differential equations (ODEs) in a differen-
tiation form of view. This partially motivated our interest in
suchmethods. In this paper, in the light of themethods [4, 16–
20, 24, 25] and by means of the matrix relations between the
truncated Fourier series and their derivatives, we propose a
new method, namely, the Fourier matrix method for solving
𝑚th order linear ODEs with constant coefficients in the
form

𝑦(𝑚) (𝑡) =
𝑚−1

∑
𝑘=0

𝛽
𝑘
𝑦(𝑘) (𝑡) + 𝑓 (𝑡) , 𝑡 ∈ [−𝜋, 𝜋] , (3)

where 𝑓(𝑡) is a known function and the initial conditions
𝑦(𝑘)(−𝜋) = 𝜂

𝑘
, for 𝑘 = 0, 1, . . . , 𝑚 − 1 are given.

Also, we present a new method by using matrix relations
between the truncated Fourier series and their transmissions
for solving the following𝑚th order difference equation:

𝑚

∑
𝑘=0

𝛾
𝑘
𝑦 (𝑡 + 𝛼

𝑘
) = 𝑓 (𝑡) , 𝑡 ∈ [−𝜋, 𝜋] . (4)

Moreover, by means of the matrix relations between the
truncated Fourier series and their derivatives together with
their transmissions and by using suitable Gaussian collo-
cation nodes, we obtain the numerical solution of general-
ized Pantograph equation with variable coefficients in the
form

𝑦(𝑚) (𝑡) =
𝐽

∑
𝑗=0

𝑚−1

∑
𝑘=0

𝑝
𝑗𝑘
(𝑡) 𝑦(𝑘) (𝜆

𝑗𝑘
𝑡 + 𝜇

𝑗𝑘
) + 𝑔 (𝑡) ,

𝑡 ∈ [−𝜋, 𝜋] ,
(5)

subject to the initial conditions 𝑦(𝑘)(−𝜋) = 𝜃
𝑘
, for 𝑘 =

0, 1, . . . , 𝑚 − 1.
It should be noted that delay differential equations have

a wide range of application in science and engineering.
Functional-differential equations with proportional delays
are usually refereed as Pantograph equations or generalized

Pantograph equations. The applications of Pantograph equa-
tion are in different fields such as number theory, economy,
biology, control, electrodynamics, nonlinear dynamical sys-
tems, quantum mechanics, probability theory, astrophysics,
cell growth, and other industrial applications. For some appli-
cations of this equation, we refer the interested reader to [21].
Pantograph equation was studied by many authors numeri-
cally and analytically. A complete survey about numerical and
analytical methods about generalized Pantograph equations
has been provided in [21].

The rest of the paper is organized as follows. In Section 2,
we introduce some mathematical preliminaries of Fourier
series together with their operational matrices of differen-
tiation and transmission. Section 3 is devoted to apply the
Fourier matrix methods for solving (3), (4), and (5) using
the Fourier operational matrices of differentiation and trans-
mission. An error estimation of the collocation scheme for
solving the generalized Pantograph equation (5) is provided
in Section 4. In Section 5, the proposed method is applied
to several numerical examples. Also conclusions and future
works are given in Section 6.

2. Some Properties of Fourier Series

Fourier series decomposes periodic functions or periodic
signals into the sum of a (possibly infinite) set of sim-
ple oscillating functions, namely, sines and cosines. The
Fourier series hasmany applications in electrical engineering,
vibration analysis, acoustics, optics, signal processing, image
processing, quantum mechanics, econometrics, thin-walled
shell theory, and so forth. A square integrable function 𝑓(𝑡)
can be expanded in terms of Fourier series as follows:

𝑓 (𝑡) = 𝑓
0

2 +
∞

∑
𝑛=1

(𝑓
𝑛
cos (𝑛𝑡) + �̂�

𝑛
sin (𝑛𝑡)) ,

𝑡 ∈ (−𝜋, 𝜋) ,
(6)

where the coefficients 𝑓
𝑛
and �̂�

𝑛
are given by

𝑓
𝑛
= 1

𝜋 ∫
𝜋

−𝜋

𝑓 (𝑡) cos (𝑛𝑡) 𝑑𝑡 (𝑛 ≥ 0) , �̂�
𝑛

= 1
𝜋 ∫

𝜋

−𝜋

𝑓 (𝑡) sin (𝑛𝑡) 𝑑𝑡 (𝑛 ≥ 1) .
(7)

In practice, we use only the first (2𝑁+1) terms of the Fourier
series. Therefore, our aim is to approximate the solution of
(3), (4), and (5) as follows:

𝑦 (𝑡) ≈ 𝑦
𝑁
(𝑡) = 𝑦

0

2 +
𝑁

∑
𝑛=1

(𝑦
𝑛
cos (𝑛𝑡) + �̂�

𝑛
sin (𝑛𝑡)) ,

𝑡 ∈ [−𝜋, 𝜋] , 2𝑁 + 1 > 𝑚.
(8)
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The vector representation of the above-mentioned truncated
series can be written in the following form:

𝑦
𝑁
(𝑡)

= [ 1
2

cos (𝑡) cos (2𝑡) ⋅ ⋅ ⋅ cos (𝑁𝑡) sin (𝑡) sin (2𝑡) ⋅ ⋅ ⋅ sin (𝑁𝑡)]

×

[[[[[[[[[[[[[[[[
[

𝑦
0𝑦
1𝑦
2

...
𝑦
𝑁

�̂�
1

�̂�
2

...
�̂�
𝑁

]]]]]]]]]]]]]]]]
]

= 𝐹 (𝑡) 𝑌, 𝑡 ∈ (−𝜋, 𝜋) .

(9)

According to the property 𝑦
𝑁
(𝑡) = 𝐹(𝑡)𝑌, we have 𝑦

𝑁
(𝑡) =

𝐹(𝑡)𝑌, where 𝑦

𝑁
(𝑡) denotes the first derivative of 𝑦

𝑁
(𝑡). By

repeating this procedure, we have 𝑦(𝑘)

𝑁
(𝑡) = 𝐹(𝑘)(𝑡)𝑌, where

𝑦(𝑘)

𝑁
(𝑡) denotes the 𝑘th derivative of 𝑦

𝑁
(𝑡). On the other

hand, the matrix relation between 𝐹𝑇(𝑡) and (𝐹(𝑡))𝑇 can be
constructed by using the elementary calculus as follows:

(𝐹(𝑡))𝑇
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1

2

cos (𝑡)
cos (2𝑡)

...
cos (𝑁𝑡)

sin (𝑡)

sin (2𝑡)

...
sin (𝑁𝑡)

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]



=

𝑀
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

0 0 0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0

0 0 0 ⋅ ⋅ ⋅ 0 −1 0 ⋅ ⋅ ⋅ 0

0 0 0 ⋅ ⋅ ⋅ 0 0 −2 ⋅ ⋅ ⋅ 0

...
...

...
. . .

...
...

...
. . .

...
0 0 0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ −𝑁

0 1 0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0

0 0 2 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0

...
...

...
. . .

...
...

...
. . .

...
0 0 0 ⋅ ⋅ ⋅ 𝑁 0 0 ⋅ ⋅ ⋅ 0

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

𝐹
𝑇
(𝑡)

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1

2

cos (𝑡)
cos (2𝑡)

...
cos (𝑁𝑡)

sin (𝑡)

sin (2𝑡)

...
sin (𝑁𝑡)

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

, (10)

where𝑀 is the (2𝑁+1)×(2𝑁+1) Fourier operational matrix
of differentiation. The above relation can be written in the
form 𝐹(𝑡) = 𝐹(𝑡)𝑀𝑇. Accordingly, the 𝑘th derivative of 𝐹(𝑡)
can be given by

𝐹(𝑘) (𝑡) = 𝐹 (𝑡) (𝑀𝑇)𝑘, 𝑘 = 0, 1, . . . , 𝑚. (11)

Therefore, 𝑦(𝑘)

𝑁
(𝑡) has the following form:

𝑦(𝑘)

𝑁
(𝑡) = 𝐹(𝑘) (𝑡) 𝑌 = 𝐹 (𝑡) (𝑀𝑇)𝑘𝑌, 𝑘 = 0, 1, . . . , 𝑚.

(12)

We now construct the operational matrices of transmission
in both cases of forward and backward by using the following
simple relations from the elementary calculus:

cos (𝑛𝑡 ± 𝛼) = cos (𝑛𝑡) cos (𝛼) ∓ sin (𝑛𝑡) sin (𝛼) ,
sin (𝑛𝑡 ± 𝛼) = sin (𝑛𝑡) cos (𝛼) ± cos (𝑛𝑡) cos (𝛼) ,

1 ≤ 𝑛 ≤ 𝑁.
(13)

Thus, the relation between (𝐹(𝑡 +𝛼))𝑇 and 𝐹𝑇(𝑡) is as follows:
(𝐹(𝑡+𝛼))

𝑇⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
[[[[[[[[[[[[[[[[[[[[
[

1
2

cos (𝑡 + 𝛼)
cos (2𝑡 + 𝛼)

...
cos (𝑁𝑡 + 𝛼)
sin (𝑡 + 𝛼)
sin (2𝑡 + 𝛼)

...
sin (𝑁𝑡 + 𝛼)

]]]]]]]]]]]]]]]]]]]]
]

=

𝐷
𝛼

+

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1 0 0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0

0 cos (𝛼) 0 ⋅ ⋅ ⋅ 0 − sin (𝛼) 0 ⋅ ⋅ ⋅ 0

0 0 cos (𝛼) ⋅ ⋅ ⋅ 0 0 − sin (𝛼) ⋅ ⋅ ⋅ 0

...
...

...
. . .

...
...

...
. . .

...
0 0 0 ⋅ ⋅ ⋅ cos (𝛼) 0 0 ⋅ ⋅ ⋅ − sin (𝛼)

0 sin (𝛼) 0 ⋅ ⋅ ⋅ 0 cos (𝛼) 0 ⋅ ⋅ ⋅ 0

0 0 sin (𝛼) ⋅ ⋅ ⋅ 0 0 cos (𝛼) ⋅ ⋅ ⋅ 0

...
...

...
. . .

...
...

...
. . .

...
0 0 0 ⋅ ⋅ ⋅ sin (𝛼) 0 0 ⋅ ⋅ ⋅ cos (𝛼)

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

×

𝐹
𝑇
(𝑡)⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

[[[[[[[[[[[[[[[[[[[
[

1
2

cos (𝑡)
cos (2𝑡)

...
cos (𝑁𝑡)
sin (𝑡)
sin (2𝑡)

...
sin (𝑁𝑡)

]]]]]]]]]]]]]]]]]]]
]

.

(14)

Moreover, the relation between (𝐹(𝑡 − 𝛼))𝑇 and 𝐹𝑇(𝑡) can be
written in the following form:

(𝐹(𝑡−𝛼))
𝑇⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

[[[[[[[[[[[[[[[[[[[[
[

1
2

cos (𝑡 − 𝛼)
cos (2𝑡 − 𝛼)

...
cos (𝑁𝑡 − 𝛼)
sin (𝑡 − 𝛼)
sin (2𝑡 − 𝛼)

...
sin (𝑁𝑡 − 𝛼)

]]]]]]]]]]]]]]]]]]]]
]
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=

𝐷
𝛼

−

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

1 0 0 ⋅ ⋅ ⋅ 0 0 0 ⋅ ⋅ ⋅ 0

0 cos (𝛼) 0 ⋅ ⋅ ⋅ 0 sin (𝛼) 0 ⋅ ⋅ ⋅ 0

0 0 cos (𝛼) ⋅ ⋅ ⋅ 0 0 sin (𝛼) ⋅ ⋅ ⋅ 0

...
...

...
. . .

...
...

...
. . .

...
0 0 0 ⋅ ⋅ ⋅ cos (𝛼) 0 0 ⋅ ⋅ ⋅ sin (𝛼)

0 − sin (𝛼) 0 ⋅ ⋅ ⋅ 0 cos (𝛼) 0 ⋅ ⋅ ⋅ 0

0 0 − sin (𝛼) ⋅ ⋅ ⋅ 0 0 cos (𝛼) ⋅ ⋅ ⋅ 0

...
...

...
. . .

...
...

...
. . .

...
0 0 0 ⋅ ⋅ ⋅ − sin (𝛼) 0 0 ⋅ ⋅ ⋅ cos (𝛼)

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

×

𝐹
𝑇
(𝑡)⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

[[[[[[[[[[[[[[[[[[[[[
[

1
2

cos (𝑡)
cos (2𝑡)

...
cos (𝑁𝑡)
sin (𝑡)
sin (2𝑡)

...
sin (𝑁𝑡)

]]]]]]]]]]]]]]]]]]]]]
]

.

(15)

In other words, 𝐹(𝑡 + 𝛼) = 𝐹(𝑡)(𝐷𝛼

+
)𝑇 and 𝐹(𝑡 − 𝛼) =

𝐹(𝑡)(𝐷𝛼

−
)𝑇. Therefore,

𝑦 (𝑡 + 𝛼
𝑘
) = 𝐹 (𝑡 + 𝛼

𝑘
) 𝑌 = 𝐹 (𝑡) (𝐷𝛼

𝑘

+
)𝑇𝑌,

𝑦 (𝑡 − 𝛼
𝑘
) = 𝐹 (𝑡 − 𝛼

𝑘
) 𝑌 = 𝐹 (𝑡) (𝐷𝛼

𝑘

−
)𝑇𝑌, 0 ≤ 𝑘 ≤ 𝑚.

(16)

It should be noted that (12) and (16) are the fundamen-
tal matrix relations of this section. In other words, the
operational matrices of differentiation 𝑀 and transmission
𝐷𝛼

+
would be applied in our methods in the next section

abundantly.

3. Matrix and Collocation Methods Based on
Fourier Operational Matrices

In this section, we use the matrix relations (12) and (16)
for solving (3), (4), and (5). In the solution approximation
procedure of (3), we use only the fundamental relation (12),
and for approximating the solution of (4), we use only the
fundamental relation (16), meanwhile both of relations (12)
and (16) together with the collocation method based on
Legendre Gauss points are applied to solve numerically the
generalized Pantograph equation (5).

3.1. Fourier Matrix Method for Solving High-Order Linear
ODEs. We now derive an algorithm for solving (3). To do

this, let the solution of (3) be approximated by the first (2𝑁+
1)-terms of the truncated Fourier series. Hence, if we write

𝑦 (𝑡) ≈ 𝑦
𝑁
(𝑡)

= 𝑦
0

2 +
𝑁

∑
𝑛=1

(𝑦
𝑛
cos (𝑛𝑡) + �̂�

𝑛
sin (𝑛𝑡))

= 𝐹 (𝑡) 𝑌, 𝑡 ∈ [−𝜋, 𝜋] , 2𝑁 + 1 > 𝑚,

(17)

where the unknown Fourier coefficient vector 𝑌 and the
Fourier vector 𝐹(𝑡) are given in (9), then the 𝑘th derivative
of 𝑦

𝑁
(𝑡) can be expressed in the matrix form by 𝑦(𝑘)

𝑁
(𝑡) =

𝐹(𝑘)(𝑡)𝑌 = 𝐹(𝑡)(𝑀𝑇)𝑘𝑌 for 𝑘 = 0, 1, . . . 𝑚. Moreover, we need
to approximate the given function 𝑓(𝑡) which exists in (3) by
using (7). In other words, we assume that

𝑓 (𝑡) ≈ 𝑓
𝑁
(𝑡)

= 𝑓
0

2 +
𝑁

∑
𝑛=1

(𝑓
𝑛
cos (𝑛𝑡) + �̂�

𝑛
sin (𝑛𝑡))

= 𝐹 (𝑡) 𝐹, 𝑡 ∈ [−𝜋, 𝜋] ,

(18)

where 𝐹 = [𝑓
0

𝑓
1

𝑓
2

⋅ ⋅ ⋅ 𝑓
𝑁

�̂�
1

�̂�
2

⋅ ⋅ ⋅ �̂�
𝑁
]𝑇 is a

known vector with the aid of (7). By substituting the approx-
imations (12) and (18) into (3), we get

𝐹 (𝑡) (𝑀𝑇)𝑚𝑌 =
𝑚−1

∑
𝑘=0

𝛽
𝑘
𝐹 (𝑡) (𝑀𝑇)𝑘𝑌 + 𝐹 (𝑡) 𝐹. (19)

According to the completeness property of Fourier series, the
matrix equation corresponding to the basic equation (3) can
be written as 𝑊𝑌 = 𝐹 or in the form of augmented matrix
[𝑊; 𝐹], where

𝑊 = [𝑤
𝑖𝑗
] = {(𝑀𝑇)𝑚 −

𝑚−1

∑
𝑘=0

𝛽
𝑘
(𝑀𝑇)𝑘} . (20)

Therefore, the basic equation (3) is changed into a system of
(2𝑁+1) linear algebraic equations with unknown coefficients
𝑦
0
, 𝑦

1
, . . . , 𝑦

𝑁
, �̂�

1
, . . . , �̂�

𝑁
which can be written in the form

𝑊𝑌 = 𝐹, (21)

or in augmented matrix form

[𝑊; 𝐹] =

[[[[[[[[[[
[

𝑤
00

𝑤
01

𝑤
02

. . . 𝑤
0(2𝑁)

; 𝑓
0

𝑤
10

𝑤
11

𝑤
12

. . . 𝑤
1(2𝑁)

; 𝑓
1

𝑤
20

𝑤
21

𝑤
22

. . . 𝑤
2(2𝑁)

; 𝑓
2

...
...

...
. . .

... ; ...

𝑤
(2𝑁)0

𝑤
(2𝑁)1

𝑤
(2𝑁)2

. . . 𝑤
(2𝑁)(2𝑁)

; �̂�
𝑁

]]]]]]]]]]
]

.

(22)

Now we should impose the initial conditions 𝑦(𝑘)(−𝜋) = 𝜂
𝑘

for 𝑘 = 0, 1, . . . , 𝑚 − 1 to the associated system of algebraic
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equations 𝑊𝑌 = 𝐹 in a proper way. For this reason and for
clarity of presentation, we can remove the last 𝑚 rows of 𝑊
and the last𝑚 entries of𝐹without loss of generality. However,
we can do this work by the first𝑚 rows of the𝑊 and the first
𝑚 entries of 𝐹. Thus, we have

[�̂�; �̂�]

=
[[[[[[
[

𝑤
00

𝑤
01

𝑤
02

. . . 𝑤
0(2𝑁)

; 𝑓
0

𝑤
10

𝑤
11

𝑤
12

. . . 𝑤
1(2𝑁)

; 𝑓
1

𝑤
20

𝑤
21

𝑤
22

. . . 𝑤
2(2𝑁)

; 𝑓
2

...
...

...
. . .

... ; ...
𝑤
(2𝑁−𝑚)0

𝑤
(2𝑁−𝑚)1

𝑤
(2𝑁−𝑚)2

. . . 𝑤
(2𝑁−𝑚)(2𝑁)

; �̂�
𝑁−𝑚

]]]]]]
]

.

(23)

According to (12), we can write 𝑦(𝑘)(−𝜋) = 𝐹(−𝜋)(𝑀𝑇)𝑘𝑌
and hence the matrix-vector representation of the initial
conditions is as follows:

𝐹 (−𝜋) (𝑀𝑇)𝑘𝑌 = [𝜂
𝑘
] , 𝑘 = 0, 1, . . . , 𝑚 − 1. (24)

Therefore, the matrix form of the initial conditions can be
written as

𝑈
𝑘
𝑌 = [𝜂

𝑘
] or [𝑈

𝑘
; 𝜂

𝑘
] , 𝑘 = 0, 1, . . . , 𝑚 − 1, (25)

where

𝑈
𝑘
= 𝐹 (−𝜋) (𝑀𝑇)𝑘 = [𝑢

𝑘0
, 𝑢

𝑘1
, . . . , 𝑢

𝑘(2𝑁)
] ,

𝑘 = 0, 1, . . . , 𝑚 − 1.
(26)

Finally, from (23) and (25), (3) subject to the considered
initial conditions reduces to the following system of algebraic
equations:

�̃�𝑌 = �̃�, (27)

where

[�̃�; �̃�]

=

[[[[[[[[[[[[[[[[
[

𝑤
00

𝑤
01

𝑤
02

. . . 𝑤
0(2𝑁)

; 𝑓
0

𝑤
10

𝑤
11

𝑤
12

. . . 𝑤
1(2𝑁)

; 𝑓
1

𝑤
20

𝑤
21

𝑤
22

. . . 𝑤
2(2𝑁)

; 𝑓
2

...
...

...
. . .

... ; ...
𝑤
(2𝑁−𝑚)0

𝑤
(2𝑁−𝑚)1

𝑤
(2𝑁−𝑚)2

. . . 𝑤
(2𝑁−𝑚)(2𝑁)

; �̂�
𝑁−𝑚𝑢

00
𝑢
01

u
02

. . . 𝑢
0(2𝑁)

; 𝜂
0

𝑢
10

𝑢
11

𝑢
12

. . . 𝑢
1(2𝑁)

; 𝜂
1

𝑢
20

𝑢
21

𝑢
22

. . . 𝑢
2(2𝑁)

; 𝜂
2

...
...

...
. . .

... ; ...
𝑢
(𝑚−1)0

𝑢
(𝑚−1)1

𝑢
(𝑚−1)2

. . . 𝑢
(𝑚−1)(2𝑁)

; 𝜂
(𝑚−1)

]]]]]]]]]]]]]]]]
]

.

(28)

The matrix coefficients �̃� of the above system is sparse, and
for solving system of linear equations �̃�𝑌 = �̃�, we can use
some iterative Krylov subspace methods and determine the
vector 𝑌 and hence the approximate solution 𝑦

𝑁
(𝑡) = 𝐹(𝑡)𝑌

is obtained.

3.2. Fourier Matrix Method for Solving High-Order Linear
Difference Equations. In this subsection, we propose an idea
for approximating the solution of (4) by using Fourier
operational matrix of transmission. For this purpose, we
assume that the solution of (4) can be approximated by
truncated Fourier series in the form 𝑦(𝑡) ≈ 𝑦

𝑁
(𝑡) = 𝐹(𝑡)𝑌.

According to (16), we have 𝑦(𝑡 + 𝛼
𝑘
) ≈ 𝑦

𝑁
(𝑡 + 𝛼

𝑘
) =

𝐹(𝑡 + 𝛼
𝑘
)𝑌 = 𝐹(𝑡)(𝐷𝛼

𝑘

+
)𝑇𝑌 for 𝑘 = 0, 1, . . . , 𝑚. Similar

to the previous method, the known function 𝑓(𝑡) can be
approximated by truncated Fourier series in the form 𝑓(𝑡) ≈
𝑓
𝑁
(𝑡) = 𝐹(𝑡)𝐹 where the entries of 𝐹 would be calculated

from (7). By substituting these matrix forms in (4), we get
𝑚

∑
𝑘=0

𝛾
𝑘
𝐹 (𝑡) (𝐷𝛼

𝑘

+
)𝑇𝑌 = 𝐹 (𝑡) 𝐹. (29)

Hence, the matrix equation corresponding to the basic
equation (4) can be written as 𝐴𝑌 = 𝐹 or in the form of
augmented matrix [𝐴; 𝐹], where

𝐴 = [𝑎
𝑖𝑗
] = {

𝑚

∑
𝑘=0

𝛾
𝑘
(𝐷𝛼
𝑘

+
)𝑇} . (30)

Therefore, the basic equation (4) is changed into a system of
(2𝑁+1) linear algebraic equations with unknown coefficients
𝑦
0
, 𝑦

1
, . . . , 𝑦

𝑁
, �̂�

1
, . . . , �̂�

𝑁
which can be written in the form

𝐴𝑌 = 𝐹, (31)

or in augmented matrix form

[𝐴; 𝐹]

=
[[[[[[[[
[

𝑎
00

𝑎
01

𝑎
02

. . . 𝑎
0(2𝑁)

; 𝑓
0

𝑎
10

𝑎
11

𝑎
12

. . . 𝑎
1(2𝑁)

; 𝑓
1

𝑎
20

𝑎
21

𝑎
22

. . . 𝑎
2(2𝑁)

; 𝑓
2

...
...

...
. . .

... ; ...
𝑎
(2𝑁)0

𝑎
(2𝑁)1

𝑎
(2𝑁)2

. . . 𝑎
(2𝑁)(2𝑁)

; �̂�
𝑁

]]]]]]]]
]

. (32)

According to the structure of Fourier operational matrices of
transmissions, the matrix coefficients 𝐴 of the above system
is tridiagonal (see for instance (14)), and for solving system
of linear equations 𝐴𝑌 = 𝐹, we can use some iterative krylov
subspace methods and determine the vector 𝑌 and hence the
approximated solution 𝑦

𝑁
(𝑡) = 𝐹(𝑡)𝑌 is obtained.

3.3. Fourier Collocation Method for Solving Generalized Pan-
tograph Equations. In this subsection, we use the colloca-
tion method (via Legendre Gauss points) based on Fourier
operational matrices of differentiation and transmission to
solve numerically the generalized Pantograph equation (5).
To do this, let the solution of (5) be approximated by the first
(2𝑁 + 1)-terms truncated Fourier series in the form 𝑦(𝑡) ≈
𝑦
𝑁
(𝑡) = 𝐹(𝑡)𝑌, where the Fourier coefficient vector 𝑌 is

unknown (should be determined) and the Fourier vector𝐹(𝑡)
is given in (9). According to (12), the 𝑘th derivative of 𝑦

𝑁
(𝑡)

can be expressed in the matrix form 𝑦(𝑘)

𝑁
(𝑡) = 𝐹(𝑘)(𝑡)𝑌 =

𝐹(𝑡)(𝑀𝑇)𝑘𝑌.
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By substituting the above approximations into (5), we get

𝐹 (𝑡) (𝑀𝑇)𝑚𝑌

=
𝐽

∑
𝑗=0

𝑚−1

∑
𝑘=0

𝑝
𝑗𝑘
(𝑡) 𝐹 (𝜆

𝑗𝑘
𝑡 + 𝜇

𝑗𝑘
) (𝑀𝑇)𝑘𝑌 + 𝑔 (𝑡) .

(33)

To find the solution 𝑦
𝑁
(𝑡), we first collocate (33) at the nodes

𝑡
𝑖
, 𝑖 = 0, 1, . . . , 2𝑁 − 𝑚 as the roots of �̂�

2𝑁−𝑚+1
(𝑡) (where

�̂�
2𝑁−𝑚+1

(𝑡) denotes the shifted Legendre polynomial of (2𝑁−
𝑚 + 1) degree in the interval [−𝜋, 𝜋]) yields

𝐹 (𝑡
𝑖
) (𝑀𝑇)𝑚𝑌

=
𝐽

∑
𝑗=0

𝑚−1

∑
𝑘=0

𝑝
𝑗𝑘
(𝑡

𝑖
) 𝐹 (𝜆

𝑗𝑘
t
𝑖
+ 𝜇

𝑗𝑘
) (𝑀𝑇)𝑘𝑌 + 𝑔 (𝑡

𝑖
)

𝑖 = 0, 1, . . . , 2𝑁 − 𝑚,

(34)

where

𝐹 (𝜆
𝑗𝑘
𝑡 + 𝜇

𝑗𝑘
)

= [ 1

2
cos (𝜆

𝑗𝑘
𝑡 + 𝜇
𝑗𝑘
) cos (2 (𝜆

𝑗𝑘
𝑡 + 𝜇
𝑗𝑘
)) ⋅ ⋅ ⋅ sin (𝑁(𝜆

𝑗𝑘
𝑡 + 𝜇
𝑗𝑘
))] .
(35)

The matrix system (34) can be rewritten as follows:

{
{
{
𝐷(𝑀𝑇)𝑚 −

𝐽

∑
𝑗=0

𝑚−1

∑
𝑘=0

𝑃
𝑗𝑘
𝐸 (𝜆

𝑗𝑘
, 𝜇

𝑗𝑘
) (𝑀𝑇)𝑘}}

}
𝑌 = 𝐺,

(36)

where

𝐷 =
[[[[[
[

𝐹 (𝑡
0
)

𝐹 (𝑡
1
)

...
𝐹 (𝑡

2𝑁−𝑚
)

]]]]]
]

=

[[[[[[[[[[[
[

1
2 cos (𝑡

0
) cos (2𝑡

0
) . . . sin (𝑁𝑡

0
)

1
2 cos (𝑡

1
) cos (2𝑡

1
) . . . sin (𝑁𝑡

1
)

...
...

...
. . .

...

1
2 cos (𝑡

2𝑁−𝑚
) cos (2𝑡

2𝑁−𝑚
) . . . sin (𝑁𝑡

2𝑁−𝑚
)

]]]]]]]]]]]
]

,

𝐸 (𝜆
𝑗𝑘
, 𝜇

𝑗𝑘
)

=
[[[[[[
[

𝐹 (𝜆
𝑗𝑘
𝑡
0
+ 𝜇

𝑗𝑘
)

𝐹 (𝜆
𝑗𝑘
𝑡
1
+ 𝜇

𝑗𝑘
)

...
𝐹 (𝜆

𝑗𝑘
𝑡
2𝑁−𝑚

+ 𝜇
𝑗𝑘
)

]]]]]]
]

=
[[[[[[[
[

𝐹 (𝜆
𝑗𝑘
𝑡
0
)𝐷𝜇

𝑗𝑘

+

𝐹 (𝜆
𝑗𝑘
𝑡
1
)𝐷𝜇

𝑗𝑘

+

...

𝐹 (𝜆
𝑗𝑘
𝑡
2𝑁−𝑚

)𝐷𝜇
𝑗𝑘

+

]]]]]]]
]

=
[[[[[[[
[

𝐹 (𝜆
𝑗𝑘
𝑡
0
)

𝐹 (𝜆
𝑗𝑘
𝑡
1
)

...
𝐹 (𝜆

𝑗𝑘
𝑡
2𝑁−𝑚

)

]]]]]]]
]

𝐷𝜇
𝑗k

+

=
[[[[[[[[
[

1

2
cos (𝜆

𝑗𝑘
𝑡
0
) cos (2𝜆

𝑗𝑘
𝑡
0
) . . . sin (𝑁𝜆

𝑗𝑘
𝑡
0
)

1

2
cos (𝜆

𝑗𝑘
𝑡
1
) cos (2𝜆

𝑗𝑘
𝑡
1
) . . . sin (𝑁𝜆

𝑗𝑘
𝑡
1
)

...
...

...
. . .

...
1

2
cos (𝜆

𝑗𝑘
𝑡
2𝑁−𝑚

) cos (2𝜆
𝑗𝑘
𝑡
2𝑁−𝑚

) . . . sin (𝑁𝜆
𝑗𝑘
𝑡
2𝑁−𝑚

)

]]]]]]]]
]

𝐷𝜇
𝑗𝑘

+
,

𝑃
𝑗𝑘

=
[[[[[[[
[

𝑝
𝑗𝑘

(𝑡
0
) 0 0 . . . 0

0 𝑝
𝑗𝑘

(𝑡
1
) 0 . . . 0

0 0 𝑝
𝑗𝑘

(𝑡
2
) . . . 0

...
...

...
. . .

...

0 0 0 . . . 𝑝
𝑗𝑘

(𝑡
2𝑁−𝑚

)

]]]]]]]
]

,

𝐺 =
[[[[[[[[[
[

𝑔 (𝑡
0
)

𝑔 (𝑡
1
)

𝑔 (𝑡
2
)

...
𝑔 (𝑡

2𝑁−𝑚
)

]]]]]]]]]
]

.

(37)

Hence, the matrix equation (36) corresponding to the basic
equation (5) can be written as 𝑊𝑌 = 𝐺 or in the form of
augmented matrix [𝑊;𝐺], where

𝑊 = [𝑤
𝑖𝑗
] = {

{
{
𝐷(𝑀𝑇)𝑚 −

𝐽

∑
𝑗=0

𝑚−1

∑
𝑘=0

𝑃
𝑗𝑘
𝐸 (𝜆

𝑗𝑘
, 𝜇

𝑗𝑘
) (𝑀𝑇)𝑘}}

}
.

(38)

Therefore, the basic equation (5) is changed into a system of
(2𝑁 − 𝑚 + 1) linear algebraic equations with unknown coef-
ficients 𝑦

0
, 𝑦

1
, . . . , 𝑦

𝑁
, �̂�

1
, . . . , �̂�

𝑁
, which can be written in

the form

𝑊𝑌 = 𝐺, (39)
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or in augmented matrix form

[𝑊;𝐺]

=
[[[[
[

𝑤
00

𝑤
01

𝑤
02

. . . 𝑤
0(2𝑁)

; 𝑔 (𝑡
0
)

𝑤
10

𝑤
11

𝑤
12

. . . 𝑤
1(2𝑁)

; 𝑔 (𝑡
1
)

𝑤
20

𝑤
21

𝑤
22

. . . 𝑤
2(2𝑁)

; 𝑔 (𝑡
2
)

...
...

...
. . .

... ;

...
𝑤

(2𝑁−𝑚)0
𝑤

(2𝑁−𝑚)1
𝑤

(2𝑁−𝑚)2
. . . 𝑤

(𝑁−𝑚)(2𝑁)
; 𝑔 (𝑡

2𝑁−𝑚
)

]]]]
]
.

(40)

Now we should impose the initial conditions 𝑦(𝑘)(−𝜋) =
𝜃
𝑘
to the associated algebraic system of equations in a proper

manner. These initial conditions can be written as

𝐹 (−𝜋) (𝑀𝑇)𝑘𝑌 = [𝜃
𝑘
] , 𝑘 = 0, 1, . . . , 𝑚 − 1. (41)

Therefore, the matrix form of the initial conditions can be
written as

𝑈
𝑘
𝑌 = [𝜃

𝑘
] or [𝑈

𝑘
; 𝜃

𝑘
] , 𝑘 = 0, 1, . . . , 𝑚 − 1, (42)

where

𝑈
𝑘
= 𝐹 (−𝜋) (𝑀𝑇)𝑘 = [𝑢

𝑘0
, 𝑢

𝑘1
, . . . , 𝑢

𝑘(2𝑁)
] ,

𝑘 = 0, 1, . . . , 𝑚 − 1.
(43)

Finally, from (40) and (42), the generalized Pantograph
equation (5) subject to the initial conditions 𝑦(𝑘)(−𝜋) = 𝜃

𝑘

reduces to the following system of algebraic equations:

�̃�𝑌 = �̃�, (44)

where

[�̃�; �̃�]

=

[[[[[[[[[[[[[[[[[[[[
[

𝑤
00

𝑤
01

𝑤
02

. . . 𝑤
0(2𝑁)

; 𝑔 (𝑡
0
)

𝑤
10

𝑤
11

𝑤
12

. . . 𝑤
1(2𝑁)

; 𝑔 (𝑡
1
)

𝑤
20

𝑤
21

𝑤
22

. . . 𝑤
2(2𝑁)

; 𝑔 (𝑡
2
)

...
...

...
. . .

... ;

...
𝑤

(2𝑁−𝑚)0
𝑤

(2𝑁−𝑚)1
𝑤

(2𝑁−𝑚)2
. . . 𝑤

(2𝑁−𝑚)𝑁
; 𝑔 (𝑡

2𝑁−𝑚
)

𝑢
00

𝑢
01

𝑢
02

. . . 𝑢
0(2𝑁)

; 𝜃
0

𝑢
10

𝑢
11

𝑢
12

. . . 𝑢
1(2𝑁)

; 𝜃
1

𝑢
20

𝑢
21

𝑢
22

. . . 𝑢
2(2𝑁)

; 𝜃
2

...
...

...
. . .

... ;

...
𝑢
(𝑚−1)0

𝑢
(𝑚−1)1

𝑢
(𝑚−1)2

. . . 𝑢
(𝑚−1)(2𝑁)

; 𝜃
𝑚−1

]]]]]]]]]]]]]]]]]]]]
]

.

(45)

Thematrix coefficients �̃� of the above systemmay be sparse,
and for solving system of linear equations �̃�𝑌 = �̃�, we can
use some iterative krylov subspace methods and determine
the vector 𝑌 and hence the approximated solution 𝑦

𝑁
(𝑡) =

𝐹(𝑡)𝑌 is obtained.

Remark 1. For more information about iterative krylov sub-
space methods, one can point out to [29]. In this book,
several iterative methods have been introduced for solving
large sparse linear systems.

4. Error Estimation

In this section, we will give an error estimation (which was
previously proposed in the works [27, 28]) for the collocation
scheme that is proposed for solving Pantograph equation (5)
with the aid of residual function. This idea may help us to
estimate the error especially if the exact solution of (5) does
not exist. For this purpose, we can rewrite (5) in the form
𝐿[𝑦(𝑡)] = 𝑔(𝑡), where

𝐿 [𝑦 (𝑡)] = 𝑦(𝑚) (𝑡) −
𝐽

∑
𝑗=0

𝑚−1

∑
𝑘=0

𝑝
𝑗𝑘
(𝑡) 𝑦(𝑘) (𝜆

𝑗𝑘
𝑡 + 𝜇

𝑗𝑘
) ,

𝑡 ∈ [−𝜋, 𝜋] ,
(46)

with the initial conditions 𝑦(𝑘)(−𝜋) = 𝜃
𝑘
, 𝑘 = 0, 1, . . . , 𝑚 −

1. On the other hand, our collocation scheme finds the
approximate solution 𝑦

𝑁
(𝑡) of the problem 𝐿[𝑦

𝑁
(𝑡)] = 𝑔(𝑡) +

𝑅
𝑁
(𝑡), where the residual function 𝑅

𝑁
(𝑡) vanishes at the

collocation nodes and

𝐿 [𝑦
𝑁
(𝑡)] = 𝑦(𝑚)

𝑁
(𝑡) −

𝐽

∑
𝑗=0

𝑚−1

∑
𝑘=0

𝑝
𝑗𝑘
(𝑡) 𝑦(𝑘)

𝑁
(𝜆

𝑗𝑘
𝑡 + 𝜇

𝑗𝑘
) ,

𝑡 ∈ [−𝜋, 𝜋] ,
(47)

with the initial conditions 𝑦(𝑘)

𝑁
(−𝜋) = 𝜃

𝑘
, 𝑘 = 0, 1, . . . , 𝑚 − 1.

Now, we define the error function as 𝑒
𝑁
(𝑡) = 𝑦(𝑡) − 𝑦

𝑁
(𝑡).

Trivially one can write 𝐿[𝑒
𝑁
(𝑡)] = 𝐿[𝑦(𝑡)] − 𝐿[𝑦

𝑁
(𝑡)] =

−𝑅
𝑁
(𝑡) with the initial conditions 𝑒(𝑘)(−𝜋) = 0, 𝑘 =

0, 1, . . . , 𝑚−1. In other words, we construct the error problem
as follows:

𝑒(𝑚)

𝑁
(𝑡) −

𝐽

∑
𝑗=0

𝑚−1

∑
𝑘=0

𝑝
𝑗𝑘
(𝑡) 𝑒(𝑘)

𝑁
(𝜆

𝑗𝑘
𝑡 + 𝜇

𝑗𝑘
) = −𝑅

𝑁
(𝑡) ,

𝑡 ∈ [−𝜋, 𝜋] ,
(48)

with the initial conditions 𝑒(𝑘)(−𝜋) = 0, 𝑘 = 0, 1, . . . , 𝑚 − 1.
Similar to the previous collocation method, we now solve
the above error problem and approximate 𝑒

𝑁
(𝑡) by the aid

of truncated Fourier series (with the 2�̂� + 1 terms) in the
following form:

𝑒
𝑁
(𝑡) ≈ 𝑒

𝑁,�̂�
(𝑡) = 𝑦∗

0

2 +
�̂�

∑
𝑛=1

(𝑦∗

𝑛
cos (𝑛𝑡) + �̂�∗

𝑛
sin (𝑛𝑡)) ,

𝑡 ∈ [−𝜋, 𝜋] , �̂� > 𝑁, 2�̂� + 1 > 𝑚.
(49)

If the exact solution of (5) is unknown, then the absolute
errors |𝑒

𝑁
(𝑡

𝑖
)| = |𝑦(𝑡

𝑖
) − 𝑦

𝑁
(𝑡

𝑖
)| are not found. However, the

absolute errors can be computed approximately with the aid
of the estimated absolute error function |𝑒

𝑁,�̂�
(𝑡)|.

5. Numerical Examples

In this section, several numerical examples are given to
illustrate the accuracy and effectiveness of the proposed
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methods, and all of them are performed on a computer
using programs written in MAPLE 13. In this regard, we have
reported in the tables and figures the values of the exact
solution 𝑦(𝑡), the approximate solution 𝑦

𝑁
(𝑡), the absolute

error function 𝑒
𝑁
(𝑡) = |𝑦(𝑡) − 𝑦

𝑁
(𝑡)|, and estimate absolute

error function 𝑒
𝑁,�̂�

(𝑡) (or the absolute residual functions
associated to (3), (4), and (5)) at any selected points of the
given computational interval. It should be noted that in the
first two examples we provide equations in which our results
are exact, meanwhile other approaches which were based on
the operational matrices of integration and differentiation
such as [5, 11, 14, 16–18] could not obtain the exact solutions.

Example 2. As the first example we consider the following
ODE with the exact solution 𝑦(𝑡) = sin(𝑡)

𝑦 (𝑡) + 𝑦 (𝑡) = sin (𝑡) + cos (𝑡) , 𝑡 ∈ (−𝜋, 𝜋) , (50)

subject to the initial condition 𝑦(−𝜋) = 0.
According to (8), one can approximate the solution of the

above ODE with assumption𝑁 = 1 as follows:
𝑦 (𝑡) ≈ 𝑦

1
(𝑡)

= 𝑦
0

2 + 𝑦
1
cos (𝑡) + �̂�

1
sin (𝑡)

= [12 cos (𝑡) sin (𝑡)] [
[

𝑦
0𝑦
1�̂�
1

]
]

= 𝐹 (𝑡) 𝑌.
(51)

Our aim is to determine the vector components 𝑌 with the
aid of Fourier operational matrix of differentiation. By using
(10) (i.e., 𝐹(𝑡) = 𝐹(𝑡)𝑀𝑇), we have

𝑦 (𝑡) = 𝐹(𝑡)𝑌 = 𝐹 (𝑡)𝑀𝑇𝑌

= [12 cos (𝑡) sin (𝑡)] [
[

0 0 0
0 0 1
0 −1 0

]
]
𝑌.

(52)

Moreover, we can approximate the known function 𝑓(𝑡) =
sin(𝑡) + cos(𝑡) by the aid of the truncated Fourier series in the
form

sin (𝑡) + cos (𝑡) ≈ [12 cos (𝑡) sin (𝑡)] [
[

0
1
1
]
]
. (53)

By substituting the matrix forms of (51)–(53) into (50) we
have

([
[

0 0 0
0 0 1
0 −1 0

]
]
+ [
[

1 0 0
0 1 0
0 0 1

]
]
)𝑌

= [
[

1 0 0
0 1 1
0 −1 1

]
]
𝑌 = [

[

0
1
1
]
]
.

(54)

Since 𝑦(−𝜋) = 0, then 𝐹(−𝜋)𝑌 = [1/2 − 1 0]𝑌 = 0. Thus, the
above matrix equation transforms into the following matrix
equation:

[[
[

1 0 0
0 1 11
2 −1 0

]]
]
𝑌 = [

[

0
1
0
]
]
. (55)

The solution of the above system is 𝑌 = [0 0 1]𝑇 and hence

𝑦
𝑁
(𝑡) = 𝐹 (𝑡) 𝑌 = [12 cos (𝑡) sin (𝑡)] [

[

0
0
1
]
]

= sin (𝑡) ,
(56)

which is the exact solution.

Example 3. As the second example we consider the following
linear difference equation with the exact solution 𝑦(𝑡) =
cos(𝑡)

𝑦 (𝑡 − 𝜋) + 𝑦 (𝑡 + 𝜋
2 ) = − sin (𝑡) − cos (𝑡) ,

𝑡 ∈ (−𝜋, 𝜋) .
(57)

According to (8), one can approximate the solution of the
above difference equation with assumption𝑁 = 1 as follows:

𝑦 (𝑡) ≈ 𝑦
1
(𝑡)

= 𝑦
0

2 + 𝑦
1
cos (𝑡) + �̂�

1
sin (𝑡)

= [12 cos (𝑡) sin (𝑡)] [
[

𝑦
0𝑦
1�̂�
1

]
]

= 𝐹 (𝑡) 𝑌.
(58)

Our aim is to determine the vector components 𝑌 with the
aid of Fourier operational matrix of transmission. By using
(16) (i.e., 𝐹(𝑡 + 𝛼

𝑘
) = 𝐹(𝑡)(𝐷𝛼

𝑘

+
)𝑇, 𝐹(𝑡 − 𝛼

𝑘
) = 𝐹(𝑡)(𝐷𝛼

𝑘

−
)𝑇), we

have

𝑦 (𝑡 − 𝜋) = 𝐹 (𝑡 − 𝜋) 𝑌 = 𝐹 (𝑡) (𝐷𝜋

−
)𝑇𝑌

= [12 cos (𝑡) sin (𝑡)] [
[

1 0 0
0 −1 0
0 0 −1

]
]
𝑌,

(59)

𝑦(𝑡 + 𝜋
2 ) = 𝐹(𝑡 + 𝜋

2 )𝑌 = 𝐹 (𝑡) (𝐷𝜋/2

−
)𝑇𝑌

= [12 cos (𝑡) sin (𝑡)] [
[

1 0 0
0 0 1
0 −1 0

]
]
𝑌.

(60)

Moreover, we can approximate the known function 𝑓(𝑡) =
− sin(𝑡) − cos(𝑡) by the aid of the truncated Fourier series in
the form

− sin (𝑡) − cos (𝑡) ≈ [12 cos (𝑡) sin (𝑡)] [
[

0
−1
−1

]
]
. (61)
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Table 1: Comparison of the actual and estimate absolute errors for𝑁 = 2, 3 and �̂� = 3, 4, 5 of Example 4.

𝑡
𝑖

The actual absolute errors Estimate absolute errors𝑒2(𝑡𝑖) = |𝑦(𝑡
𝑖
) − 𝑦

2
(𝑡

𝑖
)| |𝑒

2,3
(𝑡

𝑖
)| |𝑒

2,4
(𝑡

𝑖
)|

0 4.0000𝑒 − 09 0 3.4000𝑒 − 10
0.2 2.1080𝑒 − 04 2.0730𝑒 − 04 2.1080𝑒 − 04
0.4 7.7779𝑒 − 04 7.8162𝑒 − 04 7.7778𝑒 − 04
0.6 1.0039𝑒 − 03 1.0076𝑒 − 03 1.0039𝑒 − 03
0.8 1.5349𝑒 − 04 1.5161𝑒 − 04 1.5346𝑒 − 04
1 3.1644𝑒 − 04 3.1748𝑒 − 04 3.1646𝑒 − 04

|𝑒
3
(𝑡

𝑖
)| = |𝑦(𝑡

𝑖
) − 𝑦

3
(𝑡

𝑖
)| |𝑒

3,4
(𝑡

𝑖
)| |𝑒

3,5
(𝑡

𝑖
)|

0 4.4000𝑒 − 09 7.0000𝑒 − 10 8.5000𝑒 − 10
0.2 3.5096𝑒 − 06 3.5003𝑒 − 06 3.5037𝑒 − 06
0.4 3.8180𝑒 − 06 3.8078𝑒 − 06 3.8252𝑒 − 06
0.6 3.7010𝑒 − 06 3.6681𝑒 − 06 3.6935𝑒 − 06
0.8 1.8690𝑒 − 06 1.8527𝑒 − 06 1.8792𝑒 − 06
1 1.0250𝑒 − 06 1.0301𝑒 − 06 1.0370𝑒 − 06

By substituting the matrix forms of (59)–(61) into (57), we
have

([
[

1 0 0
0 −1 0
0 0 −1

]
]
+ [
[

1 0 0
0 0 1
0 −1 0

]
]
)𝑌

= [
[

2 0 0
0 −1 1
0 −1 −1

]
]
𝑌 = [

[

0
−1
−1

]
]
.

(62)

The solution of the above system is 𝑌 = [0 1 0]𝑇 and hence

𝑦
𝑁
(𝑡) = 𝐹 (𝑡) 𝑌 = [12 cos (𝑡) sin (𝑡)] [

[

0
1
0
]
]

= cos (𝑡) ,
(63)

which is the exact solution.

Example 4. As the third example, we consider the follow-
ing Pantograph equation with the exact solution 𝑦(𝑡) =
exp(𝑡) sin(2𝑡)

𝑦 (𝑡) = exp ( 𝑡
2) 𝑦 ( 𝑡

2)
+ (sin (2𝑡) + 2 cos (2𝑡) − sin (𝑡)) exp (𝑡) ,

𝑦 (0) = 0, 𝑡 ∈ [0, 1] .
(64)

Since the computational interval of this problem is [0, 1], we
need the roots of the shifted Legendre polynomial �̂�

2𝑁−1
(𝑡) =

𝑃
2𝑁−1

(2𝑡−1) for any arbitrary values of𝑁. Now, we solve this
Pantograph equation by means of the proposed method in

Section 3 for different values of𝑁 such as𝑁 = 2 and 3.These
approximate solutions are as follows:

𝑦
2
(𝑡)
= −6.979679330 + 10.44580744 cos (𝑡)

+ 3.727316997 sin (𝑡) − 3.466128106 cos (2𝑡)
− .848624025 sin (2𝑡) ,

𝑦
3
(𝑡)
= −5.726862705 + 9.652054236 cos (𝑡)

+ 1.209226542 sin (𝑡) − 4.336815209 cos (2𝑡)
+ .652069044 sin (2𝑡) + .4116236736 cos (3𝑡)
− .1710465663 sin (3𝑡) .

(65)

In Table 1, we provide the absolute values of errors for
𝑁 = 2 and 3. Moreover, we estimate the mentioned errors
by solving the associated error problem which is constructed
in Section 4 by using �̂� = 3, 4, and 5. This table shows the
agreement of the estimate errors with the actual errors.

Example 5. As the final example we consider the linear
Pantograph differential equation of first order

𝑦 (𝑡) = −𝑦 (0.8𝑡) − 𝑦 (𝑡) , 𝑦 (0) = 1. (66)

Since the problem (66) has a complicated exact solution, we
compare the results of collocationmethodbased onpresented
method (PM) with the other four methods in Table 2. These
methods that are used to obtain the approximate solutions
of this Example are Walsh series approach [1], Laguerre
series technique [2], Taylor series method [3], and Hermit
series collocation approach [4]. Moreover, it seems that the
Walsh series approach [1] and Laguerre series technique [2]
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Table 2: Comparison between solutions obtained by the present method and the other methods in Example 5.

𝑡
𝑖

Walsh series
method [1]

Laguerre series
method (𝑁 = 20)

[2]

Taylor series
method (𝑁 = 8)

[3]

Hermit series
method (𝑁 = 8)

[4]

Presented
method (𝑁 = 6)

0 1.000000 0.999971 1.000000 1.000000 1
0.2 0.665621 0.664703 0.6664691 0.664691 0.6646909997
0.4 0.432426 0.433555 0.433561 0.433561 0.4335607773
0.6 0.275140 0.276471 0.276482 0.276482 0.2764823286
0.8 0.170320 0.171482 0.171484 0.171484 0.1714841124
1 0.100856 0.102679 0.102744 0.102670 0.1026701264

Re
sid

ua
l h

ist
or

y

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

×10
−4

𝑡

𝑁 = 8

𝑁 = 8

𝑁 = 8

The obtained residuals of the methods using𝑁 = 8

Computational interval

Presented method with
Hermite method with
Taylor method with

Figure 1: Comparison of the residuals of Taylor [3], Hermite [4],
and presented methods of Example 5 for𝑁 = 8.

are not efficient as other Taylor, Hermite, and presented
Fourier methods. Therefore, for illustrating the efficiency of
the proposed method, we depict the history of the residual of
the obtained solution of our scheme together with the asso-
ciated residuals of Taylor and Hermite methods in Figure 1.
From this figure, one can see that the presented method is
more applicable and efficient for solving such Pantograph
equations.

6. Conclusions and Future Works

The aim of this paper is to introduce two new operational
matrices of Fourier series for solving a huge class of high-
order linear differential equations. It should be noted that
operational matrices of differentiation have more accuracy
with respect to the integration ones usually. Also Fourier
series approximation is very effective and useful for ODEs
with periodic solutions. These two advantages together
with the superior results of the proposed scheme (in the
numerical illustrations) encourage the authors to extend
this method for solving high-order linear and nonlinear
Fredholm integro-differential equations [16], systems of
Volterra integral equations [30], high-order linear partial

differential equations [20, 21], and optimal control problems
[31].
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multi-pantograph equation with variable coefficients,” Journal
of Computational and Applied Mathematics, vol. 214, no. 2, pp.
406–416, 2008.

[20] E. Tohidi, “Legendre approximation for solving linear HPDEs
and comparison with taylor and bernoulli matrix methods,”
Applied Mathematics, vol. 3, pp. 410–416, 2012.

[21] E. Tohidi, A. H. Bhrawy, and Kh. Erfani, “A collocation method
based on Bernoulli operational matrix for numerical solution
of generalized pantograph equation,” Applied Mathematical
Modelling, vol. 37, no. 6, pp. 4283–4294, 2013.

[22] E. Tohidi, “Bernoulli matrix approach for solving two dimen-
sional linear hyperbolic partial differential equations with
constant coefficients,” American Journal of Computational and
Applied Mathematics, vol. 2, no. 4, pp. 136–139, 2012.

[23] F. Toutounian, E. Tohidi, and S. Shateyi, “A collocation method
based on Bernoulli operational matrix for solving high order
linear complex differential equations in a rectangular domain,”
Abstract, Applied, Analysis, Article ID 823098, 2013.

[24] S. A. Yousefi and M. Behroozifar, “Operational matrices of
Bernstein polynomials and their applications,” International
Journal of Systems Science, vol. 41, no. 6, pp. 709–716, 2010.

[25] S. Yuzbasi, Bessel polynomial solutions of linear differential,
integral and integro-differential equations [M.S. thesis], Graduate
School ofNatural andApplied Sciences,MuglaUniversity, 2009.

[26] S. Yuzbasi, “A numerical approximation based on the Bessel
functions of first kind for solutions of Riccati type differen-
tialdifference equations,”Computers &Mathematics with Appli-
cations, vol. 64, no. 6, pp. 1691–1705, 2012.

[27] S. Yuzbasi and M. Sezer, “An improved Bessel collocation
method with a residual error function to solve a class of
LaneEmden differential equations,” Computer Modeling, vol. 57,
pp. 1298–1311, 2013.

[28] S. Yuzbasi, M. Sezer, and B. Kemanci, “Numerical solutions of
integro-differential equations and application of a population
model with an improved Legendremethod,”AppliedMathemat-
ical Modelling, vol. 37, pp. 2086–2101, 2013.

[29] Y. Saad, Iterative Methods for Sparse Linear Systems, SIAM,
Philadelphia, Pa, USA, 2nd edition, 2003.

[30] O. R. N. Samadi and E. Tohidi, “The spectral method for solving
systems of Volterra integral equations,” Journal of Applied
Mathematics and Computing, vol. 40, no. 1-2, pp. 477–497, 2012.

[31] E. Tohidi and O. R. N. Samadi, “Optimal control of nonlinear
Volterra integral equations via Legendre polynomials,” IMA
Journal of Mathematical Control and Information, vol. 30, no.
1, pp. 67–83, 2013.



Submit your manuscripts at
http://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


