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Negative selection algorithm is one of the main algorithms of artificial immune systems. However, candidate detectors randomly
generated by traditional negative selection algorithms need to conduct self-tolerance with all selves in the training set in order to
eliminate the immunological reaction. The matching process is the main time cost, which results in low generation efficiencies
of detectors and application limitations of immune algorithms. A novel algorithm is proposed, named GB-RNSA. The algorithm
analyzes distributions of the self set in real space and regards the n-dimensional [0, 1] space as the biggest grid. Then the biggest
grid is divided into a finite number of sub grids, and selves are filled in the corresponding subgrids at the meantime.The randomly
generated candidate detector only needs to match selves who are in the grid where the detector is and in its neighbor grids, instead
of all selves, which reduces the time cost of distance calculations. And before adding the candidate detector into mature detector
set, certain methods are adopted to reduce duplication coverage between detectors, which achieves fewer detectors covering the
nonself space as much as possible. Theory analysis and experimental results demonstrate that GB-RNSA lowers the number of
detectors, time complexity, and false alarm rate.

1. Introduction

In the past decade, the artificial immune systems have caused
great concerns as a new method to solve complex compu-
tational problems. At present, there are four main areas in
the studies of artificial immune systems [1]: the negative
selection algorithm (NSA) [2], the artificial immune network
(AINE) [3], the clonal selection algorithm (CLONALG) [4],
the danger theory [5], and dendritic cell algorithms [6].
By simulating the immune tolerance in T-cell maturation
process of biological systems, NSA removes self-reactive
candidate detectors to effectively recognize nonself antigens,
and is successfully applied to pattern recognition, anomaly
detection, machine learning, fault diagnosis, and so forth
[7, 8].

The negative selection algorithm is proposed by Forrest
et al. [7]. This algorithm adopts strings or binary strings
to encode the antigens (samples) and antibodies (detectors)
and r-continuous-bit matching method to compute affinities
between antigens and detectors, which is denoted SNSA
[7]. The work in [9, 10] pointed out that the generation

efficiency of detectors in SNSA is low. Candidate detectors
become mature through negative selection. Given that 𝑁

𝑠
is

the training set size, 𝑃 is the matching probability between
random antigen and antibody, and 𝑃

𝑓
is the failure rate; then

the number of candidate detectors 𝑁 = − ln(𝑃
𝑓
)/(𝑃


(1 −

𝑃


)
𝑁
𝑠), which is exponential to 𝑁

𝑠
, and the time complexity

of SNSA, is 𝑂(𝑁 ⋅ 𝑁
𝑠
).

Because many problems in practical applications are easy
to be defined and studied in the real space, a real-valued
negative selection algorithm (RNSA) is put forward in [11].
The algorithm adopts n-dimensional vectors in real space
[0, 1]
𝑛 to encode antigens and antibodies and Minkowski

distance to calculate affinities. A real-valued negative selec-
tion algorithm with variable-sized detector (V-Detector) is
proposed in [12, 13], resulting in better results. The algorithm
dynamically determines the radius of a detector to generate
mature ones, by computing the nearest distance between
the center of the candidate detector and self-antigens. This
algorithm also proposes a method for calculating detectors’
coverage rate based on the probability. In the work of [14],
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genetic-based negative selection algorithm is put forward,
and in the work of [15], clonal optimization-based negative
selection algorithm is put forward. Detectors of these two
algorithms need to be processed by optimization algorithms,
to gain greater coverage of nonself space. Superellipsoid
detectors are introduced in [16] in the negative selection
algorithm and superrectangular detectors in [17], to achieve
the same coverage rate with less detectors compared with
sphere ones. A self detector classificationmethod is proposed
in [18]. In this method, selves are viewed as self detectors
with initial radius and the radius of selves is dynamically
determined by the ROC analysis in the training stage, to
increase the detection rate. A negative selection algorithm
based on the hierarchical clustering of self set is put forward
in [19]. This algorithm carries out the hierarchical clustering
preprocess of self set to improve the generation efficiency of
detectors.

Because of the low generation efficiency of mature detec-
tors, the time cost of negative selection algorithms seriously
limits their practical applications [18, 19]. A real-valued
negative selection algorithm based on grid is proposed in this
paper, denoted GB-RNSA. The algorithm analyzes distribu-
tions of the self set in the shape space and introduces the
grid mechanism, in order to reduce the time cost of distance
calculations and the duplication coverage between detectors.
The remainder of this paper is organized as follows. The
basic definitions of real-valued negative selection algorithms
which are also the background of this paper are described
in Section 2. The basic idea, implementation strategies, and
analyses of GB-RNSA are described in Section 3. The effec-
tiveness of GB-RNSA is verified using synthetic datasets and
University of California Irvine (UCI) datasets in Section 4.
Finally, the conclusion is given in the last section.

2. Basic Definitions of RNSA

The SNS (self/nonself) theory states that the body relies on
antibodies (T cells and B cells) to recognize self antigens and
nonself antigens, in order to exclude foreigners and maintain
the balance and stability of the body [2, 8]. Inspired by
this theory, antibodies are defined as detectors to identify
nonself antigens in the artificial immune system, and their
quality determines the accuracy and effectiveness of the
detection system. However, randomly generated candidate
detectors may identify self antigens and raise the immune
self-reaction. According to the immune tolerancemechanism
andmature process of immune cells in the biological immune
system, Forrest put forward the negative selection algorithm
to remove detectors which can recognize selves [7]. The
algorithm discussed in this paper is based on real value. The
basic concepts of RNSA are as follows.

Definition 1 (antigens). 𝐴𝑔 = {𝑎𝑔 | 𝑎𝑔 = ⟨𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
, 𝑟
𝑠
⟩,

𝑥
𝑖
∈ [0, 1], 1 ≤ 𝑖 ≤ 𝑛, 𝑟

𝑠
∈ [0, 1]} are the total samples in the

space of the problem. 𝑎𝑔 is an antigen in the set. 𝑛 is the data
dimension, 𝑥

𝑖
is the normalized value of the 𝑖th attribute of

sample 𝑎𝑔which represents the position in the real space, and
𝑟
𝑠
is the radius of 𝑎𝑔which represents the variability threshold

of 𝑎𝑔.

Definition 2 (self set). 𝑆𝑒𝑙𝑓 ⊂ 𝐴𝑔 represents all the normal
samples in the antigen set.

Definition 3 (nonself set). 𝑁𝑜𝑛𝑠𝑒𝑙𝑓 ⊂ 𝐴𝑔 represents all
the abnormal samples in the antigen set. Self /Nonself have
different meanings in various fields. For network intrusion
detections, Nonself represents network attacks, and Self rep-
resents normal network access; for virus detections, Nonself
represents virus codes, and Self represents legitimate codes.

𝑆𝑒𝑙𝑓 ∩ 𝑁𝑜𝑛𝑠𝑒𝑙𝑓 = 0, 𝑆𝑒𝑙𝑓 ∪ 𝑁𝑜𝑛𝑠𝑒𝑙𝑓 = 𝐴𝑔. (1)

Definition 4 (training set). 𝑇𝑟𝑎𝑖𝑛 ⊂ 𝑆𝑒𝑙𝑓 is a subset of Self
and is the priori detection knowledge. 𝑁

𝑠
is the size of the

training set.

Definition 5 (set of detectors). 𝐷 = {𝑑 | 𝑑 = ⟨𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
,

𝑟
𝑑
⟩, 𝑦
𝑗
∈ [0, 1], 1 ≤ 𝑗 ≤ 𝑛, 𝑟

𝑑
∈ [0, 1]}. 𝑑 is a detector in the

set. 𝑦
𝑗
is the 𝑗th attribute of detector 𝑑, 𝑟

𝑑
is the radius of the

detector, and𝑁
𝑑
is the size of the detector set.

Definition 6 (matching rule). 𝐴(𝑎𝑔, 𝑑) = 𝑑𝑖𝑠(𝑎𝑔, 𝑑), and
𝑑𝑖𝑠(𝑎𝑔, 𝑑) is the Euclidean distance between antigen 𝑎𝑔 and
detector𝑑. In the detectors’ generation process, if𝑑𝑖𝑠(𝑎𝑔, 𝑑) ≤
𝑟
𝑠
+ 𝑟
𝑑
, the detector 𝑑 arises the immune self-reaction and

cannot become a mature detector. In the detectors’ testing
process, if 𝑑𝑖𝑠(𝑎𝑔, 𝑑) < 𝑟

𝑑
, the detector 𝑑 recognizes the

antigen 𝑎𝑔 as a nonself.

Definition 7 (detection rate). DR means the proportion of
non-self samples which are correctly identified by detectors
in the total non-self samples and is represented by (2). TP is
short for true positive, which means the number of nonselves
which are correctly identified by detectors. FN is short for
false negative, which means the number of non-selves which
are wrongly identified:

𝐷𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
. (2)

Definition 8 (false alarm rate). FAR means the proportion
of self samples which are wrongly identified as non-selves
in the total self samples and is represented by (3). FP is
short for false positive, which means the number of selves
which are wrongly identified by detectors, and TN is short
for true negative, which means the number of selves which
are correctly identified:

𝐹𝐴𝑅 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
. (3)

In general, the generation process of detectors which is
the basic idea of RNSA is shown in Algorithm 1.

In the algorithm of RNSA, the randomly generated
candidate detectors need to do the calculation 𝑑𝑖𝑠(𝑑new, 𝑎𝑔)
with all the elements in the training set. With the increase of
the number of selves𝑁

𝑠
, the execution time is in exponential

growth, while the probability of coverage overlaps between
detectors also raises, resulting in a large number of invalid
detectors and low efficiency. The aforementioned problems
greatly limit the practical applications of the negative selec-
tion algorithms.
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𝑅𝑁𝑆𝐴(𝑇𝑟𝑎𝑖𝑛, 𝑟
𝑑
, 𝑚𝑎𝑥𝑁𝑢𝑚,𝐷)

Input: the self training set 𝑇𝑟𝑎𝑖𝑛, the radius of detectors 𝑟
𝑑
, the number of needed detectors𝑚𝑎𝑥𝑁𝑢𝑚

Output: the detector set𝐷
Step 1. Initialize the self training set 𝑇𝑟𝑎𝑖𝑛;
Step 2. Randomly generate a candidate detector 𝑑new. Calculate the Euclidean distance between 𝑑new and all the selves in 𝑇𝑟𝑎𝑖𝑛.

If 𝑑𝑖𝑠(𝑑new , 𝑎𝑔) < 𝑟𝑑 + 𝑟𝑠 for at least one self antigen 𝑎𝑔, execute Step 2; if not, execute Step 3.
Step 3. Add 𝑑new into the detector set𝐷;
Step 4. If the size of𝐷 satisfies𝑁

𝑑
> 𝑚𝑎𝑥𝑁𝑢𝑚, return𝐷, and the process ends; if not, jump to Step 2.

Algorithm 1: The algorithm of RNSA.

3. Implementations of GB-RNSA

This section describes the implementation strategies of the
proposed algorithm. The basic idea of the algorithm is
described in Section 3.1. Sections 3.2, 3.3 and 3.4 are the
detailed descriptions of the algorithm. The grid generation
method is introduced in Section 3.2. Coverage calculation
method of the non-self space is introduced in Section 3.3.
And the filter method of candidate detectors is introduced
in Section 3.4. Performance analysis of the algorithm is given
in Section 3.5. Time complexity analysis of the algorithm is
given in Section 3.6.

3.1. Basic Idea of the Algorithm. A real-valued negative
selection algorithm based on grid GB-RNSA is proposed
in this paper. The algorithm adopts variable-sized detectors
and expected coverage of non-self space for detectors as the
termination condition for detectors’ generation. The algo-
rithm analyzes distributions of the self set in the real space
and regards [0, 1]𝑛 space as the biggest grid. Then, through
divisions step-by-step until reaching the minimum diameter
of the grid and adopting 2𝑛-tree to store grids, a finite number
of subgrids are obtained, meanwhile self antigens are filled in
corresponding sub grids. The randomly generated candidate
detector only needs to match with selves who are in the grid
where the detector is and in its neighbor grids instead of all
selves, which reduces the time cost of distance calculations.
When adding it into the mature detector set, the candidate
detector will bematchedwith detectors within the grid where
the detector is and neighbor grids, to judge whether the
detector is in existing detectors’ coverage area or its covered
space totally contains other detector. This filter operation
decreases the redundant coverage between detectors and
achieves that fewer detectors cover the non-self space as
much as possible. The main idea of GB-RNSA is as shown
in Algorithm 2.

Iris dataset is one of the classic machine learning data
sets published by the University of California Irvine [20],
which are widely used in the fields of pattern recognition,
data mining, anomaly detection, and so forth. We choose
data records of category “setosa” in the dataset Iris as self
antigens, choose “sepalL” and “sepalW” as antigen properties
of first dimension and second dimension, and choose top
25 records of self antigens as the training set. Here, we
use only two features of records, for that two-dimensional
map is intuitive to illustrate the ideas, which does not affect

comparison results. Figure 1 illustrates the ideas of GB-RNSA
and the classical negative selection algorithms RNSA and
V-Detector. RNSA generates detectors with fixed radius. V-
Detector generates variable-sized detectors by dynamically
determining the radius of detectors, through computing the
nearest distance between the center of the candidate detector
and self antigens. Detectors generated by the two algorithms
need to conduct tolerance with all self antigens, which will
lead to redundant coverage of non-self space betweenmature
detectors with the increase of coverage rate. GB-RNSA first
analyzes distributions of the self set in the space, and forms
grids. Then, the randomly generated candidate detector only
needs to perform tolerance with selves within the grid where
the detector is and neighbor grids. Certain strategies are
conducted for detectors which have passed tolerance, to avoid
the duplication coverage and make sure that new detectors
cover uncovered non-self space.

3.2. Grid Generation Method. In the process of grid gener-
ation, a top-down method is selected. First, the algorithm
regards the 𝑛-dimensional [0, 1] space as the biggest grid. If
there are selves in this grid, divide each dimension into two
parts and get 2𝑛 sub grids.Then, continue to judge and divide
each sub grid, until a grid does not contain any selves or the
diameter of the grid reaches the minimum. Eventually, the
grid structure of the space is obtained, and then the algorithm
searches each grid to get neighbors in the structure. This
process is shown in Algorithms 3 and 4.

Definition 9 (minimum diameter of grids). 𝑟
𝑔𝑠
= 4𝑟
𝑠
+ 4𝑟
𝑑𝑠
,

where 𝑟
𝑠
is the self radius and 𝑟

𝑑𝑠
is the smallest radius of

detectors. Suppose that the diameter of a grid is less than 𝑟
𝑔𝑠
,

then divide this grid; the diameter of sub grids is less than
2𝑟
𝑠
+ 2𝑟
𝑑𝑠
. If there are selves in the sub grid, it is probably

impossible to generate detectors in the sub grid. So, set the
minimum diameter of grids 4𝑟

𝑠
+ 4𝑟
𝑑𝑠
.

Definition 10 (neighbor grids). If two grids are adjacent at
least in one dimension, these two grids are neighbors, which
are called the basic neighbor grids. If selves of the neighbor
grid are empty, add the basic neighbor grid of it in the same
direction as the attached neighbor grid. The neighbors of a
grid include the basic neighbor grids and the attached ones.

The filling process of neighbor grids is shown in
Algorithm 5.
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Figure 1: Comparison of RNSA, V-Detector, and GB-RNSA. (To reach the expected coverage 𝐶exp = 90%, three algorithms resp., need 561,
129, and 71 mature detectors, where the radius of self is 0.05, the radius of detector for RNSA is 0.05, and the smallest radius of detectors for
V-Detector and GB-RNSA is 0.01).

𝐺𝐵-𝑅𝑁𝑆𝐴(𝑇𝑟𝑎𝑖𝑛, 𝐶exp, 𝐷)

Input: the self training set 𝑇𝑟𝑎𝑖𝑛, expected coverage 𝐶exp

Output: the detector set𝐷
𝑁
0
: sampling times in non-self space,𝑁

0
> max(5/𝐶exp, 5/(1 − 𝐶exp))

𝑖: the number of non-self samples
𝑥: the number of non-self samples covered by detectors
𝐶𝐷: the set of candidate detectors 𝐶𝐷 = {𝑑 | 𝑑 =< 𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑛
, 𝑟
𝑑
>, 𝑦
𝑗
∈ [0, 1], 1 ≤ 𝑗 ≤ 𝑛, 𝑟

𝑑
∈ [0, 1]}

Step 1. Initialize the self training set 𝑇𝑟𝑎𝑖𝑛, 𝑖 = 0, 𝑥 = 0, 𝐶𝐷 = 0, 𝑁
0
= 𝑐𝑒𝑖𝑙𝑖𝑛𝑔(max(5/𝐶exp, 5/(1 − 𝐶exp)))

Step 2. Call 𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐺𝑟𝑖𝑑(𝑇𝑟𝑎𝑖𝑛, 𝑇𝑟𝑒𝑒𝐺𝑟𝑖𝑑, 𝐿𝑖𝑛𝑒𝐺𝑟𝑖𝑑𝑠) to generate grid structure which contains selves, where
𝑇𝑟𝑒𝑒𝐺𝑟𝑖𝑑 is the 2𝑛-tree storage of grids and 𝐿𝑖𝑛𝑒𝐺𝑟𝑖𝑑𝑠 is the line storage of grids;

Step 3. Randomly generate a candidate detector 𝑑new. Call 𝐹𝑖𝑛𝑑𝐺𝑟𝑖𝑑(𝑑new , 𝑇𝑟𝑒𝑒𝐺𝑟𝑖𝑑, 𝑇𝑒𝑚𝑝𝐺𝑟𝑖𝑑) to find the grid
𝑇𝑒𝑚𝑝𝐺𝑟𝑖𝑑 where 𝑑new is;

Step 4. Calculate the Euclidean distance between 𝑑new and all the selves in 𝑇𝑒𝑚𝑝𝐺𝑟𝑖𝑑 and its neighbor grids. If
𝑑new is identified by a self antigen, abandon it and execute Step 3; if not, increase 𝑖;

Step 5. Calculate the Euclidean distance between 𝑑new and all the detectors in 𝑇𝑒𝑚𝑝𝐺𝑟𝑖𝑑 and its neighbor grids. If
𝑑new is not identified by any detector, add it into the candidate detector set 𝐶𝐷; if not, increase 𝑥, and judge
whether it reaches the expected coverage 𝐶exp, if so, return𝐷 and the algorithm ends;

Step 6. Judge whether 𝑖 reaches sampling times𝑁
0
. If 𝑖 = 𝑁

0
, call 𝐹𝑖𝑙𝑡𝑒𝑟(𝐶𝐷) to implement the screening process of

candidate detectors, and put candidate detectors which passed this process into𝐷, reset 𝑖, 𝑥, 𝐶𝐷;
if not, return to Step 3.

Algorithm 2: The algorithm of GB-RNSA.
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𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝐺𝑟𝑖𝑑(𝑇𝑟𝑎𝑖𝑛, 𝑇𝑟𝑒𝑒𝐺𝑟𝑖𝑑, 𝐿𝑖𝑛𝑒𝐺𝑟𝑖𝑑𝑠)

Input: the self training set 𝑇𝑟𝑎𝑖𝑛
Output: 𝑇𝑟𝑒𝑒𝐺𝑟𝑖𝑑 is the 2𝑛-tree storage of grids, 𝐿𝑖𝑛𝑒𝐺𝑟𝑖𝑑𝑠 is the line storage of grids
Step 1. Generate the grid of 𝑇𝑟𝑒𝑒𝐺𝑟𝑖𝑑 with diameter 1, and set properties of the gird, including lower sub grids,

neighbor grids, contained selves, and contained detectors;
Step 2. Call𝐷𝑖V𝑖𝑑𝑒𝐺𝑟𝑖𝑑(𝑇𝑟𝑒𝑒𝐺𝑟𝑖𝑑, 𝐿𝑖𝑛𝑒𝐺𝑟𝑖𝑑𝑠)to divide grids;
Step 3. Call 𝐹𝑖𝑙𝑙𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠(𝐿𝑖𝑛𝑒𝐺𝑟𝑖𝑑𝑠) to find neighbors of each grid.

Algorithm 3: The process of grid generation.

𝐷𝑖V𝑖𝑑𝑒𝐺𝑟𝑖𝑑(𝑔𝑟𝑖𝑑, 𝐿𝑖𝑛𝑒𝐺𝑟𝑖𝑑𝑠)

Input: 𝑔𝑟𝑖𝑑 the grid to divide
Output: 𝐿𝑖𝑛𝑒𝐺𝑟𝑖𝑑𝑠 the line storage of grids
Step 1. If there are not any self or the diameter reaches 𝑟

𝑔𝑠
of grid, don’t divide, add 𝑔𝑟𝑖𝑑 into 𝐿𝑖𝑛𝑒𝐺𝑟𝑖𝑑𝑠, and return;

if not, execute Step 2;
Step 2. Divide each dimension of 𝑔𝑟𝑖𝑑 into two parts, then get 2𝑛 sub grids, and map selves of 𝑔𝑟𝑖𝑑 into the sub grids;
Step 3. For each sub grid, call 𝐷𝑖V𝑖𝑑𝑒𝐺𝑟𝑖𝑑(𝑔𝑟𝑖𝑑.𝑠𝑢𝑏, 𝐿𝑖𝑛𝑒𝐺𝑟𝑖𝑑𝑠).

Algorithm 4: The process of𝐷𝑖V𝑖𝑑𝑒𝐺𝑟𝑖𝑑.

𝐹𝑖𝑙𝑙𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑢𝑟𝑠(𝐿𝑖𝑛𝑒𝐺𝑟𝑖𝑑𝑠)

Input: 𝐿𝑖𝑛𝑒𝐺𝑟𝑖𝑑𝑠 the line storage of grids
Step 1. Obtain the basic neighbor grids for each grid in the structure 𝐿𝑖𝑛𝑒𝐺𝑟𝑖𝑑𝑠;
Step 2. For each basic neighbor of every grid, if selves of this neighbor are empty, complement the neighbor of this

neighbor in the same direction as an attached neighbor for the grid;
Step 3. For each attached neighbor of every grid, if selves of this neighbor are empty, complement the neighbor of this

neighbor in the same direction as an attached neighbor for the grid.

Algorithm 5: The filling process of neighbor grids.

Figure 2 describes the dividing process of grids. The self
training set is also selected from records of category “setosa”
of the Iris data set. Select “sepalL” and “sepalW” as antigen
properties of first dimension and second dimension. As
shown in Figure 2, the two-dimensional space is divided into
four sub grids in the first division, and then continue to divide
sub grids whose selves are not empty, until the subs cannot be
divided.

Figure 3 is a schematic drawing of neighbor grids, and
grids with slashes are the neighbors of grid [0, 0.5, 0.5, 1]

which positions in the up-left of the space.

3.3. Coverage Calculation Method of the Nonself Space. The
non-self space coverage 𝑃 is equal to the ratio of the volume
𝑉covered covered by detectors and the total volume 𝑉nonself of
nonself space [12], as is shown in the following:

𝑃 =
𝑉covered
𝑉nonself

=

∫covered 𝑑𝑥

∫nonself 𝑑𝑥
. (4)

Because there is redundant coverage between detectors,
it is impossible to calculate (4) directly. In this paper, the
probability estimation method is adopted to compute the
detector coverage 𝑃. For detector set 𝐷, the probability of

sampling in the non-self space covered by detectors obeys the
binomial distribution 𝑏(1, 𝑃) [13].Theprobability of sampling
𝑚 times obeys the binomial distribution 𝑏(𝑚, 𝑃).

Theorem 11. When the number of non-self specimens of
continuous sampling 𝑖 ≤ 𝑁

0
, if (𝑥/√𝑁

0
𝑃(1 − 𝑃)) −

√𝑁
0
𝑃/(1 − 𝑃) > 𝑍

𝛼
, the non-self space coverage of detectors

reaches 𝑃. 𝑍
𝛼
is 𝑎 percentile point of standard normal distri-

bution, 𝑥 is the number of non-self specimens of continuous
sampling covered by detectors, and 𝑁

0
is the smallest positive

integer which is greater than 5/𝑃 and 5/(1 − 𝑃).

Proof. Random variable 𝑥 ∼ 𝐵(𝑖, 𝑃). Set 𝑧 = 𝑥 − 𝑁
0
𝑃/

√𝑁
0
𝑃(1 − 𝑃) = (𝑥/√𝑁

0
𝑃(1 − 𝑃)) − √𝑁

0
𝑃/(1 − 𝑃). We

consider two cases.

(1) If the number of non-self specimens of continuous
sampling 𝑖 = 𝑁

0
, known from De Moivre-Laplace

theorem, when 𝑁
0

> 5/𝑃 and 𝑁
0

> 5/(1 −

𝑃), 𝑥 ∼ 𝐴𝑁(𝑁
0
𝑃,𝑁
0
𝑃(1 − 𝑃)). That is, 𝑥 − 𝑁

0
𝑃/

√𝑁
0
𝑃(1 − 𝑃) ∼ 𝐴𝑁(0, 1), 𝑧 ∼ 𝐴𝑁(0, 1). Do

assumptions that 𝐻
0
: the non-self space coverage

of detectors ≤ 𝑃; 𝐻
1
: the non-self space cover-

age of detectors > 𝑃. Given significance level 𝑎,
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Figure 2: The process of grid division.
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Figure 3: The neighbor grids.

𝑃{𝑧 > 𝑍
𝛼
} = 𝑎. Then, the rejection region 𝑊 =

{(𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛
) : 𝑧 > 𝑍

𝛼
}. So, when (𝑥/√𝑛𝑃(1 − 𝑃))−

√𝑛𝑃/(1 − 𝑃) > 𝑍
𝛼
, 𝑧 belongs to the rejection region,

reject 𝐻
0
, and accept 𝐻

1
. That is, the non-self space

coverage of detectors > 𝑃.
(2) If the number of non-self specimens of continuous

sampling 𝑖 < 𝑁
0
, 𝑖 ⋅𝑃 is not too large, 𝑥 approximately

obeys the Poisson distribution with 𝜆 equaling 𝑖 ⋅ 𝑃.
Then 𝑃{𝑧 > 𝑍

𝛼
} < 𝑎. When (𝑥/√𝑁

0
𝑃(1 − 𝑃)) −

√𝑁
0
𝑃/(1 − 𝑃) > 𝑍

𝛼
, the non-self space coverage of

detectors > 𝑃. Proved.

From Theorem 11, in the process of detector genera-
tion, only the number of non-self specimens of continuous
sampling 𝑖 and the number of non-self specimens covered
by detectors 𝑥 need to be recorded. After sampling in the
non-self space, determine whether the non-self specimen
is covered by detectors of 𝐷. If not, generate a candidate
detector with the position vector of this non-self specimen,
and then add it into the candidate detector set CD. If so,
compute whether (𝑥/√𝑁

0
𝑃(1 − 𝑃))−√𝑁

0
𝑃/(1 − 𝑃) is larger

than 𝑍
𝛼
. If it is larger than 𝑍

𝛼
, the non-self space coverage

reaches the expected coverage 𝑃, and the sampling process
stops. If not, increase 𝑖. When 𝑖 is up to 𝑁

0
, put candidate

detectors of CD into the detector set 𝐷 to change the non-
self space coverage, and then set 𝑖 = 0, 𝑥 = 0 to restart
a new round of sampling. With the continuous addition of
candidate detectors, the size of the detector set𝐷 is growing,
and the non-self space coverage gradually increases.

3.4. Filter Method of Candidate Detectors. When the number
of sampling times in the non-self space reaches𝑁

0
, detectors

of candidate detector set will be added into the detector set𝐷.
At this time, not all candidate detectors will join 𝐷, and the
filtering operation will be performed for these detectors. The
filtering operation consists of two parts.

The first part is to reduce the redundant coverage between
candidate detectors. First, sort detectors in the candidate
detector set in a descending order by the detector radius, and
then judge whether the candidate detectors in the back of
the sequence have been covered by the front ones. If so, this
sampling of the non-self space is invalid, and the candidate
detector generated from the position vector of this sampling
should be deleted. There is no complete coverage between
candidate detectors which have survived the first filtering
operation.

The second part is to decrease the redundant coverage
between mature detectors and candidate ones. The candidate
detector will bematched with detectors within the grid where
the detector is and neighbor grids when adding it into the
detector set𝐷, to judge whether it totally covers somemature
detector. If so, the mature detector is redundant and should
be removed.Thefiltering operations ensure that everymature
detector will cover the uncovered non-self space.

The filtering process of candidate detectors is shown in
Algorithm 6.

3.5. Performance Analysis. This section analyzes the per-
formance of the algorithm from the probability theory.
Assuming that the number of all the samples in the problem
space is 𝑁

𝐴𝑔
, the number of antigens in the self set is 𝑁

𝑆𝑒𝑙𝑓
,

the number of antigens in the training set is 𝑁
𝑠
, and the

number of detectors is𝑁
𝑑
.Thematching probability between

a detector and an antigen is 𝑃, which is associated with
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𝐹𝑖𝑙𝑡𝑒𝑟(𝐶𝐷)

Input: the candidate detector set 𝐶𝐷
Step 1. Sort CD in a descending order by the detector radius;
Step 2.Make sure that centers of detectors in the back of the sequence do not fall into the covered area of front detectors.

That is to say, 𝑑𝑖𝑠(𝑑
𝑖
, 𝑑
𝑗
) > 𝑟
𝑑𝑖
, where 1 <= 𝑖 < 𝑗 <= 𝑁

𝑐𝑑
, 𝑟
𝑑𝑖
is the radius of detector 𝑑

𝑖
, and𝑁

𝑐𝑑
is the size of 𝐶𝐷;

Step 3. Add candidate detectors into𝐷, and ensure that they do not entirely cover any detector in𝐷. That is to say,
𝑑𝑖𝑠(𝑑
𝑖
, 𝑑
𝑗
) > 𝑟
𝑑𝑖
or 𝑑𝑖𝑠(𝑑

𝑖
, 𝑑
𝑗
) <= 𝑟

𝑑𝑖
and 2𝑟

𝑑𝑗
> 𝑟
𝑑𝑖
, where 1 <= 𝑖 <= 𝑁

𝑐𝑑
, 1 <= 𝑗 <= 𝑁

𝑑
, 𝑟
𝑑𝑖
and 𝑟
𝑑𝑗
are the radiuses

of 𝑑
𝑖
and 𝑑

𝑗
respectively, and𝑁

𝑐𝑑
and𝑁

𝑑
are the sizes of 𝐶𝐷 and 𝐷 respectively.

Algorithm 6: The filtering process of candidate detectors.

the specific matching rule [7, 9]. 𝑃(𝐴) is defined as the
probability of occurrence of event 𝐴 [21].

Theorem 12. The probability of matching an undescribed self
antigen for a detector which is passed self-tolerance is 𝑃

𝑑
= (1−

𝑃


)
𝑁
𝑠 ⋅ (1 − (1 − 𝑃



)
𝑁self−𝑁𝑠).

Proof. From the proposition, a given detector passing the
self-tolerance indicates that this detector does not match any
antigen in the self training set. Let event 𝐴 be “the given
detector does not match any antigen in the self set,” event 𝐵
“the given detector matches at least one antigen which is not
described,” then 𝑃

𝑑
= 𝑃(𝐴)𝑃(𝐵). In the event 𝐴, the number

of times for a detector matching antigens in the self set 𝑋
meets the binomial distribution, 𝑋 ∼ 𝑏(𝑁

𝑠
, 𝑃


). Therefore,
𝑃(𝐴) = 𝑃(𝑋 = 0) = (1 − 𝑃



)
𝑁
𝑠 . In the event 𝐵, the number

of times for a detector matching undescribed self antigens
𝑌meets the binomial distribution,𝑌 ∼ 𝑏(𝑁

𝑆𝑒𝑙𝑓
−𝑁
𝑠
, 𝑃


).Then,
𝑃(𝐵) = 1 − 𝑃(𝑌 = 0) = 1 − (1 − 𝑃



)
𝑁
𝑆𝑒𝑙𝑓
−𝑁
𝑠 .

So, 𝑃
𝑑
= 𝑃(𝐴)𝑃(𝐵) = (1 − 𝑃



)
𝑁
𝑠 ⋅ (1 − (1 − 𝑃



)
𝑁
𝑠𝑒𝑙𝑓
−𝑁
𝑠).

Proved.

Theorem 13. The probability of correct identification for a
non-self antigen is𝑃

𝑡𝑝
= 1−(1−𝑃



)
𝑁
𝑑
⋅(1−𝑃
𝑑
), and the probability

of erroneous identification for a non-self antigen is 𝑃
𝑓𝑛
= (1 −

𝑃


)
𝑁
𝑑
⋅(1−𝑃
𝑑
). The probability of correct identification for a self

antigen is 𝑃
𝑡𝑛
= (1 − 𝑃



)
𝑁
𝑑
⋅𝑃
𝑑 , and the probability of erroneous

identification for a self antigen is 𝑃
𝑓𝑝
= 1 − (1 − 𝑃



)
𝑁
𝑑
⋅𝑃
𝑑 .

Proof . Let event 𝐴 be “the given non-self antigen matches at
least one detector in the detectors set.” In the event 𝐴, the
number of times for a non-self antigen matching detectors
𝑋 meets the binomial distribution, 𝑋 ∼ 𝑏(𝑁

𝑑
⋅ (1 − 𝑃

𝑑
), 𝑃


).
Therefore, 𝑃

𝑡𝑝
= 𝑃(𝐴) = 1 − 𝑃(𝑋 = 0) = 1 − (1 − 𝑃



)
𝑁
𝑑
⋅(1−𝑃
𝑑
),

and 𝑃
𝑓𝑛
= 1 − 𝑃

𝑡𝑝
= (1 − 𝑃



)
𝑁
𝑑
⋅(1−𝑃
𝑑
).

Let event 𝐵 be “the given self antigen does not match
any detector in the detectors set.” In the event 𝐵, the number
of times for a self antigen matching detectors 𝑌 meets the
binomial distribution, 𝑌 ∼ 𝑏(𝑁

𝑑
⋅ 𝑃
𝑑
, 𝑃


). Therefore, 𝑃
𝑡𝑛
=

𝑃(𝐵) = 𝑃(𝑌 = 0) = (1 − 𝑃


)
𝑁
𝑑
⋅𝑃
𝑑 , and 𝑃

𝑓𝑝
= 1 − 𝑃

𝑡𝑛
=

1 − (1 − 𝑃


)
𝑁
𝑑
⋅𝑃
𝑑 . Proved.

𝑃
 is substantially constant for specific matching rules

[7, 9]. Assuming that 𝑃 = 0.005 and 𝑁
𝑆𝑒𝑙𝑓

= 1000, then
Figure 4 shows variations of 𝑃

𝑡𝑝
, 𝑃
𝑓𝑛
, 𝑃
𝑓𝑝
, and 𝑃

𝑡𝑛
under

the effects of 𝑁
𝑑
and 𝑁

𝑠
. As can be seen from the figure,

when the number of selves in the training set 𝑁
𝑠
and the

number of detectors 𝑁
𝑑
are larger, the probability of correct

identification for an arbitrary given non-self antigen 𝑃
𝑡𝑝

is
greater, the probability of erroneous identification 𝑃

𝑓𝑛
is

small, and variation tendencies of 𝑃
𝑡𝑝
and 𝑃

𝑓𝑛
are not large

while 𝑁
𝑑
and 𝑁

𝑠
change. Thus, when the coverage of non-

self space for the detector set is certain, the detection rates
of different algorithms are relatively close. When 𝑁

𝑠
and

𝑁
𝑑
are larger, the probability of correct identification for

an arbitrary given self antigen 𝑃
𝑡𝑛
is greater, the probability

of erroneous identification 𝑃
𝑓𝑝

is small, and variation ten-
dencies of 𝑃

𝑡𝑛
and 𝑃

𝑓𝑝
are large while 𝑁

𝑑
and 𝑁

𝑠
change.

So, when the coverage of non-self space for the detector
set is certain, the false alarm rate of GB-RNSA is smaller
for that the algorithm significantly reduces the number of
detectors.

3.6. Time Complexity Analysis

Theorem 14. The time complexity of detector generation
process in GB-RNSA is 𝑂((|𝐷|/(1 − 𝑃))(𝑁

𝑠
+ |𝐷|
2

)), where
𝑁
𝑠
is the size of the training set, |𝐷| is the size of the detector

set, and 𝑃 is the average self-reactive rate of detectors.

Proof. For GB-RNSA, the main time cost of generating a
new mature detector includes the time spending of calling
FindGrid to find the grid, the time spending of self-tolerance
for candidate detectors, and the time spending of call Filter to
screen detectors.

Known from Section 3.2, the depth of 2
𝑛-tree is

𝐶𝑒𝑖𝑙(log
2
(1/(4𝑟

𝑠
+ 4𝑟
𝑑𝑠
))). So, for a new detector, the time

complexity of finding the grid 𝑔𝑟𝑖𝑑 where the detector is
𝑡1 = 𝑂(𝐶𝑒𝑖𝑙(log

2
(1/(4𝑟

𝑠
+ 4𝑟
𝑑𝑠
)))
𝑛

). 𝑛 is the space dimension,
𝑟
𝑠
is the radius of selves, and 𝑟

𝑑𝑠
is the smallest radius of

detectors. So, 𝑡1 is relatively constant.
Calculating the radius of the new detector needs to

compute the nearest distance with selves in the grid where
the detector is and neighbors. The time complexity is 𝑡2 =

𝑂(𝑁
𝑠
), where 𝑁

𝑠
 is the number of selves in 𝑔𝑟𝑖𝑑

 and
neighbors.

The time complexity of calculating whether the new
detector is covered by existing detectors is 𝑡3 = 𝑂(𝐷), where
𝐷
 is the number of detectors in 𝑔𝑟𝑖𝑑 and neighbors.
The time complexity of calling Filter to screen detectors

includes the time spending of sorting the candidate detectors
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Figure 4: Simulations of Theorem 13.

and judging whether redundant coverage exists; that is, 𝑡4 =
𝑂(𝑁
2

0
+ 𝑁
0
⋅ 𝐷


).
Suppose 𝑁

 is the number of candidate detectors to
generate the detector set 𝐷, then the time complexity of
sampling is 𝑁 ⋅ (𝑡1 + 𝑡2) + 𝑁 ⋅ (1 − 𝑃) ⋅ 𝑡3 + (𝑁/𝑁

0
) ⋅ 𝑡4.

And𝑁 ≈ |𝐷|/(1 − 𝑃), so, the time complexity of generating
the detector set𝐷 is as follows:

𝑂(
|𝐷|

1 − 𝑃
(𝑡1 +∑𝑁

𝑠
) + |𝐷| (∑𝐷



) +

|𝐷| (𝑁
0
+ ∑𝐷



)

(1 − 𝑃)
)

= 𝑂(
|𝐷|

1 − 𝑃
𝑁
𝑠
+ |𝐷|
2

+
|𝐷|
2

1 − 𝑃
)

= 𝑂(
|𝐷|

1 − 𝑃
(𝑁
𝑠
+ |𝐷|
2

)) .

(5)

So, the time complexity of detector generation process in
GB-RNSA is 𝑂((|𝐷|/(1 − 𝑃))(𝑁

𝑠
+ |𝐷|
2

)). Proved.

SNSA, RNSA, and V-Detector are the main detector
generation algorithms and are widely used in the fields
of artificial immune-based pattern recognition, anomaly
detection, immune optimization, and so forth. Table 1 shows
the comparisons of these negative selection algorithms and
GB-RNSA. As seen from Table 1, the time complexity of
traditional algorithms is exponential to the size of selves 𝑁

𝑠
.

When the number of self elements increases, the time cost

Table 1: Comparisons of time complexity.

Algorithm Time complexity

SNSA 𝑂(

− ln(𝑃
𝑓
) ⋅ 𝑁
𝑠

𝑃(1 − 𝑃)
𝑁
𝑠

) [7]

RNSA 𝑂(
|𝐷| ⋅ 𝑁

𝑠

(1 − 𝑃)
𝑁
𝑠

) [11]

V-Detector 𝑂(
|𝐷| ⋅ 𝑁

𝑠

(1 − 𝑃)
𝑁
𝑠

) [13]

GB-RNSA 𝑂(
|𝐷|

1 − 𝑃
(𝑁
𝑠
+ |𝐷|
2

))

will rapidly increase. GB-RNSA eliminates the exponential
impact and reduces the influence of growth of selves’ scale
on the time cost. So, GB-RNSA lowers the time complexity of
the original algorithm and improves the efficiency of detector
generation.

4. Experimental Results and Analysis

This section validates the effectiveness of GB-RNSA through
experiments. Two types of data sets are selected for the
experiments which are commonly used in the study of real-
valued negative selection algorithms, including 2D synthetic
datasets [22] and UCI datasets [20]. 2D synthetic datasets
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Figure 5: Distributions of Ring, Stripe, and Pentagram datasets.

Table 2: Effects of different self radiuses.

Datasets Self radius 𝑟
𝑠
= 0.02 Self radius 𝑟

𝑠
= 0.1 Self radius 𝑟

𝑠
= 0.2

𝐷𝑅% 𝐹𝐴𝑅% 𝐷𝑅% 𝐹𝐴𝑅% 𝐷𝑅% 𝐹𝐴𝑅%
Ring 81.55 (1.02) 62.11 (2.14) 61.77 (1.39) 12.04 (1.24) 32.39 (1.42) 0.00 (0.00)
Stripe 80.21 (1.24) 63.34 (1.90) 58.52 (1.18) 11.20 (2.47) 25.93 (1.88) 0.00 (0.00)
Pentagram 77.09 (1.38) 67.02 (2.32) 57.65 (2.31) 13.19 (1.63) 22.78 (1.59) 0.00 (0.00)

Table 3: Effects of different sizes of the training set.

Datasets Size of the training set𝑁
𝑠
= 100 Size of the training set𝑁

𝑠
= 500 Size of the training set𝑁

𝑠
= 800

𝐷𝑅% 𝐹𝐴𝑅% 𝐷𝑅% 𝐹𝐴𝑅% 𝐷𝑅% 𝐹𝐴𝑅%
Ring 22.54 (1.22) 76.26 (2.05) 86.09 (1.16) 8.21 (1.21) 95.92 (1.37) 0.00 (0.00)
Stripe 18.25 (1.98) 78.92 (2.32) 80.13 (1.87) 9.05 (1.44) 87.63 (1.78) 0.00 (0.00)
Pentagram 12.20 (1.55) 88.29 (2.87) 72.33 (1.91) 11.42 (1.41) 82.18 (1.49) 0.00 (0.00)

Table 4: Experimental parameters of UCI datasets.

Datasets Record
numbers Properties Types Self sets Nonself sets Training set

and its size
Test set and its

size

Iris 150 4 Real Setosa: 50 Versicolour: 50
Virginica: 50 Setosa: 25

Setosa: 25
Versicolour: 25
Virginica: 25

Haberman’s
Survival 306 3 Integer Survived: 225 Died: 81 Survived: 150 Survived: 50

Died: 50

Abalone 4177 8 Real,
integer M: 1528 F: 1307

I: 1342 M: 1000
M: 500
F: 500
I: 500

are authoritative in the performance test of real-valued
negative selection algorithms [13, 19, 22], which is provided by
Professor Dasgupta’s research team of Memphis University.
UCI datasets are classic machine learning data sets, which
are widely used in the tests of detectors’ performance and

generation efficiencies [11, 18, 19, 23]. In the experiments, two
traditional real-valued negative selection algorithms RNSA
and V-Detector are chosen to compare with.

The number of mature detectors DN, the detection rate
DR, the false alarm rate FAR, and the time cost of detectors



10 Abstract and Applied Analysis

90 91 92 93 94 95 96 97 98 99 100
0

500

1000

1500

2000

2500

Expected coverage (%)

N
um

be
r o

f d
et

ec
to

rs

RNSA
V-Detector
GB−RNSA

RNSA
V-Detector
GB−RNSA

99 99.1 99.2 99.3 99.4 99.5 99.6 99.7 99.8 99.9 100
0

5,000

10,000

15,000

20,000

Expected coverage (%)

N
um

be
r o

f d
et

ec
to

rs

Figure 6: Comparisons of the numbers of detectors for RNSA, V-Detector, and GB-RNSA (dataset of Haberman’s Survival is adopted; the
radius of self antigen is 0.1).
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Figure 7: Comparisons of the numbers of detectors for RNSA, V-Detector, and GB-RNSA (dataset of Iris is adopted; the radius of self antigen
is 0.1).

generations DT are adopted to measure the effectiveness of
the algorithms in the experiments. Because the traditional
algorithm RNSA uses the preset number of detectors as the
termination condition, this paper modified RNSA and uses
the expected coverage of non-self space as the termination
condition, in order to ensure that the three algorithms
are under the same experimental conditions to make valid
comparisons.

4.1. 2D Synthetic Datasets. These datasets consist of several
different subdatasets.We choose Ring, Stripe, and Pentagram
subdatasets to test the performance of detectors generation
of GB-RNSA. Figure 5 shows the distributions of these three
datasets in two-dimensional real space.

The size of self sets of the three datasets is 𝑁
𝑆𝑒𝑙𝑓

=

1000. The training set is composed of data points randomly
selected from the self set, and the test data is randomly
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Figure 8: Comparisons of the numbers of detectors for RNSA, V-Detector, and GB-RNSA (dataset of Abalone is adopted; the radius of self
antigen is 0.1).
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selected from the two-dimensional [0, 1] space. The experi-
ments were repeated 20 times and the average values were
adopted. Experimental results are shown in Tables 2 and 3,
where values within parenthesis are variances. Table 2 lists
comparisons of detection rates and false alarm rates of GB-
RNSA in the three datasets under the same expected coverage
of 90%, the same training set 𝑁

𝑠
= 300, and different self

radiuses. As can be seen, the algorithm has higher detection
rate and false alarm rate under smaller self radius, while the
algorithm has lower detection rate and false alarm rate under
greater self radius. Table 3 lists comparisons of detection rates

and false alarm rates of GB-RNSA in the three datasets under
the same expected coverage of 90%, the same self radius
𝑟
𝑠
= 0.05 and different sizes of training set. The detection

rate increases gradually and the false alarm rate decreases
gradually while the size of the training set grows.

4.2. UCI Datasets. Three standard UCI data sets including
Iris, Haberman’s Survival and Abalone, are chosen to do
the experiments, and experimental parameters are shown in
Table 4. For the three data sets, self set and non-self set are
chosen randomly, and records of training set and test set are
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Figure 11: Comparisons of time costs of RNSA, V-Detector, and GB-RNSA (dataset of Abalone is adopted; the radius of self antigen is 0.1).

chosen randomly as well. The experiments were repeated 20
times and the average values were adopted.

4.2.1. Comparisons of the Number of Detectors. Figures 6, 7,
and 8 show the number of mature detectors of RNSA, V-
Detector, and GB-RNSA on the three data sets. Seen from
the figures, with the increase of the expected coverage, the
number of detectors which are needed to meet the cover-
age requirements for the three algorithms correspondingly
increases. But the efficiency of GB-RNSA is significantly
better than those of RNSA and V-Detector. For the data
set of Iris, to achieve the expected coverage 99%, RNSA
needs 13527 mature detectors, V-Detector needs 1432, and

GB-RNSA needs 1166 which decreases about 91.4% and
18.6%, respectively. For the larger data set of Abalone, to
achieve the expected coverage 99%, RNSA needs 11500
mature detectors, V-Detector needs 620, and GB-RNSA
needs 235 which decreases about 98% and 62.1%, respectively.
Thus, under the same expected coverage, different data
dimensions, and different training sets, the number ofmature
detectors generated by GB-RNSA is significantly reduced
compared with RNSA and V-Detector.

4.2.2. Comparisons of the Cost of Detectors’ Generations.
Figures 9, 10, and 11 show the time costs of detectors’
generation of RNSA, V-Detector, and GB-RNSA on the
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Figure 13: Comparisons of DR and FAR of RNSA, V-Detector, and GB-RNSA (dataset of Iris is adopted; the radius of self antigen is 0.1).

three data sets. As seen from the figures, with the increase
of the expected coverage, the time cost of RNSA and V-
Detector is in a sharp increase, while that of GB-RNSA is
in a slow growth. For the data set of Iris, to achieve the
expected coverage of 90%, the time cost of RNSA is 350.187
seconds, that of V-Detector is 0.347 seconds, and that of
GB-RNSA is 0.1 seconds which decreases about 99.97% and
71.2%, respectively; when the expected coverage is 99%, the
time cost of RNSA is 1259.047 seconds, that of V-Detector
is 40.775 seconds, and that of GB-RNSA is 3.659 seconds
which decreases about 99.7% and 91.0%, respectively. For the
other two datasets, experimental results are similar. Thus,

compared with RNSA and V-Detector, the effectiveness of
detectors’ generation of GB-RNSA is promoted.

4.2.3. Comparisons of Detection Rates and False Alarm Rates.
Figures 12, 13, and 14 show the detection rates and false alarm
rates of RNSA, V-Detector, and GB-RNSA on the three data
sets. As seen from the figures, when the expected coverage is
large than 90%, the detection rates of the three algorithms
are similar, and that of RNSA is slightly lower, while the
false alarm rate of GB-RNSA is obviously lower than those
of RNSA and V-Detector. For the data set of Haberman’s
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Figure 15: ROC curves of RNSA, V-Detector, and GB-RNSA.

Survival, when the expected coverage is 99%, the false alarm
rate of RNSA is 55.2%, that of V-Detector is 30.1%, and that of
GB-RNSA is 20.1% which decreases about 63.6% and 33.2%,
respectively. For the data set of Abalone, when the expected
coverage is 99%, the false alarm rate of RNSA is 25.1%, that
of V-Detector is 20.5%, and that of GB-RNSA is 12.6% which
decreases about 49.8% and 38.5%, respectively. Thus, under

the same expected coverage, the false alarm rate of GB-RNSA
is significantly lower compared with RNSA and V-Detector.

TheROCcurve is a graphicalmethod for the classification
model using true positive rate and false positive rate. InNSAs,
true positive rate is the detection rate and false positive rate
is the false alarm rate. Figure 15 shows the ROC curves of
RNSA, V-Detector, and GB-RNSA on the three data sets.
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A good classification model should be as close as possible to
the upper-left corner of the graphic. As seen from Figure 15,
GB-RNSA is better than RNSA and V-Detector.

5. Conclusion

Too many detectors and high time complexity are the major
problems of existing negative selection algorithms, which
limit the practical applications of NSAs. There is also a
problemof redundant coverage of non-self space for detectors
in NSAs. A real-valued negative selection algorithm based
on grid for anomaly detection GB-RNSA is proposed in this
paper. The algorithm analyzes distributions of the self set in
the real space and divides the space into grids by certain
methods. The randomly generated candidate detector only
needs to match selves who are in the grid where the detector
is and in its neighbor grids. And before the candidate detector
is added into the mature detector set, certain methods are
adopted to reduce the duplication coverage. Theory analysis
and experimental results demonstrate that GB-RNSA has
better time efficiency and detector quality compared with
classical negative selection algorithms and is an effective arti-
ficial immune algorithm to generate detectors for anomaly
detection.

Acknowledgments

This work has been supported by the National Natural
Science Foundation of China under Grant no. 61173159, the
National Natural Science Foundation of China under Grant
no. 60873246, and the Cultivation Fund of the Key Scientific
and Technical Innovation Project, Ministry of Education of
China, under Grant no. 708075.

References

[1] D. Dasgupta, S. Yu, and F. Nino, “Recent advances in artificial
immune systems: models and applications,” Applied Soft Com-
puting Journal, vol. 11, no. 2, pp. 1574–1587, 2011.

[2] P. Bretscher andM. Cohn, “A theory of self-nonself discrimina-
tion,” Science, vol. 169, no. 3950, pp. 1042–1049, 1970.

[3] F. Burnet, The Clonal Selection Theory of Acquired Immunity,
Vanderbilt University Press, Nashville, Tenn, USA, 1959.

[4] N. K. Jerne, “Towards a network theory of the immune system,”
Annals of Immunology, vol. 125, no. 1-2, pp. 373–389, 1974.

[5] P. Matzinger, “The danger model: a renewed sense of self,”
Science, vol. 296, no. 5566, pp. 301–305, 2002.

[6] M. L. Kapsenberg, “Dendritic-cell control of pathogen-driven
T-cell polarization,” Nature Reviews Immunology, vol. 3, no. 12,
pp. 984–993, 2003.

[7] S. Forrest, L. Allen, A. S. Perelson, and R. Cherukuri, “Self-
nonself discrimination in a computer,” in Proceedings of the
IEEE Symposium on Research in Security and Privacy, pp. 202–
212, May 1994.

[8] T. Li, Computer Immunology, House of Electronics Industry,
Beijing, China, 2004.

[9] T. Li, “Dynamic detection for computer virus based on immune
system,” Science in China F, vol. 51, no. 10, pp. 1475–1486, 2008.

[10] T. Li, “An immunity based network security risk estimation,”
Science in China F, vol. 48, no. 5, pp. 557–578, 2005.
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