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Some new weakly singular integral inequalities of Gronwall-Bellman type are established, which can be used in the qualitative
analysis of the solutions to certain fractional differential equations.

1. Introduction

Gronwall-Bellman type integral inequalities play increasingly
important roles in the study of quantitative properties of solu-
tions of differential and integral equations, as well as in the
modeling of engineering and science problems. The integrals
concerning this type of inequalities have regular or contin-
uous kernels, but some problems of theory and practicality
require us to solve integral inequalities with singular kernels;
see [1-4] and the references cited therein. For example, Ye
and Gao [5] considered the integral inequalities of Henry-
Gronwall type and their applications to fractional differential
equations with delay; Ma and Pecari¢ [4] established some
weakly singular integral inequalities of Gronwall-Bellman
type and used them in the analysis of various problems in
the theory of certain classes of differential equations, integral
equations, and evolution equations.

In this paper, we study a certain class of nonlinear
inequalities of Gronwall-Bellman type, which generalizes
some known results and can be used as handy and effective
tools in the study of differential equations and integral equa-
tions. Furthermore, applications of our results to fractional
differential are also involved.

2. Preliminary Knowledge

In this section, we give some inequalities, which will be used
in the proof of the main results.

Lemma 1 (Jensen’s inequality). Let n € N, and let a,,...,a,
be nonnegative real numbers. Then, forr > 1,

($n) =g g
i=1

i=1

Lemma 2. Let I = [t,,T) c R, k(t),b(¢), p(t) € C(I,R"),
(R =[0,00), T < o). Ifu(t) € C(I,R"), and

u(t) <k + th(s)u(s)ds+ Jtp(s)uy(s)ds, tel,
ty o

)
where 0 <y < 1. Then, fort € I, one has
t S o 1/(1-y)
u(t) < [A“V ®) +(1 —y)J VD b () ds]
to
X e L b(s)ds,
(3)

where A(t) = maxtOSSst{k(t)}.

Proof. Givent, < T, < T, fort € [t,, Tl

u(t) < A(T,y) + J: b(s)u(s)ds+ J: p(s)u’ (s)ds. (4)



Define a function z() = A(T,) + [, bs)u(s)ds + [, p(s)

u'(s)ds, t € [ty Tpl; then z(ty) = A(T,), u(t) < z(t), z(t)
is positive and nondecreasing for t € I, and

@) =bOu®)+pOu’ ) <b®)z@t)+p @)z (t).
(5)

Let 2(f) = C(t)ek "%, and C(t,) = z(t,) = A(T,); we obtain

t D bV 1/(1-y)
C()< [Al‘y (T0)+(1—y)J V7D J @) "p(s)ds] ,
to
(6)
which implies that
t O bV 1/(1-y)
z(t)g[Al‘Y (Ty)+(1 —y)J V7D, 4@ "p(s)ds]
to
xelo POy e [to, Ty ] -
7)
And so
T, o 1/(1-y)
w(Ty)2| A (T)+(1-y) | R o s
to
[ b(s)ds
x et , te[t,T,].
(8)

By the arbitrary of T, € I, we obtain the inequality (3). The
proof is complete. 0

Lemma 3. Let k(t),b(t), p(t) € C(, RY), o) € C([t, -
r,tol, RY), and k(t,) = ¢(t,). If u(t) € C(I,R") and

u(t)Sk(t)+th(s)u(s)d5+Jtp(s)uy(s—r)ds,

tel, ©)

uty <o), telt,—-nt),

where 0 <y < 1 andr > 0 is a real constant, then

s 1/(1-y)
u(t) < [A“Y ) +(1-y) Jt VD b () ds]

to

t
-[to b(s)ds

xe , te[ty+rT),

(10)

u(t) < [A (tg+1)+ LW p(s)@¥ (s—1) ds]
0 (11)

t
xeho POk 4 [t to+ 1),

where A(t) is defined as that in Lemma 2.
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Proof. Fort € [t,,t, + r], we have

u(t) Sk(t)+th(s)u(s)ds+ Jtp(s)goy(s—r)ds

to

SA(ty+1)+ J,t b(s)u(s)ds (12)
to

to+r
+ J p(s)¢¥ (s—r)ds.
ty

By Gronwall inequality, we have the inequality (11). We prove
that (10) holds for t € [t,+r,T) now. Given that T, € [t +7,T)
and for t € [t, + 1, T,], we get

u(t) < A(T,) + J: b(s)u(s)ds+ J: p)u’ (s—r)ds.
0 0 13)

Define a function z(t) = A(T,) + LZ b(s)u(s)ds+ '[; pls)u?(s—

r)ds,t € [ty + 7, Tyl; then z(¢,) = A(T,), u(t) < z(t), z(t) is
positive and nondecreasing for t € [t, + r,T,], and

ZE)=b®u®)+pt)u (t-r)
<bM)z®)+pt)' (t-r) (14)
sbWz+p@)z'(t).

As that in the proof of Lemma 2, we obtain
2(0) < [Al—y (T)+(1-7) J: LD L vde o ds]l/(l—y)

0

t
xelo P04y e [to+1.Tp].

(15)
And then
T, s 1/(1-y)
w(Ty)<| A7 () (1-p) [ e R o
to
To
xelo by [ty +71.Tp].
(16)

By the arbitrary of T, € (¢, + r,T), we obtain the inequality
(10). The proof is complete. O

3. Main Results

Now, we are in a position to deal with the integral inequality
with weak singular kernels.

Theorem 4. Let a(t),b(t), p(t) € C(I,R"). Ifu(t) € C(I,R")
and
u(t)<a(t)+ Jt t - )P b (s)u(s)ds
o 17)
+J (t-s)F " p(s)u’ (s)ds, tel,
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where 3 > 0 and 0 < y < 1 are constants, then the following
assertions hold.

(i) Suppose that 3 > 1/2. Then

u(t) < [Alfy ®+(1-y)K,

¢ ., 1/2(1-y)
X J DK [, V(0o p2 ()R, (s)ds (18)
t

0
o KD f POds o
where A(t) = maxtogsg{Ze_Ztaz(t)}, K, = 2I(2B -
1)/4P7Y, and R, (t) = 2071,

(ii) Supposethat € (0,1/2],q = (1+p)/B, and p = 1+ .
Then

u(t) < [Alz_y t+(1-y)K,

t s 1/9(1-y)
% j e(y—l)Kz Jfo bq(a)dapq (S) R2 (S) ds (19)
t

0
x e/ Ji A e,
where A,(t) = max, ., 297 Mgi(t)}, K, =

249211 - (1- B)p)/p PP and Ry(1)
11t

Proof. (i) Using the Cauchy-Schwarz inequality, we obtain

¢ 1/2
ult)<alt)+ <J (t - s)zﬁ_2e25d5>

X <J: b2 (s) e u” (s) ds)l/2

t 1/2
+ (J (t- s)zﬁ_zezsds>
t

; 1/2
X (J't P> (s)e Zu™ (s) ds)

24T (26-1)\"
4B

(20)
<al(t)+ (

t 1/2
X (J b* (s) e > u’ (s) ds)

2t 1/2
. (2e r(28- 1))

4B

; 1/2
X(Jt P’ (s)e = u’ (s) ds) .

Using Lemma 1, we obtain

2¢T (28~ 1)

2 2
u” (t) <2a” (t) + pT

X (Jt b* (s) e =u? (s)ds + Jt P’ (s)e u (s) ds> .
ty to
(21)

Let v(t) = [e"tu(t)]z; we get

v(t) <A, (t) +K, Jt b% (s) v (s)ds
t v (22)
+K, L P2 (5)R, (s) V" (s)ds.

Using Lemma 2 and noticing that A, (t) is nondecreasing, we
get

v(t) < [Alfy ) +(1-y)K,

t s s 1/(1-y)
« J RIS [v (a)dapz ()R, (s) ds (23)
to

ta2
% eKl Jto b (s)ds;

by the relationship of v(t) and u(t), the first inequality (18)
holds.

(ii) By the hypothesis, we get (1/p) + (1/q) = 1. Using
Holder inequality, we obtain

t 1/p
u(t)<a(t)+ (J (t— s)Pﬁ_PeP5d5>

to

t 1/q
x <J b (s)e Tul(s) ds>

0

t 1/p
+ (J (t—s)Pﬁ*Pepsds)
to

t 1/q
X <J pl(s)e Tut (s) ds>
ty
(24)

T (1-(1 —ﬁ)p))“”

Pl—(l—ﬁ)p

t 1/q
x <j b1(s)e Tul(s) ds>
t

0

. (epfru -( —/3)1?))1“’

pl—(l—ﬁ)p

Sa(t)+(

t 1/q
x <L PL(s) e TuT (s) ds> .



Using Lemma 1, we obtain

T (1-(1-B)p) >‘”P

q qa-1_q 2q-2
ul(t) <27 a’(t)+2 < JEREn

X (Jt b1 (s) e Pul(s)ds + Jt pl(s)e Tut (s) ds> .
ty to
(25)

Let v(t) = [e”"u(t)]?, we get

v(t) <A, (t) + K, Jt bl (s)v(s)ds
‘ (26)
¢
+K, J PL(s)R, (s)v' (s)ds.
t

Using Lemma 2 and noticing that A,(t) is nondecreasing, we
get

v(t) < [Alz’y ) +(1-y)K,

t s 1/9(1-y)
X J (VDK [, Vl(e)do P (s)R, (s)ds (27)
t

0

t
% eKZ -[‘o bq(s)ds)

and by the relation of u(¢) and v(¢), (19) holds. The proof is
complete. O

Theorem 5. Let a(t),b(t), p(t) € C(I,R"), and a(t,) = ¢(t,).
Ifu(t) € C([t, — ., T),R") with

ut)<a(t)+ r (t - )P b (s)u(s)ds

to
t
+J -\ p(s)u’ (s—r)ds, tetyT),
to

ut) <), telty—rty),

(28)

where 3 > 0 and 0 < y < 1 are constants, then the following
assertions hold.

(i) Suppose that 3 > 1/2. Then

u(t) < [AI(V ®) +(1-y)K,

Y -DK, [ B o) 120
xj R 1, Ve apz(s)Rl(s)ds
t

0

2
x I HEUDLEOW ey g T,
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u(t) < [Al (tp+7)+ K4

y to+r 5 2y ay(en) 1/2
P R (e (s—1)e ds
t

t 2
w HHE/D [ PO [torto +7),

(29)

where A,(t), K, and R,(s) are defined as those in
Theorem 4.

(ii) Supposethat € (0,1/2],q = (1+pB)/B, andp = 1+p.
Then,

() < [A;—Y O +(1-y)K,

t s 1/q(1-y)
xj V~VK: [, bl()do P1 ()R, (s)ds
t

0

ta
x HESD [ POy [ty +7.T),

u(t) < [Az (tp+7)+ K,

to+r 1/q
X J PL(S)R, (s) T (s — 1) e g
to

fpd
x g/ Ji¥ (s)ds), te(tyty+1),

(30)

where A,(t), K,, and R,(s) are defined as those in
Theorem 4.

Proof. (i) Using the Cauchy-Schwarz inequality by (28), we
obtain

¢ 1/2
ut)<al)+ <J (t - s)zﬁ_2e25d5>

X <J;t b2 (s) e u? (s) ds)l/2

t 1/2
+ (J (t - s)zﬁ_zezsds>
t

t 12
X (J; p(s)e u™ (s—1) ds)

26T (28— 1) )1/2

Sa(t)+< I

t 1/2
X (J b* (s) e > u’ (s) ds)
t
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4B

. <2e2t1“ 2f-1) )“2

¢ 12
x (J pr(s)e u? (s—1) ds> , tel.
to

(31)
Using Lemma 1, we obtain
2 _
u* (t) <24 () + %
t
x (J b (s) e =u? (s) ds (32)
to
t
+ J pr(s)e Pu? (s—7) ds) .
t
Let v(t) = [e 'u(t)]’, we get
t
v(it) <A, )+ K J b (s)v(s)ds
‘ (33)

t
+K1J P ()R, (5)V' (s—r)ds, tel
tU

Using Lemma 3, we get the first inequality of (29) and the
second inequality of (29) is easily obtained.

(ii) By the hypothesis, we get (1/p) + (1/q) = 1. Using
Hoélder inequality, we obtain

t 1/p
ul®)<alt)+ (J (t - s)Pﬁ_Pepsds>

tO
t 1/q
X (J b1 (s) e Pul (s) ds)
t
t 1/p
+ (J (t- s)pﬁfpepsds>
ty

t 1/q
X (J pl(s)e Tul (s—r) ds>
t
(34)

wwu—u—mm)w

<al(t)+ ( pl—(l—ﬁ)p

t 1/q
X (J b1(s)e Tul(s) ds)
t

0

+(wwu—u—mm)w

pl—(l_ﬁ)P

t 1/q
X (J pl(s)e Tul (s—r) ds> , tel.
to

5
Using Lemma 1, we obtain
/p
-1 2g2 €T (1= (1-PB)p) !
ul (1) <29 a (t) + 27 ( PR
t
X J bl (s)e Tul(s)ds
ty
; (35)
N 2242( e”T(1-(1-p)p) )q ?
pPp
t
X J pls)eTul (s—r)ds, tel
to
Let v(t) = [e"u(t)]7; we get
t
v(t) <A, (t) + K, J bi(s)v(s)ds
)
(36)

t
+sz PLGS)R, (s)VV (s—r)ds, tel.
tO

Using Lemma 2, we get the first inequality of (30) and the
second inequality of (30) is easily obtained. The proof is
complete. O

For the case of y = 1, this kind of inequalities has
been considered by Pachpatte [6] and the case of retarded
integral inequalities also has been obtained by Ye and Gao
[5, Theorem 2.5]. So, we list only a theorem using different
condition and method from Pachpatte [6, Theorem 1.2.4].

Theorem 6. Let a(t), b(t), p(t) € C(I,R"), and a(ty) = ¢(t,).
Ifu(t) € C(I,R") and

u(t) <al(t)+ Jt (t—s)P (b(s)+p(s))u(s)ds, tel,
t

0

(37)
where 3 > 0, then the following assertions hold.
(i) Suppose that 3 > 1/2. Then
t 2
u(t) < A11/2 (t) e(Kl/Z) Jto(b(s)+p(s)) ds+t’ tel (38)

where A, (t) and K, are defined as those in Theorem 4.
(ii) Suppose that 3 € (0,1/2],q= (1+p)/Band p = 1+p.

Then

u(t) < AV (1) 0y ORIy p e (39)

>

where A,(t) and K, are defined as those in Theorem 4.

Remark 7. In [6, Theorem 1.2.4], a(t) is continuously differ-
entiable, but in Theorem 6, a(t) is only continuous in the
interval I ¢ RY, so the methods of [6, Theorem 1.2.4]
are invalid for Theorem 6. In [7, Theorem 1], Ye et al. also
considered the similar integral inequalities using an iterative
method, but we use different methods differing from the
previously mentioned two papers.



4. Applications to FDEs

In this section, we present applications of Theorem 4 and
Theorem 5 to study certain properties of solutions of frac-
tional differential equations.

Consider the following fractional differential equations:

D) =h(t)x () + f (t,%),
(40)
WDix(t) =be k=012, ,m-1,
fort € I, m = —[-p], where D? represents the Caputo

fractional derivative of order 8 (8 > 0), h(t) € C(I,R"), and
f(t,x) € CU x R,R). The corresponding Volterra fractional
integral equation, see [8, Lemma 6.2], becomes

x(t) = mzz;(t—to) +r(ﬁ)

X Jt t - [h(s)x(s) + f (s, x(s))]ds, tel
0 (41)

Theorem 8. Suppose that |h(t)x(t) + f(t, x)| < b(t)|x(®)| +
p(O|x(t)[Y, where b(t), p(t) € C(ILR"), 0 < y < 1 is real
number. If x(t) is any solution of the initial value problem (40),
then the following estimations hold.

(i) Suppose that f > 1/2. Then

(1-y)K
> (B)

t > s
« J JLO-DKT(B) [} b (0)do
tﬂ

Ix ()] < [B}‘V () +

(42)

1/2(1-y)
X p2 ()R, (s) ds]

2 to2
x TG/ (B) jto b (s)ds)) tel

where B, (t) = maxt0<s<t{26_2t(z (|bk|/k')(t to)* ) }.
(ii) Suppose that 3 € (0,1/2],q = (1+p)/B, and p = 1+p.
Then
(1-y)K,
I (B)

y J * S0/ [} Bi(o)do
t

Ix ()] < [B;‘Y ®) +

(43)
1/q(1-y)
x p1(s) R, (s)ds

o T I v g

where B,(t) = maxtoSsst{quleftq(ZZS(Ibkl/k!)(t—

to)k)q}. Notice that K, K,,R,(s), and R,(s) are the
same as those in Theorem 4, m = —[—f3].
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Proof. By (41), it is easy to derive that

mllkl 1

Jx (1)) < Z (1) + 0]

x jt (t— s [b(s)x(s) + f (s,x(s))] ds

1

<5 Bt g

x j (t = P [b(8) [x (9] + p(s) lx (5)]"] ds,

tel.
(44)

Using Theorem 4, we get the desired conclusion. This proves
the theorem. O

Considering the following fractional differential equa-
tions:

toD‘fx(t) =h@)x@®)+ ftx({t—-71), (45)

fort e I = [t,, T), with the given initial condition x(t) = ¢(t),
t € [to—1,t,], @ isagiven continuously differentiable function
ont € [ty —1,ty] up to order m (m = —[-f]). In this case, we
denote ¢¥(t,) = b, k = 0,1,2,...,m - 1,and D?, 3, h, and
f are defined as those in (40).

In [8, Lemma 6.2], the initial value problem (45) is
equivalent to the Volterra fractional integral equation:

x(t) = mf%(t—to)k + ﬁ
k=0
X Jt: (t =) () x () + f (s, x(s—1))]ds,
tel,
x() =), telty—rty).

(46)
The next result deals with the upper bounds of solution of

(45).

Theorem 9. Suppose that |h(t)x(t) + f(t, x)| < b(t)|x)| +
p(6)|x(t)|Y, where b(t), p(t) € C(I,R"), and 0 < y < 1 is real
number. If x(t) is any solution of the initial value problem (46),
then the following estimations hold.

(i) Suppose that 3 > 1/2. Then
-9k
2 (B)

t S
y J L DETB) [} ¥ (0)do
t

0

Ix ()] < [B}‘V ) +

1/2(1-y)
X p2 ()R, (s)ds

2 t2
x (ORI O8 y e [ ),
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|x ()] < [Bl (tg+ 1) + I"ZL(t&

to+r
xL PR, (5) 9™

1/2
x (s —r)e s

2 t2
X E(H(KI/ZF ® I‘O b (S)ds), te [to> ty + 1’) .

(47)

(ii) Supposethat 3 € (0,1/2],q=(1+p)/Bandp =1+p.
Then

ummﬁywﬁtﬁ&

I (p)

t s
o J L-DK/TUB) [ ¥ (@)do
tl]

1/q(1-y)
x p1(s)R, (s)ds

q b pa
x HHUGLATEN [ B0y )

(48)

|x ()] < [Bz (tg + 1)+ WLC&

to +r
7 P OR O
t

1/q
x (s—r)e M gs

q t o
x RSB [ VO )

Notice that B,(t), B,(t), K,, K, R, (s), and R,(s) are the same
as those in Theorem 8, m = —[—p].

The proof of this theorem is omitted because it is similar
to that of Theorem 8.

Acknowledgments

The authors thank the referee for his/her useful comments on
this paper. This research was partially supported by the NSF
of China (Grants 11171178 and 11271225), Science and Tech-
nology Project of High Schools of Shandong Province (Grant
J12LI52), and program for Scientific Research Innovation
Team in Colleges and Universities of Shandong Province.

References

[1] R. P. Agarwal, S. Deng, and W. Zhang, “Generalization of a
retarded Gronwall-like inequality and its applications,” Applied
Mathematics and Computation, vol. 165, no. 3, pp. 599-612,
2005.

[2] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and
Applications of Fractional Differential Equations, vol. 204 of
North-Holland Mathematics Studies, Elsevier, Amsterdam, The
Netherlands, 2006.

[3] O. Lipovan, “A retarded Gronwall-like inequality and its appli-
cations,” Journal of Mathematical Analysis and Applications, vol.
252, no. 1, pp. 389-401, 2000.

[4] Q.-H.Ma and J. Pecari¢, “Some new explicit bounds for weakly
singular integral inequalities with applications to fractional
differential and integral equations,” Journal of Mathematical
Analysis and Applications, vol. 341, no. 2, pp. 894-905, 2008.

[5] H. Ye and J. Gao, “Henry-Gronwall type retarded integral
inequalities and their applications to fractional differential
equations with delay;” Applied Mathematics and Computation,
vol. 218, no. 8, pp. 4152-4160, 2011.

[6] B. G. Pachpatte, Integral and Finite Difference Inequalities and
Applications, Elsevier, Oxford, UK, 2006.

[7] H. Ye, J. Gao, and Y. Ding, “A generalized Gronwall inequality
and its application to a fractional differential equation,” Journal
of Mathematical Analysis and Applications, vol. 328, no. 2, pp.
1075-1081, 2007.

[8] 1. Podlubny, Fractional Differential Equations, Academic Press,
San Diego, Calif, USA, 1999.



Advances in Advances in Journal of Journal of
Operations Research lied Mathematics ability and Statistics

il
PR
S Rt
£ 2 §

\ ‘

The Scientific
\{\(orld Journal

International Journal of
Differential Equations

Hindawi

Submit your manuscripts at
http://www.hindawi.com

International Journal of

Combinatorics

Advances in

Mathematical Physics

%

Journal of : Mathematical Problems Abstract and Discrete Dynamics in
Mathematics in Engineering Applied Analysis Nature and Society

Journal of

Complex Analysis

International
Journal of
Mathematics and
Mathematical
Sciences

Journal of
'

al of Journal of

Function Spaces Stochastic Analysis Optimization

Journal of International Jo




