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By formulating a contraction mapping and the matrix exponential function, the authors apply linear matrix inequality (LMI)
technique to investigate and obtain the LMI-based stability criterion of a class of time-delay Takagi-Sugeno (T-S) fuzzy differential
equations. To the best of our knowledge, it is the first time to obtain the LMI-based stability criterion derived by a fixed point theory.
It is worth mentioning that LMImethods have high efficiency and other advantages in largescale engineering calculations. And the
feasibility of LMI-based stability criterion can efficiently be computed and confirmed by computer Matlab LMI toolbox. At the end
of this paper, a numerical example is presented to illustrate the effectiveness of the proposed methods.

1. Introduction

In this paper, we consider a class of delayed impulsive
differential equations, which admits some biomathematics,
physics, and engineering backgrounds, including the famous
cellular neural networks proposed by Chua and Yang in
1988 [1, 2]. In practice, both time delays and impulse are
unavoidable and may cause undesirable dynamic network
behaviors such as oscillation and instability. So the sta-
bility analysis for delayed impulsive neural networks has
become a topic of great theoretic and practical importance
in recent years [3–25]. However, the research skill of the
above literature is mainly based on Lyapunov theory. And
there are many difficulties in applications of corresponding
theory to the specific problems [26–32]. Recently, Burton and
other authors have applied fixed point theory to investigate
the stability of deterministic systems and obtained some
more applicable results [11, 26–42]. For example, in [11],
the authors used Leray-Schauders fixed point theorem to
obtain the stability criteria of neural networks. Besides, the
contraction-mapping theory is also an important fixed point
theory in studying the stability of dynamics equations (see,
e.g., [11, 33, 39–42]). On the other hand, fuzzy logic theory
has shown to be an appealing and efficient approach to

dealing with the analysis and synthesis problems for complex
nonlinear system [20–25]. In practice, the fuzzy model is
far more important than stochastic model. Among various
kinds of fuzzy methods, Takagi-Sugeno (T-S) fuzzy models
provide a successful method to describe certain complex
nonlinear systems using some local linear subsystems. To
the best of our knowledge, few authors have used the fixed
point theorem to study the stability of Takagi-Sugeno fuzzy
differential equations with impulses. In addition, the LMI-
based stability criterion of neural networks has never been
investigated or obtained via any of the fixed point theories.
Such a situation motivates our present study. Motivated by
the above related literature [3–9, 11, 26–42], we will not only
apply the fixed point theory to study the impulsive Takagi-
Sugeno fuzzy dynamics equations but also try to obtain the
LMI-based stability criterion by applying the contraction-
mapping theory. To the best of our knowledge, it is the
first time to obtain the LMI-based stability criterion derived
by a fixed point theory. It is worth mentioning that LMI
methods have high efficiency and other advantages in large-
scale engineering calculations. And the feasibility of LMI-
based stability criterion can efficiently be computed and
confirmed by computer Matlab LMI toolbox. In the end of
this paper, a numerical example is presented to illustrate the
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effectiveness of the proposed methods. Finally, a conclusion
is given in the final chapter.

2. Preliminaries

Let us consider the following delayed differential equations:

𝑑𝑥 (𝑡)

𝑑𝑡
= −𝐵𝑥 (𝑡) + 𝐶𝑓 (𝑥 (𝑡))

+ 𝐷𝑔 (𝑥 (𝑡 − 𝜏 (𝑡))) , 𝑡 ⩾ 0, 𝑡 ̸= 𝑡𝑘,

(1)

equipped with the impulsive condition

𝑥 (𝑡
+

𝑘
) − 𝑥 (𝑡𝑘) = 𝜌 (𝑥 (𝑡𝑘)) , 𝑘 = 1, 2, . . . , (2)

and the initial condition

𝑥 (𝜃) = 𝜙 (𝜃) , 𝜃 ∈ [−𝜏, 0] , (3)

where 𝑥(𝑡) = (𝑥1(𝑡), 𝑥2(𝑡), . . . , 𝑥𝑛(𝑡))
𝑇

∈ 𝑅
𝑛
, 𝜙(𝜃) ∈

𝐶[[−𝜏, 0], 𝑅
𝑛
]. Functions 𝑓(𝑥) = (𝑓1(𝑥1(𝑡)), 𝑓2(𝑥2(𝑡)), . . . ,

𝑓𝑛(𝑥𝑛(𝑡)))
𝑇

∈ 𝑅
𝑛, 𝑔(𝑥(𝑡 − 𝜏(𝑡))) = (𝑔1(𝑥1(𝑡 − 𝜏(𝑡))),

𝑔2(𝑥2(𝑡 − 𝜏(𝑡))), . . . , 𝑔𝑛(𝑥𝑛(𝑡 − 𝜏(𝑡))))
𝑇

∈ 𝑅
𝑛, 𝜌(𝑥(𝑡)) =

(𝜌1(𝑥1(𝑡)), 𝜌2(𝑥2(𝑡)), . . . , 𝜌𝑛(𝑥𝑛(𝑡)))
𝑇

∈ 𝑅
𝑛, and time delays

0 ⩽ 𝜏(𝑡) ⩽ 𝜏 for all 𝑖 = 1, 2, . . . , 𝑛. The fixed impulsive
moments 𝑡𝑘 (𝑘 = 1, 2, . . .) satisfy 0 < 𝑡1 < 𝑡2 < ⋅ ⋅ ⋅ with
lim𝑘→∞𝑡𝑘 = ∞. 𝑥(𝑡+

𝑘
), and 𝑥(𝑡

−

𝑘
) stand for the right-hand

and left-hand limits of 𝑥(𝑡) at time 𝑡𝑘, respectively. We always
assume 𝑥(𝑡

−

𝑘
) = 𝑥(𝑡𝑘), for all 𝑘 = 1, 2, . . .. Similarly as in [33],

we assume in this paper that 𝑓(0) = 𝑔(0) = 𝜌(0) = 0 ∈ 𝑅
𝑛.

Constant matrix 𝐵 = diag(𝑏1, 𝑏2, . . . , 𝑏𝑛) is a positive
definite diagonal matrix, and both 𝐶 = (𝑐𝑖𝑗)𝑛×𝑛 and 𝐷 =

(𝑑𝑖𝑗)𝑛×𝑛 are matrices with 𝑛 × 𝑛 dimension. It is well known
that the above equation admits its practical implications.
For example, it can serve as a model of impulsive cellular
neural networks with time-varying delays. The parameter
𝑐𝑖𝑗 denotes the connection weight of the 𝑗th neuron on the
𝑖th neuron at time 𝑡. And the parameter 𝑑𝑖𝑗 represents the
connection strength of the 𝑗th neuron on the 𝑖th neuron at
time 𝑡 − 𝜏(𝑡). The constant 𝑏𝑖 represents the rate with which
the 𝑖th neuron will reset its potential to the resting state when
disconnected from the network and external inputs.𝑓𝑗(𝑥𝑗(𝑡))
is the activation function of the 𝑗th neuron at time 𝑡, and
𝑔𝑗(𝑥𝑗(𝑡 − 𝜏(𝑡))) represents the activation function of the 𝑗th
neuron at time 𝑡 − 𝜏(𝑡).

Below, we describe the T-S fuzzy mathematical model
with time delay as follows.

Fuzzy Rule 𝑗:
IF 𝜔1(𝑡) is 𝜇𝑗1 and . . . 𝜔𝑠(𝑡) is 𝜇𝑗𝑠, THEN

𝑑𝑥 (𝑡)

𝑑𝑡
= −𝐵𝑥 (𝑡) + 𝐶𝑗𝑓 (𝑥 (𝑡)) + 𝐷𝑗𝑔 (𝑥 (𝑡 − 𝜏 (𝑡))) ,

𝑡 ⩾ 0, 𝑡 ̸= 𝑡𝑘, 𝑘 = 1, 2, . . .

𝑥 (𝑡
+

𝑘
) − 𝑥 (𝑡𝑘) = 𝜌 (𝑥 (𝑡𝑘)) , 𝑘 = 1, 2, . . .

𝑥 (𝜃) = 𝜙 (𝜃) , 𝜃 ∈ [−𝜏, 0] ,

(4)

where 𝜔𝑘(𝑡) (𝑘 = 1, 2, . . . , 𝑠) is the premise variable, 𝜇𝑗𝑘 (𝑗 =

1, 2, . . . , 𝑟; 𝑘 = 1, 2, . . . , 𝑠) is the fuzzy set that is characterized

by membership function, 𝑟 is the number of the IF-THEN
rules, and 𝑠 is the number of the premise variables. By the
way of a standard fuzzy inference method, the system (4) is
inferred as follows:
𝑑𝑥 (𝑡)

𝑑𝑡

= −𝐵𝑥 (𝑡) +

𝑟

∑

𝑗=1

ℎ𝑗 (𝜔 (𝑡)) [𝐶𝑗𝑓 (𝑥 (𝑡)) + 𝐷𝑗𝑔 (𝑥 (𝑡 − 𝜏 (𝑡)))] ,

𝑡 ⩾ 0, 𝑡 ̸= 𝑡𝑘, 𝑘 = 1, 2, . . . ,

𝑥 (𝑡
+

𝑘
) − 𝑥 (𝑡𝑘) = 𝜌 (𝑥 (𝑡𝑘)) , 𝑘 = 1, 2, . . . ,

𝑥 (𝜃) = 𝜙 (𝜃) , 𝜃 ∈ [−𝜏, 0] ,

(5)

where 𝜔(𝑡) = [𝜔1(𝑡), 𝜔2(𝑡), . . . , 𝜔𝑠(𝑡)], ℎ𝑗(𝜔(𝑡)) = 𝑤𝑗/

∑
𝑟

𝑘=1
𝑤𝑘(𝑤(𝑡)), 𝑤𝑗(𝜔(𝑡)) : 𝑅

𝑠
→ [0, 1] (𝑗 = 1, 2, . . . , 𝑟) is the

membership function of the system with respect to the fuzzy
rule 𝑗. ℎ𝑗 can be regarded as the normalized weight of each
IF-THEN rule, satisfying ℎ𝑗(𝜔(𝑡)) ⩾ 0 and ∑

𝑟

𝑗=1
ℎ𝑗(𝜔(𝑡)) = 1.

For convenience’s sake, we introduce the following stan-
dard notations similarly as [10, (iii)–(X)]:

𝑄 = (𝑞𝑖𝑗)𝑛×𝑛
> 0 (< 0) ,

𝑄 = (𝑞𝑖𝑗)𝑛×𝑛
⩾ 0 (⩽ 0) ,

𝑄1 ⩾ 𝑄2 (𝑄1 ⩽ 𝑄2) ,

𝑄1 > 𝑄2 (𝑄1 < 𝑄2) ,

𝜆minΦ, the identity matrix 𝐼 and the symmetric terms ∗.

(6)

In addition, we denote |𝐶| = (|𝑐𝑖𝑗|)𝑛×𝑛 for any matrix 𝐶 =

(𝑐𝑖𝑗)𝑛×𝑛 and |V| = (|V1|, |V2|, . . . , |V𝑛|)
𝑇 for any V = (V1, V2, . . . ,

V𝑛)
𝑇
∈ 𝑅
𝑛. Denote the finite setN = {1, 2, . . . , 𝑛}.

Throughout this paper, we assume

(A1) 𝑓𝑗 is locally Lipschitz continuous, and there exists a
positive constant 𝐹𝑗 > 0 such that |𝑓󸀠

𝑗
(𝑟)| ⩽ 𝐹𝑗 for all

𝑟 ∈ 𝑅 at which 𝑓𝑗 is differentiable;
(A2) 𝑔𝑗 is locally Lipschitz continuous, and there exists a

positive constant 𝐺𝑗 > 0 such that |𝑔󸀠
𝑗
(𝑟)| ⩽ 𝐺𝑗 for all

𝑟 ∈ 𝑅 at which 𝑔𝑗 is differentiable;
(A3) 𝜌𝑗 is locally Lipschitz continuous, and there exists a

positive constant𝐻𝑗 > 0 such that |𝜌󸀠
𝑗
(𝑟)| ⩽ 𝐻𝑗 for all

𝑟 ∈ 𝑅 at which 𝜌𝑗 is differentiable.

Lemma 1 (see [25]). Let 𝑓 : 𝑅
𝑛

→ 𝑅
𝑛 be locally Lipschitz

continuous. For any given 𝑥, 𝑦 ∈ 𝑅
𝑛, there exists an elementw

in the union ∪𝑧∈[𝑥,𝑦]𝜕𝑓(𝑧) such that

𝑓 (𝑦) − 𝑓 (𝑥) = w (𝑦 − 𝑥) , (7)

where [𝑥, 𝑦] denotes the segment connecting 𝑥 and 𝑦.
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Remark 2. From Lemma 1, (A1)–(A3), and [10, equation
(27)], we can similarly derive

󵄨󵄨󵄨󵄨𝑓 (𝑥) − 𝑓 (𝑦)
󵄨󵄨󵄨󵄨 ⩽ 𝐹

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨 , 𝑥, 𝑦 ∈ 𝑅

𝑛
,

󵄨󵄨󵄨󵄨𝑔 (𝑥) − 𝑔 (𝑦)
󵄨󵄨󵄨󵄨 ⩽ 𝐺

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨 , 𝑥, 𝑦 ∈ 𝑅

𝑛
,

󵄨󵄨󵄨󵄨𝜌 (𝑥) − 𝜌 (𝑦)
󵄨󵄨󵄨󵄨 ⩽ 𝐻

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨 , 𝑥, 𝑦 ∈ 𝑅

𝑛
,

(8)

where matrices 𝐹 = diag(𝐹1, 𝐹2, . . . , 𝐹𝑛), 𝐺 =

diag(𝐺1, 𝐺2, . . . , 𝐺𝑛), and𝐻 = diag(𝐻1, 𝐻2, . . . , 𝐻𝑛).

Remark 3. In many previous literature, 𝑓𝑖, 𝑔𝑖 (𝑖 ∈ N)

are always assumed to be globally Lipschtiz continuous.
However, the most common function 𝑓𝑖(𝑟) = 𝑟

2 is not
globally Lipschtiz continuous in 𝑅

1. Note that we extend the
functions 𝑓, 𝑔 from global Lipschtiz continuous functions to
locally Lipschtiz continuous functions. Obviously, 𝑓𝑖(𝑟) = 𝑟

2

is a local Lipschitz continuous function.
Similarly as is [11, Definition 2.2], the exponential stability

is defined as follows.

Definition 4. Dynamic equation (5) is said to be exponentially
stable if, for any initial condition 𝜙(𝑠) ∈ 𝐶[[−𝜏, 0], 𝑅

𝑛
], there

exists a pair of positive constants 𝑎 and 𝑏 such that

󵄩󵄩󵄩󵄩𝑥 (𝑡; 𝑠, 𝜙)
󵄩󵄩󵄩󵄩 ⩽ 𝑏𝑒

−𝑎𝑡
, ∀𝑡 > 0, (9)

where the norm ‖𝑥(𝑡)‖ = (∑
𝑛

𝑖=1
|𝑥𝑖(𝑡)|

2
)
1/2

.

3. Main Result

Before giving the main result of this paper, we need to define
the matrix exponential function as follows.

Definition 5. For a diagonal constants matrix 𝐵 =

diag(𝑏1, 𝑏2, . . . , 𝑏𝑛), we denote the matrix exponential
function 𝑒

𝐵𝑡
= diag(𝑒𝑏1𝑡, 𝑒𝑏2𝑡, . . . , 𝑒𝑏𝑛𝑡) for all 𝑡 ∈ 𝑅.

From the above definition of the matrix exponential
function, we are not difficult to obtain the following lemma.

Lemma 6. Let 𝐵 be a diagonal constants matrix, and let 𝑒𝐵𝑡 be
the matrix exponential function of 𝐵. Then, we have

(1) (𝑑/𝑑𝑡)𝑒𝐵𝑡 = 𝐵𝑒
𝐵𝑡
, 𝑡 ∈ 𝑅,

(2) (𝑑/𝑑𝑡)(𝑒𝐵𝑡𝜂) = 𝐵𝑒
𝐵𝑡
𝜂, 𝑡 ∈ 𝑅,

where 𝜂 = (𝜂1, 𝜂2, . . . , 𝜂𝑛)
𝑇

∈ 𝑅
𝑛, and each 𝜂𝑖 ∈ 𝑅 (𝑖 =

1, 2, . . . , 𝑛) is a constant.

In addition, we need to define the rule on vectors in 𝑅
𝑛 as

follows.

Definition 7. V ⩽ 𝑤 if V𝑖 − 𝑤𝑖 ⩽ 0 for all 𝑖 ∈ N, where V =

(V1, V2, . . . , V𝑛)
𝑇
∈ 𝑅
𝑛
, 𝑤 = (𝑤1, 𝑤2, . . . , 𝑤𝑛)

𝑇
∈ 𝑅
𝑛.

Now, we present the main result of this paper as follows.

Theorem8. Assume that there exists a positive constant 𝛿 such
that inf𝑘=1,2,...(𝑡𝑘+1−𝑡𝑘) ⩾ 𝛿. In addition, there exists a constant
0 < 𝜆 < 1 such that

𝐵
−1

𝑟

∑

𝑗=1

(
󵄨󵄨󵄨󵄨󵄨
𝐶𝑗

󵄨󵄨󵄨󵄨󵄨
𝐹 +

󵄨󵄨󵄨󵄨󵄨
𝐷𝑗

󵄨󵄨󵄨󵄨󵄨
𝐺) +

1

𝛿
𝐵
−1
𝐻 + 𝐻 < 𝜆𝐼, (10)

where 𝐵
−1 is the inverse matrix of 𝐵. Then, the impulsive

fuzzy dynamic equation (5) is exponentially stable in the mean
square.

Proof. To apply the fixed point theory, we firstly define a
complete metric spaceΩ as follows.

Let Ω be the space consisting of functions 𝑞(𝑡) :

[−𝜏,∞) → 𝑅
𝑛, satisfying that

(a) 𝑞(𝑡) is continuous on 𝑡 ̸= 𝑡𝑘 (𝑘 = 1, 2, . . .),

(b) lim𝑡→ 𝑡−
𝑘

𝑞(𝑡) and lim𝑡→ 𝑡+
𝑘

𝑞(𝑡) exist, and 𝑞(𝑡
−

𝑘
) = 𝑞(𝑡𝑘)

for all 𝑘 = 1, 2, . . .,

(c) 𝑞(𝑡) = 𝜙(𝑡) for 𝑡 ∈ [−𝜏, 0],

(d) 𝑒𝛽𝑡𝑞(𝑡) → 0 ∈ 𝑅
𝑛 as 𝑡 → ∞, where 𝛽 > 0 is a

positive constant, satisfying 𝛽 < 𝜆min𝐵.

It is not difficult to verify that the above-mentioned space Ω

is a complete metric space if it is equipped with the following
metric:

dist (𝑞, 𝑞) = max
𝑖=1,2,...,𝑛

(sup
𝑡⩾−𝜏

󵄨󵄨󵄨󵄨𝑞𝑖 (𝑡) − 𝑞𝑖 (𝑡)
󵄨󵄨󵄨󵄨) , (11)

where 𝑞 = 𝑞(𝑡) = (𝑞
1
(𝑡), 𝑞
2
(𝑡), . . . , 𝑞

𝑛
(𝑡))
𝑇

∈ Ω, and 𝑞 =

𝑞(𝑡) = (𝑞1(𝑡), 𝑞2(𝑡), . . . , 𝑞𝑛(𝑡))
𝑇
∈ Ω.

Remark 9. Here, we consider the above-definedmetric, which
is different from those of some previous related literature (see,
e.g., [33]) so that the LMI-based stability criterion in this
paper may be obtained expediently.

Next, we formulate and define a contraction mapping 𝑃 :

Ω → Ω, which may be divided into three steps.

Step 1. Formulating the mapping.
Let 𝑥(𝑡) be a solution of the fuzzy equation (5).
Then, for 𝑡 ⩾ 0, 𝑡 ̸= 𝑡𝑘, we have

𝑑𝑥 (𝑡)

𝑑𝑡
(𝑒
𝐵𝑡
𝑥 (𝑡)) = 𝐵𝑒

𝐵𝑡
𝑥 (𝑡) + 𝑒

𝐵𝑡 𝑑𝑥 (𝑡)

𝑑𝑡

= 𝑒
𝐵𝑡

𝑟

∑

𝑗=1

ℎ𝑗 (𝜔 (𝑡)) [𝐶𝑗𝑓 (𝑥 (𝑡))

+ 𝐷𝑗𝑔 (𝑥 (𝑡 − 𝜏 (𝑡)))] .

(12)
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Further, we get by the integral nature

𝑥 (𝑡)

= 𝑒
−𝐵𝑡

{

{

{

∫

𝑡

0

𝑒
𝐵𝑠

𝑟

∑

𝑗=1

ℎ𝑗 (𝜔 (𝑠)) [𝐶𝑗𝑓 (𝑥 (𝑠))

+𝐷𝑗𝑔 (𝑥 (𝑠 − 𝜏 (𝑠)))] 𝑑𝑠

+𝜂
}

}

}

, 𝑡 ⩾ 0,

(13)

where 𝜂 ∈ 𝑅
𝑛 is the vector to be determined.

From (2) and (3) or 𝑥(0) = 𝜙(0), it is not difficult to
conclude 𝜂 = 𝜙(0) + ∑

0<𝑡
𝑖
<𝑡

𝑒
𝐵𝑡
𝑖𝜌(𝑥(𝑡𝑖)). And, hence,

𝑥 (𝑡)

= 𝑒
−𝐵𝑡

{

{

{

∫

𝑡

0

𝑒
𝐵𝑠

𝑟

∑

𝑗=1

ℎ𝑗 (𝜔 (𝑠))

× [𝐶𝑗𝑓 (𝑥 (𝑠)) + 𝐷𝑗𝑔 (𝑥 (𝑠 − 𝜏 (𝑠)))] 𝑑𝑠

+𝜙 (0) + ∑

0<𝑡
𝑖
<𝑡

𝑒
𝐵𝑡
𝑖𝜌 (𝑥 (𝑡𝑖))

}

}

}

, 𝑡 ⩾ 0.

(14)

On the other hand, it follows from (14) that

𝑥 (𝑡𝑘)

= 𝑒
−𝐵𝑡
𝑘

{

{

{

∫

𝑡
𝑘

0

𝑒
𝐵𝑠

𝑟

∑

𝑗=1

ℎ𝑗 (𝜔 (𝑠))

× [𝐶𝑗𝑓 (𝑥 (𝑠))

+𝐷𝑗𝑔 (𝑥 (𝑠 − 𝜏 (𝑠)))] 𝑑𝑠

+𝜙 (0) + ∑

0<𝑡
𝑖
<𝑡
𝑘

𝑒
𝐵𝑡
𝑖𝜌 (𝑥 (𝑡𝑖))

}

}

}

,

𝑥 (𝑡𝑘+𝜀)

= 𝑒
−𝐵𝑡
𝑘+𝜀

{

{

{

∫

𝑡
𝑘+𝜀

0

𝑒
𝐵𝑠

𝑟

∑

𝑗=1

ℎ𝑗 (𝜔 (𝑠))

× [𝐶𝑗𝑓 (𝑥 (𝑠))

+𝐷𝑗𝑔 (𝑥 (𝑠 − 𝜏 (𝑠)))] 𝑑𝑠

+𝜙 (0) + ∑

0<𝑡
𝑖
<𝑡
𝑘+𝜀

𝑒
𝐵𝑡
𝑖𝜌 (𝑥 (𝑡𝑖))

}

}

}

.

(15)

Let 𝜀 → 0
+; then we can derive from the two equations

above that

lim
𝜀→0+

𝑥 (𝑡𝑘+𝜀) − 𝑥 (𝑡𝑘) = 𝑥 (𝑡
+

𝑘
) − 𝑥 (𝑡𝑘) = 𝜌 (𝑥 (𝑡𝑘)) . (16)

So, we may define the mapping 𝑃 on the space Ω as follows:

𝑃𝑥 (𝑡)

= 𝑒
−𝐵𝑡

𝜙 (0) + 𝑒
−𝐵𝑡

∫

𝑡

0

𝑒
𝐵𝑠

𝑟

∑

𝑗=1

ℎ𝑗 (𝜔 (𝑠))

× [𝐶𝑗𝑓 (𝑥 (𝑠))

+𝐷𝑗𝑔 (𝑥 (𝑠 − 𝜏 (𝑠)))] 𝑑𝑠

+ 𝑒
−𝐵𝑡

∑

0<𝑡
𝑖
<𝑡

𝑒
𝐵𝑡
𝑖𝜌 (𝑥 (𝑡𝑖)) ,

(17)

on 𝑡 ⩾ 0, and 𝑃𝑥(𝑠) = 𝜙(𝑠) on 𝑠 ∈ [−𝜏, 0].

Step 2. We claim that 𝑃𝑥(𝑡) ∈ Ω for any 𝑥(𝑡) ∈ Ω. That is,
𝑃𝑥(𝑡) satisfies the conditions (a)–(d) of Ω.

Indeed, since 𝑃𝑥(𝑠) = 𝜙(𝑠) on 𝑠 ∈ [−𝜏, 0], the condition
(c) is satisfied. It is obvious from (17) that 𝑃𝑥(𝑡) is continuous
on 𝑡 ̸= 𝑡𝑘 and 𝑡 ⩾ 0. And then the condition (a) is satisfied.

Next, we verify the condition (b).
Indeed, for any given 𝑡𝑘, we can get from (17)

𝑃𝑥 (𝑡𝑘 + 𝜀) − 𝑃𝑥 (𝑡𝑘) = 𝜋1 + 𝜋2 + 𝜋3, (18)

where

𝜋1 = 𝑒
−𝐵(𝑡
𝑘
+𝜀)

𝜙 (0) − 𝑒
−𝐵(𝑡
𝑘
)
𝜙 (0) ,

𝜋2 = 𝑒
−𝐵(𝑡
𝑘
+𝜀)

∫

𝑡
𝑘
+𝜀

0

𝑒
𝐵𝑠

𝑟

∑

𝑗=1

ℎ𝑗 (𝜔 (𝑠))

× [𝐶𝑗𝑓 (𝑥 (𝑠))

+ 𝐷𝑗𝑔 (𝑥 (𝑠 − 𝜏 (𝑠)))] 𝑑𝑠

− 𝑒
−𝐵𝑡
𝑘 ∫

𝑡
𝑘

0

𝑒
𝐵𝑠

𝑟

∑

𝑗=1

ℎ𝑗 (𝜔 (𝑠))

× [𝐶𝑗𝑓 (𝑥 (𝑠))

+𝐷𝑗𝑔 (𝑥 (𝑠 − 𝜏 (𝑠)))] 𝑑𝑠

𝜋3 = 𝑒
−𝐵(𝑡
𝑘
+𝜀)

∑

0<𝑡
𝑖
<𝑡
𝑘
+𝜀

𝑒
𝐵𝑡
𝑖𝜌 (𝑥 (𝑡𝑖))

− 𝑒
−𝐵𝑡
𝑘 ∑

0<𝑡
𝑖
<𝑡
𝑘

𝑒
𝐵𝑡
𝑖𝜌 (𝑥 (𝑡𝑖)) .

(19)

Obviously, 𝜋1 → 0 and 𝜋2 → 0 as 𝜀 → 0. In addition,
letting 𝜀 → 0

−, we have 𝜋3 → 0. Letting 𝜀 → 0
+, we get by

(18)

𝑃𝑥 (𝑡
+

𝑘
) − 𝑃𝑥 (𝑡𝑘) = lim

𝜀→0+
𝜋3 = 𝜌 (𝑥 (𝑡𝑘)) . (20)
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So the condition (b) is satisfied.
Finally, it is followed from (17) that

𝑒
𝛽𝑡
𝑃𝑥 (𝑡) = 𝑒

𝛽𝑡
𝑒
−𝐵𝑡

𝜙 (0)

+ 𝑒
𝛽𝑡
𝑒
−𝐵𝑡

∫

𝑡

0

𝑒
𝐵𝑠

𝑟

∑

𝑗=1

ℎ𝑗 (𝜔 (𝑠))

× [𝐶𝑗𝑓 (𝑥 (𝑠))

+𝐷𝑗𝑔 (𝑥 (𝑠 − 𝜏 (𝑠)))] 𝑑𝑠

+ 𝑒
𝛽𝑡
𝑒
−𝐵𝑡

∑

0<𝑡
𝑖
<𝑡

𝑒
𝐵𝑡
𝑖𝜌 (𝑥 (𝑡𝑖)) .

(21)

Obviously, 𝑒𝛽𝑡𝑒−𝐵𝑡𝜙(0) → 0 ∈ 𝑅
𝑛 as 𝑡 → ∞.

On the other hand, it follows from 𝑒
𝛽𝑡
𝑥(𝑡) → 0 that, for

any given 𝜀 > 0, there exists a corresponding constant 𝑡∗ such
that |𝑒𝛽𝑡𝑥(𝑡)| < 𝜀𝑢 for all 𝑡 ⩾ 𝑡∗, where

𝑢 = (1, 1, . . . , 1)
𝑇
∈ 𝑅
𝑛
. (22)

In addition, (A3) derives
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑒
𝛽𝑡
𝑒
−𝐵𝑡

∑

0<𝑡
𝑖
<𝑡

𝑒
𝐵𝑡
𝑖𝜌 (𝑥 (𝑡𝑖))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⩽ 𝑒
𝛽𝑡
𝑒
−𝐵𝑡

∑

0<𝑡
𝑖
<𝑡

𝑒
𝐵𝑡
𝑖𝐻

󵄨󵄨󵄨󵄨𝑥 (𝑡𝑖)
󵄨󵄨󵄨󵄨

⩽ 𝑒
𝛽𝑡
𝑒
−𝐵𝑡

( ∑

0<𝑡
𝑖
⩽𝑡
∗

𝑒
𝐵𝑡
𝑖𝐻

󵄨󵄨󵄨󵄨𝑥 (𝑡𝑖)
󵄨󵄨󵄨󵄨 + ∑

𝑡
∗
<𝑡
𝑖
<𝑡

𝑒
𝐵𝑡
𝑖𝐻

󵄨󵄨󵄨󵄨𝑥 (𝑡𝑖)
󵄨󵄨󵄨󵄨) .

(23)

Obviously,

𝑒
𝛽𝑡
𝑒
−𝐵𝑡

∑

0<𝑡
𝑖
⩽𝑡
∗

𝑒
𝐵𝑡
𝑖𝐻

󵄨󵄨󵄨󵄨𝑥 (𝑡𝑖)
󵄨󵄨󵄨󵄨

= 𝑒
(𝛽𝐼−𝐵)𝑡

∑

0<𝑡
𝑖
⩽𝑡
∗

𝑒
𝐵𝑡
𝑖𝐻

󵄨󵄨󵄨󵄨𝑥 (𝑡𝑖)
󵄨󵄨󵄨󵄨 󳨀→ 0 ∈ 𝑅

𝑛
, 𝑡 󳨀→ ∞.

(24)

Besides,

𝑒
𝛽𝑡
𝑒
−𝐵𝑡

∑

𝑡
∗
<𝑡
𝑖
<𝑡

𝑒
𝐵𝑡
𝑖𝐻

󵄨󵄨󵄨󵄨𝑥 (𝑡𝑖)
󵄨󵄨󵄨󵄨

= 𝑒
(𝛽𝐼−𝐵)𝑡

∑

𝑡
∗
<𝑡
𝑖
<𝑡

𝑒
(𝐵−𝛽𝐼)𝑡

𝑖𝐻(𝑒
𝛽𝑡
𝑖
󵄨󵄨󵄨󵄨𝑥 (𝑡𝑖)

󵄨󵄨󵄨󵄨)

⩽ 𝜀𝑒
(𝛽𝐼−𝐵)𝑡

∑

𝑡
∗
<𝑡
𝑖
<𝑡

𝑒
(𝐵−𝛽𝐼)𝑡

𝑖𝐻𝑢

=

(
(
(
(

(

𝜀𝑒
(𝛽−𝑏
1
)𝑡

∑

𝑡
∗
<𝑡
𝑖
<𝑡

𝑒
(𝑏
1
−𝛽)𝑡
𝑖𝐻1

𝜀𝑒
(𝛽−𝑏
2
)𝑡

∑

𝑡
∗
<𝑡
𝑖
<𝑡

𝑒
(𝑏
2
−𝛽)𝑡
𝑖𝐻2

...
𝜀𝑒
(𝛽−𝑏
𝑛
)𝑡

∑

𝑡
∗
<𝑡
𝑖
<𝑡

𝑒
(𝑏
𝑛
−𝛽)𝑡
𝑖𝐻𝑛

)
)
)
)

)

.

(25)

To prove 𝑒
𝛽𝑡
𝑒
−𝐵𝑡

∑
𝑡
∗
<𝑡
𝑖
<𝑡

𝑒
𝐵𝑡
𝑖𝐻|𝑥(𝑡𝑖)| → 0 ∈ 𝑅

𝑛, we only
need to prove

𝜀𝑒
(𝛽−𝑏
1
)𝑡

∑

𝑡
∗
<𝑡
𝑖
<𝑡

𝑒
(𝑏
1
−𝛽)𝑡
𝑖𝐻1 󳨀→ 0, 𝑡 󳨀→ ∞, (26)

for the other cases can be similarly proved.
Indeed, we may as well assume 𝑡𝑘 < 𝑡 ⩽ 𝑡𝑘+1 and 𝑡𝑚−1 <

𝑡∗ ⩽ 𝑡𝑚. Then, we have

𝜀𝑒
(𝛽−𝑏
1
)𝑡

∑

𝑡
∗
<𝑡
𝑖
<𝑡

𝑒
(𝑏
1
−𝛽)𝑡
𝑖𝐻1

=
𝜀

𝛿
𝐻1𝑒
(𝛽−𝑏
1
)𝑡

∑

𝑡
𝑚
⩽𝑡
𝑖
⩽𝑡
𝑘

𝛿𝑒
(𝑏
1
−𝛽)𝑡
𝑖

⩽
𝜀

𝛿
𝐻1𝑒
(𝛽−𝑏
1
)𝑡
(𝛿𝑒
(𝑏
1
−𝛽)𝑡
𝑘 + ∑

𝑡
𝑚
⩽𝑡
𝑖
⩽𝑡
𝑘−1

(𝑡𝑖+1 − 𝑡𝑖) 𝑒
(𝑏
1
−𝛽)𝑡
𝑖)

⩽
𝜀

𝛿
𝐻1𝑒
(𝛽−𝑏
1
)𝑡
(𝛿𝑒
(𝑏
1
−𝛽)𝑡
𝑘 + ∫

𝑡

𝑡
∗

𝑒
(𝑏
1
−𝛽)𝑠

𝑑𝑠)

⩽ 𝜀𝐻1𝑒
−(𝑏
1
−𝛽)(𝑡−𝑡

𝑘
)
+

𝐻1

𝛿 (𝑏1 − 𝛽)
𝜀,

(27)

which implies that (26) holds. And, hence,
𝑒
𝛽𝑡
𝑒
−𝐵𝑡

∑
𝑡
∗
<𝑡
𝑖
<𝑡

𝑒
𝐵𝑡
𝑖𝐻|𝑥(𝑡𝑖)| → 0 ∈ 𝑅

𝑛
, 𝑡 → ∞.

Below, we only need to prove

𝑒
𝛽𝑡
𝑒
−𝐵𝑡

∫

𝑡

0

𝑒
𝐵𝑠

𝑟

∑

𝑗=1

ℎ𝑗 (𝜔 (𝑠))

× [𝐶𝑗𝑓 (𝑥 (𝑠))

+𝐷𝑗𝑔 (𝑥 (𝑠 − 𝜏 (𝑠)))] 𝑑𝑠 󳨀→ 0,

𝑡 󳨀→ ∞.

(28)

In fact, it follows from 𝑒
𝛽𝑡
𝑥(𝑡) → 0 that, for any given

𝜀 > 0, there exists a corresponding constant 𝑡
∗ such that

|𝑒
𝛽𝑡
𝑥(𝑡)| < 𝜀𝑢 for all 𝑡 ⩾ 𝑡

∗. Then, we get by (A1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑒
𝛽𝑡
𝑒
−𝐵𝑡

∫

𝑡

0

𝑒
𝐵𝑠

𝑟

∑

𝑗=1

ℎ𝑗 (𝜔 (𝑠)) 𝐶𝑗𝑓 (𝑥 (𝑠)) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⩽ 𝑒
−(𝐵−𝛽𝐼)𝑡

∫

𝑡
∗

0

𝑒
𝐵𝑠

𝑟

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝐶𝑗

󵄨󵄨󵄨󵄨󵄨
𝐹 |𝑥 (𝑠)| 𝑑𝑠

+ 𝑒
−(𝐵−𝛽𝐼)𝑡

∫

𝑡

𝑡∗
𝑒
𝐵𝑠

𝑟

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝐶𝑗

󵄨󵄨󵄨󵄨󵄨
𝐹 |𝑥 (𝑠)| 𝑑𝑠.

(29)
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On the one hand,

𝑒
−(𝐵−𝛽𝐼)𝑡

∫

𝑡
∗

0

𝑒
𝐵𝑠

𝑟

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝐶𝑗

󵄨󵄨󵄨󵄨󵄨
𝐹 |𝑥 (𝑠)| 𝑑𝑠

⩽ 𝑒
−(𝐵−𝛽𝐼)𝑡

∫

𝑡
∗

0

𝑒
𝐵𝑠

𝑟

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝐶𝑗

󵄨󵄨󵄨󵄨󵄨
𝐹(∑

𝑖∈N

sup
𝑠∈[0,𝑡

∗
]

󵄨󵄨󵄨󵄨𝑥𝑖 (𝑠)
󵄨󵄨󵄨󵄨) 𝑢𝑑𝑠

⩽ (

𝑚

∑

𝑖=1

𝑤𝑖)𝑒
−(𝐵−𝛽𝐼)𝑡

∫

𝑡
∗

0

𝑒
𝐵𝑠
𝑢𝑑𝑠 󳨀→ 0 ∈ 𝑅

𝑛
, 𝑡 󳨀→ ∞,

(30)

where𝑤 = ∑
𝑟

𝑗=1
|𝐶𝑗|𝐹(∑𝑖∈N sup

𝑠∈[0,𝑡∗]
|𝑥𝑖(𝑠)|)𝑢 = (𝑤1, 𝑤2, . . . ,

𝑤𝑛)
𝑇
∈ 𝑅
𝑛.

On the other hand,

𝑒
−(𝐵−𝛽𝐼)𝑡

∫

𝑡

𝑡∗
𝑒
𝐵𝑠

𝑟

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝐶𝑗

󵄨󵄨󵄨󵄨󵄨
𝐹 |𝑥 (𝑠)| 𝑑𝑠

⩽ 𝜀𝑒
−(𝐵−𝛽𝐼)𝑡

∫

𝑡

𝑡∗
𝑒
(𝐵−𝛽𝐼)𝑠

𝑤
∗
𝑑𝑠

⩽ 𝜀(

𝑛

∑

𝑖=1

𝑤
∗

𝑖
)(

1

𝑏1 − 𝛽
,

1

𝑏2 − 𝛽
, . . . ,

1

𝑏𝑛 − 𝛽
)

𝑇

,

(31)

where 𝑤∗ = ∑
𝑟

𝑗=1
|𝐶𝑗|𝐹𝑢 = (𝑤

∗

1
, 𝑤
∗

2
, . . . , 𝑤

∗

𝑛
)
𝑇
∈ 𝑅
𝑛.

Now we can conclude from (29)–(31) that

𝑒
𝛽𝑡
𝑒
−𝐵𝑡

∫

𝑡

0

𝑒
𝐵𝑠

𝑟

∑

𝑗=1

ℎ𝑗 (𝜔 (𝑠))

× [𝐶𝑗𝑓 (𝑥 (𝑠))] 𝑑𝑠 󳨀→ 0 ∈ 𝑅
𝑛
, 𝑡 󳨀→ ∞.

(32)

Similarly, we can prove

𝑒
𝛽𝑡
𝑒
−𝐵𝑡

∫

𝑡

0

𝑒
𝐵𝑠

𝑟

∑

𝑗=1

ℎ𝑗 (𝜔 (𝑠))

× [𝐷𝑗𝑔 (𝑥 (𝑠 − 𝜏 (𝑠)))] 𝑑𝑠 󳨀→ 0 ∈ 𝑅
𝑛
, 𝑡 󳨀→ ∞.

(33)

Indeed, we can similarly define the corresponding con-
stant 𝑇∗ for any given 𝜀 > 0, satisfying |𝑒

𝛽𝑡
𝑥(𝑡)| < 𝜀𝑢 for all

𝑡 ⩾ 𝑇∗. Then, we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑒
𝛽𝑡
𝑒
−𝐵𝑡

∫

𝑡

0

𝑒
𝐵𝑠

𝑟

∑

𝑗=1

ℎ𝑗 (𝜔 (𝑠)) [𝐷𝑗𝑔 (𝑥 (𝑠 − 𝜏 (𝑠)))] 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⩽ 𝑒
𝛽𝑡
𝑒
−𝐵𝑡

(∫

𝑇
∗

0

𝑒
𝐵𝑠

𝑟

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝐷𝑗

󵄨󵄨󵄨󵄨󵄨
𝐺 |𝑥 (𝑠 − 𝜏 (𝑠))| 𝑑𝑠

+ ∫

𝑡

𝑇
∗

𝑒
𝐵𝑠

𝑟

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝐷𝑗

󵄨󵄨󵄨󵄨󵄨
𝐺 |𝑥 (𝑠 − 𝜏 (𝑠))| 𝑑𝑠) .

(34)

Similarly, we can prove

𝑒
𝛽𝑡
𝑒
−𝐵𝑡

∫

𝑇
∗

0

𝑒
𝐵𝑠

𝑟

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝐷𝑗

󵄨󵄨󵄨󵄨󵄨
𝐺 |𝑥 (𝑠 − 𝜏 (𝑠))| 𝑑𝑠

⩽ (

𝑚

∑

𝑖=1

𝑤𝑖)𝑒
−(𝐵−𝛽𝐼)𝑡

∫

𝑇
∗

0

𝑒
𝐵𝑠
𝑢𝑑𝑠 󳨀→ 0 ∈ 𝑅

𝑛
, 𝑡 󳨀→ ∞,

(35)

where 𝑤 = ∑
𝑟

𝑗=1
|𝐷𝑗|𝐺(∑

𝑖∈N sup
𝑠∈[−𝜏,𝑇

∗
]
|𝑥𝑖(𝑠)|)𝑢 = (𝑤1,

𝑤2, . . . , 𝑤𝑛)
𝑇
∈ 𝑅
𝑛.

On the other hand,

𝑒
𝛽𝑡
𝑒
−𝐵𝑡

∫

𝑡

𝑇
∗

𝑒
𝐵𝑠

𝑟

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝐷𝑗

󵄨󵄨󵄨󵄨󵄨
𝐺 |𝑥 (𝑠 − 𝜏 (𝑠))| 𝑑𝑠

⩽ 𝜀𝑒
𝛽𝜏
𝑒
−(𝐵−𝛽𝐼)𝑡

∫

𝑡

𝑇
∗

𝑒
(𝐵−𝛽𝐼)𝑠

𝑤
∗
𝑑𝑠

⩽ 𝜀(∑

𝑖∈N

𝑤
∗

𝑖
)𝑒
𝛽𝜏
(

1

𝑏1 − 𝛽
,

1

𝑏2 − 𝛽
, . . . ,

1

𝑏𝑛 − 𝛽
)

𝑇

,

(36)

where 𝑤∗ = ∑
𝑟

𝑗=1
|𝐷𝑗|𝐺𝑢 = (𝑤

∗

1
, 𝑤
∗

2
, . . . , 𝑤

∗

𝑛
)
𝑇
∈ 𝑅
𝑛.

From (34)–(36), we can conclude that (33) holds. Hence,
the condition (d) is satisfied.

Step 3. Below, we only need to prove that 𝑃 is a contraction
mapping.

Indeed, for any 𝑥 = 𝑥(𝑡) = (𝑥1(𝑡), 𝑥2(𝑡), . . . , 𝑥𝑛(𝑡))
𝑇
, 𝑦 =

𝑦(𝑡) = (𝑦1(𝑡), 𝑦2(𝑡), . . . , 𝑦𝑛(𝑡))
𝑇

∈ Ω, we estimate |𝑃𝑥(𝑡) −

𝑃𝑦(𝑡)| ⩽ 𝐾1 + 𝐾2 + 𝐾3, where

𝐾1 = 𝑒
−𝐵𝑡

∫

𝑡

0

𝑒
𝐵𝑠

𝑟

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝐶𝑗

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝑥 (𝑠)) − 𝑓 (𝑦 (𝑠))
󵄨󵄨󵄨󵄨 𝑑𝑠

⩽ 𝑒
−𝐵𝑡

∫

𝑡

0

𝑒
𝐵𝑠

𝑟

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝐶𝑗

󵄨󵄨󵄨󵄨󵄨
𝐹
󵄨󵄨󵄨󵄨𝑥 (𝑠) − 𝑦 (𝑠)

󵄨󵄨󵄨󵄨 𝑑𝑠,

𝐾2 = 𝑒
−𝐵𝑡

∫

𝑡

0

𝑒
𝐵𝑠

𝑟

∑

𝑗=1

ℎ𝑗 (𝜔 (𝑠))
󵄨󵄨󵄨󵄨󵄨
𝐷𝑗

󵄨󵄨󵄨󵄨󵄨

×
󵄨󵄨󵄨󵄨𝑔 (𝑥 (𝑠 − 𝜏 (𝑠))) − 𝑔 (𝑦 (𝑠 − 𝜏 (𝑠)))

󵄨󵄨󵄨󵄨 𝑑𝑠,

𝐾3 = 𝑒
−𝐵𝑡

∑

0<𝑡
𝑖
<𝑡

𝑒
𝐵𝑡
𝑖
󵄨󵄨󵄨󵄨𝜌 (𝑥 (𝑡𝑖)) − 𝜌 (𝑦 (𝑡𝑖))

󵄨󵄨󵄨󵄨 .

(37)
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From mathematical analysis and computation, we can
derive

𝐾1 = 𝑒
−𝐵𝑡

∫

𝑡

0

𝑒
𝐵𝑠

𝑟

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝐶𝑗

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑓 (𝑥 (𝑠)) − 𝑓 (𝑦 (𝑠))
󵄨󵄨󵄨󵄨 𝑑𝑠

⩽ 𝑒
−𝐵𝑡

∫

𝑡

0

𝑒
𝐵𝑠

𝑟

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝐶𝑗

󵄨󵄨󵄨󵄨󵄨
𝐹
󵄨󵄨󵄨󵄨𝑥 (𝑠) − 𝑦 (𝑠)

󵄨󵄨󵄨󵄨 𝑑𝑠

⩽ dist (𝑥, 𝑦) 𝑒−𝐵𝑡 ∫
𝑡

0

𝑒
𝐵𝑠

𝑟

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝐶𝑗

󵄨󵄨󵄨󵄨󵄨
𝐹𝑢𝑑𝑠

⩽ (𝐵
−1

𝑟

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝐶𝑗

󵄨󵄨󵄨󵄨󵄨
𝐹) dist (𝑥, 𝑦) 𝑢.

(38)

Similarly, we have

𝐾2 = 𝑒
−𝐵𝑡

∫

𝑡

0

𝑒
𝐵𝑠

𝑟

∑

𝑗=1

ℎ𝑗 (𝜔 (𝑠))
󵄨󵄨󵄨󵄨󵄨
𝐷𝑗

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑔 (𝑥 (𝑠 − 𝜏 (𝑠)))

−𝑔 (𝑦 (𝑠 − 𝜏 (𝑠)))
󵄨󵄨󵄨󵄨 𝑑𝑠

⩽ (𝐵
−1

𝑟

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝐷𝑗

󵄨󵄨󵄨󵄨󵄨
𝐺) dist (𝑥, 𝑦) 𝑢

𝐾3 ⩽ 𝑒
−𝐵𝑡

∑

0<𝑡
𝑖
<𝑡

𝑒
𝐵𝑡
𝑖𝐻

󵄨󵄨󵄨󵄨(𝑥 (𝑡𝑖)) − (𝑦 (𝑡𝑖))
󵄨󵄨󵄨󵄨

⩽
1

𝛿
dist (𝑥, 𝑦) 𝑒−𝐵𝑡( ∑

𝑡
1
⩽𝑡
𝑖
⩽𝑡
𝑘−1

𝑒
𝐵𝑡
𝑖 (𝑡𝑖+1 − 𝑡𝑖)𝐻𝑢

+𝑒
𝐵𝑡
𝑘𝛿𝐻𝑢)

⩽
1

𝛿
dist (𝑥, 𝑦) 𝑒−𝐵𝑡 (∫

𝑡

0

𝑒
𝐵𝑠
𝐻𝑢𝑑𝑠 + 𝑒

𝐵𝑡
𝛿𝐻𝑢)

⩽ dist (𝑥, 𝑦) (1

𝛿
𝐵
−1
𝐻 + 𝐻)𝑢.

(39)

Combining the above three inequalities results in
󵄨󵄨󵄨󵄨𝑃𝑥 (𝑡) − 𝑃𝑦 (𝑡)

󵄨󵄨󵄨󵄨

⩽ (𝐵
−1

𝑟

∑

𝑗=1

(
󵄨󵄨󵄨󵄨󵄨
𝐶𝑗

󵄨󵄨󵄨󵄨󵄨
𝐹 +

󵄨󵄨󵄨󵄨󵄨
𝐷𝑗

󵄨󵄨󵄨󵄨󵄨
𝐺) +

1

𝛿
𝐵
−1
𝐻 + 𝐻)𝑢 dist (𝑥, 𝑦)

< 𝜆𝐼𝑢 dist (𝑥, 𝑦) ,
(40)

and hence

dist (𝑃 (𝑥) , 𝑃 (𝑦)) ⩽ 𝜆 dist (𝑥, 𝑦) . (41)

Therefore, 𝑃 : Ω → Ω is a contraction mapping such
that there exists the fixed point 𝑥(𝑡) of 𝑃 in Ω, which implies
that 𝑥(𝑡) is the solution for the the impulsive fuzzy dynamic
equation (5), satisfying 𝑒

𝛽𝑡
‖ 𝑥(𝑡) ‖→ 0 as 𝑡 → ∞. So the

proof is completed.

4. Numerical Example

Example 1. Consider the T-S fuzzy impulsive dynamic equa-
tions as follows.

Fuzzy Rule 1:
IF 𝜔1(𝑡) is 1/𝑒

−2𝜔
1
(𝑡), THEN

𝑑𝑥 (𝑡)

𝑑𝑡
= −𝐵𝑥 (𝑡) + 𝐶1𝑓 (𝑥 (𝑡)) + 𝐷1𝑔 (𝑥 (𝑡 − 𝜏 (𝑡))) ,

𝑡 ⩾ 0, 𝑡 ̸= 𝑡𝑘, 𝑘 = 1, 2, . . .

𝑥 (𝑡
+

𝑘
) − 𝑥 (𝑡𝑘) = 𝜌 (𝑥 (𝑡𝑘)) , 𝑘 = 1, 2, . . .

𝑥 (𝜃) = 𝜙 (𝜃) , 𝜃 ∈ [−𝜏, 0] ,

(42)

Fuzzy Rule 2:
IF 𝜔2(𝑡) is 1 − 1/𝑒

−2𝜔
1
(𝑡), THEN

𝑑𝑥 (𝑡)

𝑑𝑡
= −𝐵𝑥 (𝑡) + 𝐶2𝑓 (𝑥 (𝑡)) + 𝐷2𝑔 (𝑥 (𝑡 − 𝜏 (𝑡))) ,

𝑡 ⩾ 0, 𝑡 ̸= 𝑡𝑘, 𝑘 = 1, 2, . . .

𝑥 (𝑡
+

𝑘
) − 𝑥 (𝑡𝑘) = 𝜌 (𝑥 (𝑡𝑘)) , 𝑘 = 1, 2, . . .

𝑥 (𝜃) = 𝜙 (𝜃) , 𝜃 ∈ [−𝜏, 0] ,

(43)

where

𝐵 = (
2 0

0 1.9
) , 𝐶1 = (

−0.2 0

0 0.3
) = 𝐷1,

𝐶2 = (
0.3 0

0 −0.1
) = 𝐷2,

𝐹 = (
0.1 0

0 0.2
) = 𝐺, 𝐻 = (

0.7 0

0 0.6
) .

(44)

Let 𝛿 = 1.5. Then we can use Matlab LMI toolbox to solve
the LMI condition (10) and obtain 𝑡min = −0.0046 < 0

which implies it is feasible (see [10, Remark 29(3)] for details).
Further, extracting the datum shows

𝜆 = 0.9883, (45)

which means 0 < 𝜆 < 1. Thereby, we can conclude from
Theorem 8 that this impulsive fuzzy dynamic equation is
exponentially stable in the mean square.

5. Conclusion

By formulating a contraction mapping and the matrix expo-
nential function, the author applies linear matrix inequality
(LMI) technique to investigate and obtain the LMI-based
stability criterion of a class of time-delay Takagi-Sugeno (T-
S) fuzzy differential equations. It is the first time to obtain the
LMI-based stability criterion derived by a fixed point theory.
The LMI methods have high efficiency and other advantages
in large-scale engineering calculations. And the feasibility of
LMI-based stability criterion can efficiently be computed and
confirmed by computer Matlab LMI toolbox. A numerical
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example is presented to illustrate the effectiveness of the
proposed methods. In the end of this paper, we have to point
out that there are still many difficulties in obtaining the LMI-
based stability criteria for some other dynamics equations,
such as Cohen-Grossberg neural networks (see, e.g., [11, 19])
and other neural networks.These problems remain open and
challenging.
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