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We analyze Noether and 𝜆-symmetries of the path equation describing the minimum drag work. First, the partial Lagrangian for
the governing equation is constructed, and then the determining equations are obtained based on the partial Lagrangian approach.
For specific altitude functions, Noether symmetry classification is carried out and the first integrals, conservation laws and group
invariant solutions are obtained and classified. Then, secondly, by using the mathematical relationship with Lie point symmetries
we investigate 𝜆-symmetry properties and the corresponding reduction forms, integrating factors, and first integrals for specific
altitude functions of the governing equation. Furthermore, we apply the Jacobi last multiplier method as a different approach to
determine the new forms of 𝜆-symmetries. Finally, we compare the results obtained from different classifications.

1. Introduction

In a fluidmedium, drag forces are themajor sources of energy
loss for moving objects. Fuel consumption may have reduced
to minimize the drag work. This can be achieved by the
selection of optimum path. The drag force depends on the
density of fluid, the drag coefficient, the cross-sectional area,
and the velocity. These parameters are the combination of
the altitude-dependent parameters which can be expressed
as a single arbitrary function. If all parameters are assumed
to be constants, then the minimum drag work path would be
a linear path. But these parameters change during themotion.
And all parameters can be defined as the function of altitude
[1, 2].

The main purpose of the work is to study Noether
and 𝜆-symmetry classifications of the path equation for
the different forms of arbitrary function of the governing
equation [3–7]. Based on Noether’s theorem, if Noether
symmetries of an ordinary differential equation are known,
then the conservation laws of this equation can be obtained
directly by using Euler-Lagrange equations [8]. However, in
order to apply this theorem, a differential equation should
have standard Lagrangian. Thus, an important problem in
such studies is to determine the standard Lagrangian of

the differential equation. In fact, for many problems in the
literature, it may not be possible to determine the Lagrangian
function of the equation. To overcome this problem, partial
Lagrangianmethod can be used alternatively and theNoether
symmetries and first integrals can be obtained in spite of the
fact that the differential equation does not have a standard
Lagrangian [9]. Here, we examine the partial Lagrangian of
path equation and classify the Noether symmetries and first
integrals corresponding to special forms of arbitrary function
in the governing equation.

The second type of classification that is called 𝜆-
symmetries is carried out by using the relation with Lie point
symmetries as a direct method. For second-order ordinary
differential equation, the method of finding 𝜆-symmetries
has been investigated extensively by Muriel and Romero
[10, 11]. They have demonstrated that integrating factors and
the integrals from 𝜆-symmetries for a second-order ordinary
differential equation can be determined algorithmically [12].
In their studies, for the sake of simplicity, the 𝜆-symmetry is
assumed to be a linear form as 𝜆(𝑥, 𝑦) = 𝜆

1
(𝑥, 𝑦)𝑦


+𝜆
2
(𝑥, 𝑦).

However, it is possible to show that the 𝜆-symmetry cannot
be chosen generally in this linear form.Therefore, we propose
in this study to use the relation between Lie point symmetries
and 𝜆-symmetries for the classification.
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The other classification that we discuss in our study is
how to obtain 𝜆-symmetries with the Jacobi last multiplier
approach. Recently, Nucci and Levi [13] have shown that 𝜆-
symmetries and corresponding invariant solutions can be
algorithmically obtained by using the Jacobi last multiplier.
This new approach includes the new determining equa-
tion including 𝜆-function that can be obtained from the
divergence of the ordinary differential equation. In the 𝜆-
symmetries approach based on a new form of the prolonga-
tion formula, the determining equations are difficult to solve
since they include three unknown variables to determine
and then the determining equation cannot be reduced to
a simpler form. However, by considering the Jacobi last
multiplier approach, first we determine the 𝜆-function, which
reduces to two the number of unknown functions, and then
the other functions called infinitesimals functions can be
calculated easily. Taking into account these ideas we analyze
𝜆-symmetries of the path equation for different cases of the
altitude function.

The outline of this work is as follows. In the next section,
we present the necessary preliminaries. In Section 3, Noether
symmetries, first integrals, and some invariant solutions of
path equation are obtained. In Section 4, firstly we introduce
some fundamental information about 𝜆-symmetries, inte-
gration factors, and first integrals, and then 𝜆-symmetries
corresponding to different choice of the arbitrary function are
investigated. Also for some cases the reduced forms of path
equation are found and the new solutions of path equation
are established. Section 5 is devoted to introduce another
approach that is called Jacobi last multiplier to investigate the
𝜆-symmetries. The conclusions and results are discussed in
Section 6.

2. Preliminaries

Let us assume that 𝑥 be the independent variable and 𝑦 =

(𝑦
1
, . . . , 𝑦

𝑚
) be the dependent variable with functions𝑦𝛼.The

derivatives of 𝑦𝛼 with respect to 𝑥 are given by

𝑦
𝛼

𝑥
= 𝑦
𝛼

1
= 𝐷
𝑥
(𝑦
𝛼
) , 𝑦

𝛼

𝑠
= 𝐷
𝑠

𝑥
(𝑦
𝛼
) ,

𝑠 ≥ 2, 𝛼 = 1, 2, . . . , 𝑚,

(1)

where 𝐷
𝑥
is the total derivative operator [14–18] with respect

to 𝑥, which can be defined as

𝐷
𝑥
=

𝜕

𝜕𝑥
+ 𝑦
𝛼

𝑥

𝜕

𝜕𝑦𝛼
+ 𝑦
𝛼

𝑥𝑥

𝜕

𝜕𝑦𝛼
𝑥

. (2)

Definition 1. For each 𝛼 we can define the operator

𝛿

𝛿𝑦𝛼
=

𝜕

𝜕𝑦𝛼
+∑

𝑠≥1

(−𝐷
𝑥
)
𝑠 𝜕

𝜕𝑦𝛼
𝑠

, 𝛼 = 1, 2, . . . , 𝑚, (3)

which is called the Euler-Lagrange operator.

Definition 2. Generalized operator can be formulated as

𝑋 = 𝜉
𝜕

𝜕𝑥
+ 𝜂
𝛼 𝜕

𝜕𝑦𝛼
+∑

𝑠≥1

𝜁
𝛼

𝑠

𝜕

𝜕𝑦𝛼
𝑠

, (4)

where

𝜁
𝛼

𝑠
= 𝐷
𝑠

𝑥
(𝑊
𝛼
) + 𝜉𝑦

𝛼

𝑠+1
, 𝑠 ≥ 2, 𝛼 = 1, 2, . . . , 𝑚, (5)

in which𝑊
𝛼 is the Lie characteristic function

𝑊
𝛼
= 𝜂
𝛼
− 𝜉𝑦
𝛼

𝑥
, 𝛼 = 1, 2, . . . , 𝑚. (6)

For convenience the generalized operator (4) can be rewritten
by using characteristic function such as

𝑋 = 𝜉𝐷
𝑥
+𝑊
𝛼 𝜕

𝜕𝑦𝛼
+∑

𝑠≥1

𝐷
𝑠

𝑥
(𝑊
𝛼
)

𝜕

𝜕𝑦𝛼
𝑠

, (7)

and the Noether operator associated with a generalized
operator𝑋 can be defined

𝑁 = 𝜉 +𝑊
𝛼 𝜕

𝜕𝑦𝛼
+∑

𝑠≥1

𝐷
𝑠

𝑥
(𝑊
𝛼
)

𝜕

𝜕𝑦𝛼
𝑠

⋅ (8)

Definition 3. Let us consider an 𝑛th-order ordinary differen-
tial equation system

𝐹
𝛼
(𝑥, 𝑦, 𝑦

(1)
, 𝑦
(2)
, . . . , 𝑦

(𝑛)
) = 0, 𝛼 = 1, 2, . . . , 𝑚, (9)

then the first integral of this system is a differential function
(9) 𝐼 ∈ A, the universal space and the vector space of all
differential functions of all finite orders, which is given by the
following formula:

𝐷
𝑥
𝐼 = 0, (10)

and this equality is valid for every solution of (9). The first
integral is also referred to as the local conservation law.

Definition 4. Let (9) be in the following form

𝐹
𝛼
≡ 𝐹
0

𝛼
+ 𝐹
1

𝛼
= 0, 𝛼 = 1, 2, . . . , 𝑚. (11)

and 𝐿 = 𝐿(𝑥, 𝑢, 𝑢
(1)
, 𝑢
(2)
, . . . , 𝑢

(𝛼)
) ∈ A, 𝛼 ≤ 𝑘 and then

nonzero functions 𝑓𝛽
𝛼

∈ A satisfy the relations 𝛿𝐿/𝛿𝑢𝛼 =

𝑓
𝛽

𝛼
𝐹
1

𝛽
, 𝐹1
𝛽

̸= 0, in which 𝐿 is called partial Lagrangian of (11).
Otherwise, 𝐿 is a standard Lagrangian.

On the other hand the Euler-Lagrange equations can be
defined as following form

𝛿𝐿

𝛿𝑢𝛼
= 0, 𝛼 = 1, 2, . . . , 𝑚, (12)

and similarly the form of partial Euler-Lagrange equations is

𝛿𝐿

𝛿𝑢𝛼
= 𝑓
𝛽

𝛼
𝐹
1

𝛽
. (13)

Definition 5. Let 𝐵 ∈ A be a vector that satisfies 𝐵 ̸=𝑁𝐿 + 𝐶,
where 𝐶 is a constant. Then𝑋

(𝛼)
represents 𝛼th prolongation

of the generalized operator (7), and partial Noether operator
corresponding to a partial Lagrangian is formulated as

𝑋
(𝛼)
𝐿 + 𝐿𝐷

𝑥
(𝜉) = 𝑊

𝛼 𝛿𝐿

𝛿𝑦𝛼
+ 𝐷
𝑥
(𝐵) , (14)

in which 𝑊 = (𝑊
1
, . . . ,𝑊

𝑚
), 𝑊
𝛼
∈ A, is the characteristic

of𝑋. Also 𝐵(𝑥, 𝑦) is called the gauge function.
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Definition 6. If𝑋 is a partial Noether operator corresponding
to partial Lagrangian 𝐿, then the gauge function 𝐵(𝑥, 𝑦)

exists. Hence, the first integral is given by

𝐼 = 𝜉𝐿 + (𝜂 − 𝑦

𝜉) 𝐿
𝑦
 − 𝐵. (15)

3. Noether Symmetries of Path Equation

Thedifferential equation describing the path of theminimum
drag work is given in the form

𝑦

−
𝑓

(𝑦)

𝑓 (𝑦)
− 𝑦
2
𝑓

(𝑦)

𝑓 (𝑦)
= 0, (16)

where 𝑦 = 𝑦(𝑥) is the altitude function. In this section we use
partial Lagrangian approach to analyze Noether symmetries.
Firstly, we can determine the Euler-Lagrange operator (3) for
the path equation (16) such as

𝛿

𝛼𝑦𝛼
=

𝜕

𝜕𝑦𝛼
− 𝐷
𝑥

𝜕

𝜕𝑦
𝑥

+ 𝐷
2

𝑥

𝜕

𝜕𝑦
𝑥𝑥

, (17)

and the partial Lagrangian 𝐿 for the path equation (16) is

𝐿 =
1

2
𝑦
2
+ ln𝑓 (𝑦) . (18)

Then the application of (18) to (14) and separation with
respect to powers of 𝑦

 and arranging yield the set of
determining equations, the over-system of partial differential
equations

1

2
𝜉
𝑦
+ 𝜉

𝑓

(𝑦)

𝑓 (𝑦)
= 0, (19)

𝜂
𝑦
−
1

2
𝜉
𝑥
+ 𝜂

𝑓

(𝑦)

𝑓 (𝑦)
= 0, (20)

𝜂
𝑥
+ 𝜉
𝑦
ln𝑓 (𝑦) − 𝐵

𝑦
= 0, (21)

𝜉
𝑥
ln𝑓 (𝑦) − 𝐵

𝑥
+ 𝜂

𝑓

(𝑦)

𝑓 (𝑦)
= 0. (22)

To find the infinitesimals 𝜉 and 𝜂, (19)–(22) should be solved
together. First, (19) is integrated as

𝜉 =
𝑎 (𝑥)

𝑓(𝑦)
2
, (23)

and then substituting (23) into (20) and solving for 𝜂 yield

𝜂 =
1

𝑓 (𝑦)
(
𝑎

(𝑥)

2
∫

𝑑𝑦

𝑓 (𝑦)
+ 𝑏 (𝑥)) . (24)

Differentiating (21)-(22) with respect to 𝑥 and 𝑦, respectively,
gives

𝐵
𝑦𝑥

= 𝜂
𝑥𝑥

+ 𝜉
𝑦𝑥

ln𝑓 (𝑦) ,

𝐵
𝑥𝑦

= 𝜉
𝑥𝑦
ln𝑓 (𝑦) + 𝜉

𝑥

𝑓

(𝑦)

𝑓 (𝑦)
+ 𝜂
𝑦

𝑓

(𝑦)

𝑓 (𝑦)
+ 𝜂(

𝑓

(𝑦)

𝑓 (𝑦)
)

2

.

(25)

Using (25) and eliminating 𝐵, we find that

𝜂(
𝑓

(𝑦)

𝑓 (𝑦)
)

2

+ (𝜉
𝑥
− 𝜂
𝑦
)
𝑓

(𝑦)

𝑓 (𝑦)
− 𝜂
𝑥𝑥

= 0. (26)

If the infinitesimals 𝜉 (23) and 𝜂 (24) are inserted into (26)
then one can find the following classification relationship in
terms of 𝑓(𝑦):

𝑏 (𝑥) (4𝑓(𝑦)
2

− 2𝑓 (𝑦) 𝑓

(𝑦))

+ 𝑎

(𝑥) (−3𝑓


(𝑦) + 2∫𝑓 (𝑦) 𝑑𝑦

−𝑓 (𝑦)∫
𝑑𝑦

𝑓 (𝑦)
𝑓

(𝑦))

+ 𝑓(𝑦)
2

(2𝑏

(𝑥) + 𝑎


(𝑥) ∫

𝑑𝑦

𝑓 (𝑦)
) = 0.

(27)

Here several cases should be examined separately for different
forms of 𝑓(𝑦).

3.1. 𝑓(𝑦) = 𝑘 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡. For this case the solution of (27)
gives to the following infinitesimals:

𝜉 =
𝑐
1
+ 𝑐
2
𝑥 + 𝑐
3
𝑥
2

𝑘2
,

𝜂 =
𝑐
2
𝑦 + 2𝑥𝑦𝑐

3
+ 2𝑘𝑐
4
+ 2𝑘𝑥𝑐

5

2𝑘2
,

(28)

where 𝑐
𝑖
are constants 𝑖 = 1, . . . , 5. Integrating (21) with

respect to 𝑦 gives

𝐵 (𝑥, 𝑦) =
𝑦
2
𝑐
3
+ 2𝑦𝑐
5
+ 2𝑥𝑐
2
ln 𝑘 + 2𝑥

2
𝑐
3
ln 𝑘

2𝑘2
. (29)

The associated infinitesimal generators turn out to be

𝑋
1
=

1

𝑘2

𝜕

𝜕𝑥
,

𝑋
2
=

𝑥

𝑘2

𝜕

𝜕𝑥
+

𝑦

2𝑘2

𝜕

𝜕𝑦
,

𝑋
3
=
𝑥
2

𝑘2

𝜕

𝜕𝑥
+
𝑥𝑦

𝑘2

𝜕

𝜕𝑦
,

𝑋
4
=
1

𝑘

𝜕

𝜕𝑦
, 𝑋

5
=
𝑥

𝑘

𝜕

𝜕𝑦
.

(30)

Thus, the first integrals by Definition 6 are given as
follows:

𝐼
1
=

𝑐
1
(2 ln 𝑘 − 𝑦

2

)

2𝑘2
, 𝐼

2
=
𝑦𝑦

− 𝑥𝑦
2

2𝑘2
,

𝐼
3
=
−𝑦
2
+ 2𝑥𝑦𝑦


− 𝑥
2
𝑦
2

2𝑘2
,

𝐼
4
=
𝑦


𝑘
, 𝐼

5
=
−2𝑘𝑦 + 2𝑘𝑥𝑦



2𝑘2
.

(31)
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3.2. 𝑓(𝑦) = 𝑦. For the linear case of 𝑓(𝑦), we obtain

𝜉 =
𝑐
1

𝑦2
, 𝜂 = 0, 𝐵 (𝑥, 𝑦) = 𝑐

1
(

1

2𝑦2
+
ln𝑦
𝑦2

) ,

(32)

where 𝑐
1
is a constant. The partial Noether operator is

𝑋
1
=

1

𝑦2

𝜕

𝜕𝑥
, (33)

and the first integral is

𝐼
1
= −

(1 + 𝑦
2

)

2𝑦2
. (34)

3.3. 𝑓(𝑦) = 𝑘𝑒
𝛼
𝑦. The solution of determining equations for

the form of 𝑓(𝑦) = 𝑘𝑒
𝛼
𝑦 gives the following infinitesimals

𝜉 =
𝑒
−2𝑦𝛼

2𝑘2𝛼
(𝑐
1
sin 2𝑥𝛼 − 𝑐

2
cos 2𝑥𝛼 + 2𝑐

3
𝛼) ,

𝜂 =
𝑒
−2𝑦𝛼

2𝑘2𝛼
(2𝑐
4
𝑒
𝛼𝑦
𝑘𝛼 cos𝑥𝛼

−𝑐
1
cos 2𝑥𝛼 + 2𝑐

5
𝑒
𝛼𝑦 sin𝑥𝛼 − 𝑐

2
sin 2𝑥𝛼) ,

(35)

where 𝑐
𝑖
are constants 𝑖 = 1, . . . , 5, and the gauge function is

𝐵 (𝑥, 𝑦) =
𝑒
−2𝑦𝛼

4𝑘2𝛼
(2𝑐
3
𝛼 + 4𝑦𝑐

3
𝛼
2
− 4𝑒
𝑦𝛼
𝑐
5
cos𝑥𝛼 + 4𝑐

3
𝛼 ln 𝑘

− 𝑐
2
cos 2𝑥𝛼 (2 ln 𝑘 + 2𝑦𝛼 − 1)

×4𝑐
4
𝑒
𝑦𝛼
𝑘𝛼 sin𝑥𝛼 − 𝑐

1
sin 2𝑥𝛼

+2𝑐
1
𝑦𝛼 sin 2𝑥𝛼 + 2𝑐

1
ln 𝑘 sin 2𝑥𝛼) .

(36)

The associated five-parameter symmetry generators take
the form

𝑋
1
=
𝑒
−2𝑦𝛼 sin 2𝑥𝛼

2𝑘2𝛼

𝜕

𝜕𝑥
−
𝑒
−2𝑦𝛼 cos 2𝑥𝛼

2𝑘2𝛼

𝜕

𝜕𝑥
,

𝑋
2
= −

𝑒
−2𝑦𝛼 cos 2𝑥𝛼

2𝑘2𝛼

𝜕

𝜕𝑥
−
𝑒
−2𝑦𝛼 sin 2𝑥𝛼

2𝑘2𝛼

𝜕

𝜕𝑥
,

𝑋
3
=
𝑒
−2𝑦𝛼

𝑘2𝛼

𝜕

𝜕𝑥
, 𝑋

4
=
𝑒
−𝑦𝛼 cos𝑥𝛼

𝑘

𝜕

𝜕𝑦
,

𝑋
5
=
𝑒
−𝑦𝛼 sin𝑥𝛼

𝑘

𝜕

𝜕𝑦
,

(37)

and the corresponding first integrals are

𝐼
1
=
𝑒
−2𝑦𝛼

4𝑘2𝛼
(−2 cos 2𝑥𝛼𝑦 − sin 2𝛼𝑥 (𝑦2 − 1)) ,

𝐼
2
=
𝑒
−2𝑦𝛼

4𝑘2𝛼
(−2 sin 2𝑥𝛼𝑦 + cos 2𝛼𝑥 (𝑦2 − 1)) ,

𝐼
3
= −

𝑒
−2𝑦𝛼

2𝑘2𝛼
(1 + 𝑦

2

) , 𝐼
4
=
𝑒
−𝑦𝛼

𝑘
(𝑦
 cos𝑥𝛼 − sin𝑥𝛼) ,

𝐼
5
=
𝑒
−𝑦𝛼

𝑘
(cos𝛼𝑥 + 𝑦

 sin𝑥𝛼) .

(38)

3.4. 𝑓(𝑦) = 1/(𝑚𝑦 + 𝑛). For this case, the infinitesimal
functions read

𝜉 = (𝑚𝑦 + 𝑛)
2

(𝑐
1
+ 𝑐
2
𝑥 + 𝑐
3
𝑥
2
) ,

𝜂 = (𝑚𝑦 + 𝑛) (−
3

4
𝑚𝑥
2
𝑐
2
−
1

2
𝑚𝑥
3
𝑐
3

+
1

4
𝑦 (2𝑛 + 𝑚𝑦) (𝑐

2
+ 2𝑥𝑐
3
) + 𝑐
4
+ 𝑥𝑐
5
) ,

(39)

where 𝑐
𝑖
are constants 𝑖 = 1, . . . , 5, and the gauge function is

𝐵 (𝑥, 𝑦) =
1

2
(
1

4
(2𝑛 + 𝑚𝑦)

× (2𝑛𝑦𝑐
3
+ 𝑚(4𝑐

1
−2𝑥𝑐
2
−2𝑥
2
𝑐
3
+𝑦
2
𝑐
3
) + 4𝑐

5
)

+ 2𝑚𝑦 (2𝑛 + 𝑚𝑦) (𝑐
1
+ 𝑥 (𝑐

2
+ 𝑐
3
)) ln 1

𝑚𝑦 + 𝑛

−2𝑛
2
(𝑐
1
+ 𝑥 (𝑐

2
+ 𝑐
3
)) ln (𝑚𝑦 + 𝑛) )

+
1

8
𝑥 (𝑚 (2𝑚𝑥

2
𝑐
2
+ 𝑚𝑥
3
𝑐
3
− 8𝑐
4
− 4𝑥𝑐
5
)

+ 8𝑛
2
(𝑐
2
+ 𝑥𝑐
3
) ln 1

𝑚𝑦 + 𝑛

+8𝑛
2
(𝑐
2
+ 𝑥𝑐
3
) ln (𝑚𝑦 + 𝑛)) .

(40)

The corresponding Noether symmetry generators are

𝑋
1
= (𝑚𝑦 + 𝑛)

2 𝜕

𝜕𝑥
,

𝑋
2
= 𝑥(𝑚𝑦 + 𝑛)

2 𝜕

𝜕𝑥
+ (𝑚𝑦 + 𝑛)

× (−
3𝑚𝑥
2

4
+
1

2
(𝑛𝑦 +

𝑚𝑦
2

2
))

𝜕

𝜕𝑦
,

𝑋
3
= 𝑥
2
(𝑚𝑦 + 𝑛)

2 𝜕

𝜕𝑥
+ (𝑚𝑦 + 𝑛)

× (−
𝑚𝑥
3

4
+ 𝑥(𝑛𝑦 +

𝑚𝑦
2

2
))

𝜕

𝜕𝑦
,

𝑋
4
= (𝑚𝑦 + 𝑛)

𝜕

𝜕𝑦
, 𝑋

5
= 𝑥 (𝑚𝑦 + 𝑛)

𝜕

𝜕𝑦
.

(41)
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And the conservation laws are

𝐼
1
=
1

8
(−8𝑚𝑛𝑦 − 4𝑚

2
𝑦
2
+ 8𝑛
2 ln 1

𝑚𝑦 + 𝑛

+ 8𝑛
2 ln (𝑚𝑦 + 𝑛) − (4𝑚𝑦 + 𝑛)

2

𝑦
2

) ,

𝐼
2
=
1

8
(−2𝑚

2
𝑥
3
+ 4𝑚𝑛𝑥𝑦 + 2𝑚

2
𝑥𝑦
2
− 6𝑚𝑥

2
(𝑚𝑦 + 𝑛) 𝑦



+ 2𝑚𝑦
2
(𝑚𝑦 + 𝑛) 𝑦


− 4𝑥(𝑚𝑦 + 𝑛)

2

𝑦
2

) ,

𝐼
3
= −

1

8
( − 𝑚

2
𝑥
4
+ 4𝑚𝑛𝑥

2
𝑦 − 4𝑛

2
𝑦
2
+ 2𝑚
2
𝑥
2y2

− 4𝑚𝑛𝑦
3
− 𝑚
2
𝑦
4
− 4𝑚𝑥

3
(𝑚𝑦 + 𝑛) 𝑦



+ 8𝑛𝑥𝑦 (𝑚𝑦 + 𝑛) 𝑦

+ 4𝑚𝑥𝑦

2
(𝑚𝑦 + 𝑛) 𝑦



− 4𝑥
2
(𝑚𝑦 + 𝑛)

2

𝑦
2

) ,

𝐼
4
= 𝑚𝑥 + (𝑚𝑦 + 𝑛) 𝑦


,

𝐼
5
=
1

8
(4𝑚𝑥

2
− 8𝑛𝑦 − 4𝑚𝑦

2
+ 8𝑥 (𝑚𝑦 + 𝑛) 𝑦


) .

(42)

3.5. 𝑓(𝑦) = 𝑦
𝑛. For this choice of 𝑓(𝑦), we find the

infinitesimals

𝜉 = 𝑐
1
𝑦
−2𝑛

, 𝜂 = 0,

𝐵 (𝑥, 𝑦) =
1

2
𝑐
1
𝑦
−2𝑛

(1 + 2 ln (𝑦𝑛)) ,
(43)

where 𝑐
1
is constant, and we have the first integral

𝐼 = −
1

2
𝑦
−2𝑛

(1 + 𝑦
2

) . (44)

For convenience all Noether symmetries and first integrals
are presented in Table 1.

3.6. Invariant Solutions. Invariant solutions that satisfy the
original path equation can be obtained by first integrals
according to the relation 𝐷

𝑥
𝐼 = 0. We here determine some

special cases and investigate the corresponding invariant
solutions.

Case 1. (a) For the case of 𝑓(𝑦) = 𝑘𝑒
𝛼𝑦, the conservation law

is

𝐼 = −
𝑒
−2𝑦𝛼

2𝑘2𝛼
(1 + 𝑦

2

) ; (45)

by using the relation 𝐷
𝑥
𝐼 = 0, then the invariant solution of

path equation (16) is

𝑦 (𝑥) =
1

𝛼
ln(−

√−1 − tan (𝛼 (𝑥 + 𝑐
1
))
2

𝑘√2𝑐
) , (46)

where 𝑐
1
, 𝑐 are constants.

(b) For the same 𝑓(𝑦) function, the conservation law is

𝐼 =
𝑒
−𝑦𝛼

𝑘
(cos𝑥𝛼𝑦 − sin𝑥𝛼) , (47)

and the invariant solution similar to previous one is

𝑦 (𝑥) = −
1

𝛼
ln(𝑐𝑘𝛼3 cos𝑥𝛼(−𝑐

1

1

𝛼3
− tan𝑥𝛼)) , (48)

where 𝑐
1
, 𝑐 are constants.

Case 2. Let us consider 𝑓(𝑦) = 1/(𝑚𝑦 + 𝑛), then the first
integral yields

𝐼 = −
1

8
(−𝑚
2
𝑥
4
+ 4𝑚𝑛𝑥

2
𝑦 − 4𝑛

2
𝑦
2
+ 2𝑚
2
𝑥
2
𝑦
2

− 4𝑚𝑛𝑦
3
− 𝑚
2
𝑦
4
− 4𝑚𝑥

3
(𝑚𝑦 + 𝑛) 𝑦



+ 8𝑛𝑥𝑦 (𝑚𝑦 + 𝑛) 𝑦


+ 4𝑚𝑥𝑦
2
(𝑚𝑦 + 𝑛) 𝑦


− 4𝑥
2
(𝑚𝑦 + 𝑛)

2

𝑦
2

) ,

(49)

and the solution of this equation gives

𝑦 (𝑥) =
−𝑛 − √−2𝑚√−2𝑐 + 𝑛2 − 𝑚2𝑥2 − 2𝑚2𝑥𝑐

1

𝑚
,

(50)

where 𝑐
1
, 𝑐 are constants, in which it is obvious that the

invariant solution (50) satisfies the original path equation.

4. 𝜆-Symmetries of Path Equation

The relationship between 𝜆-symmetries, integration factors
and first integrals of second-order ordinary differential equa-
tion is very important from the mathematical point of view
[10–12]. Let us consider first the second-order differential
equation of the form

𝑦

= 𝜙 (𝑥, 𝑦, 𝑦


) , (51)

and let vector field of (51) be in the form of

𝐴 = 𝜕
𝑥
+ 𝑦

𝜕
𝑦
+ 𝜙 (𝑥, 𝑦, 𝑦


) 𝜕
𝑦
 . (52)

In terms of 𝐴, a first integral of (51) is any function
in the form of 𝐼(𝑥, 𝑦, 𝑦) providing equality of 𝐴(𝐼) = 0.
An integrating factor of (51) is any function satisfying the
following equation:

𝜇 [𝑦

− 𝜙 (𝑥, 𝑦, 𝑦


)] = 𝐷

𝑥
𝐼, (53)

where𝐷
𝑥
is total derivative operator in the form of

𝐷
𝑥
= 𝜕
𝑥
+ 𝑦

𝜕
𝑦
+ 𝑦

𝜕
𝑦
 + ⋅ ⋅ ⋅ . (54)

Thus 𝜆-symmetries of second-order differential equation (51)
can be obtained directly by using Lie symmetries of this same
equation. Secondly, let

𝜐 = 𝜉 (𝑥, 𝑦)
𝜕

𝜕𝑥
+ 𝜂 (𝑥, 𝑦)

𝜕

𝜕𝑦
(55)
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Table 1: Noether symmetry classification table of path equation.

Function Infinitesimals and first integrals

𝑓(𝑦) = 𝑘

𝜉 =
𝑐
1
+ 𝑐
2
𝑥 + 𝑐
3
𝑥
2

𝑘2
, 𝜂 =

𝑐
2
𝑦 + 2𝑥𝑦𝑐

3
+ 2𝑘𝑐
4
+ 2𝑘𝑥𝑐

5

2𝑘2

𝐼
1
=
𝑐
1
(2 ln 𝑘 − 𝑦

2
)

2𝑘2
, 𝐼
2
=
𝑦𝑦

− 𝑥𝑦
2

2𝑘2
, 𝐼
3
=
−𝑦
2
+ 2𝑥𝑦𝑦


− 𝑥
2
𝑦
2

2𝑘2

𝐼
4
=
𝑦


𝑘
, 𝐼
5
=
−2𝑘𝑦 + 2𝑘𝑥𝑦



2𝑘2

𝑓(𝑦) = 𝑦 𝜉 =
𝑐
1

𝑦2
, 𝜂 = 0, 𝐼

1
= −

(1 + 𝑦
2
)

2𝑦2

𝑓(𝑦) = 𝑘𝑒
𝛼𝑦

𝜉 =
𝑒
−2𝑦𝛼

2𝑘2𝛼
(𝑐
1
sin 2𝑥𝛼 − 𝑐

2
cos 2𝑥𝛼 + 2𝑐

3
)

𝜂 =
𝑒
−2𝑦𝛼

2𝑘2𝛼
(2𝑐
4
𝑘𝛼𝑒
𝑦𝛼 cos𝑥𝛼 − 𝑐

1
cos 2𝑥𝛼 + 2𝑐

5
𝑘𝛼𝑒
𝑦𝛼 sin𝑥𝛼 − 𝑐

2
sin 2𝑥𝛼)

𝐼
1
=
𝑒
−2𝑦𝛼

4𝑘2𝛼
(−2 cos 2𝑥𝛼𝑦 − sin 2𝛼𝑥(𝑦2 − 1))

𝐼
2
=
𝑒
−2𝑦𝛼

4𝑘2𝛼
(−2 sin 2𝑥𝛼𝑦 + cos 2𝛼𝑥(𝑦2 − 1))

𝐼
3
= −

𝑒
−2𝑦𝛼

2𝑘2𝛼
(1 + 𝑦

2
), 𝐼
4
=
𝑒
−𝑦𝛼

𝑘
(cos𝑥𝛼𝑦 − sin𝑥𝛼), 𝐼

5
=
𝑒
−𝑦𝛼

𝑘
(cos𝑥𝛼 + sin𝑥𝛼𝑦)

𝑓(𝑦) =
1

𝑚𝑦 + 𝑛

𝜉 = (𝑚𝑦 + 𝑛)
2
(𝑐
1
+ 𝑐
2
𝑥 + 𝑐
3
𝑥
2
)

𝜂 = (𝑚𝑦 + 𝑛)(−
3

4
𝑚𝑥
2
𝑐
2
−
1

2
𝑚𝑥
3
𝑐
3
+
1

4
𝑦(2𝑛 + 𝑚𝑦)(𝑐

2
+ 2𝑥𝑐

3
) + 𝑐
4
+ 𝑥𝑐
5
)

𝐼
1
=
1

8
(−8𝑚𝑛𝑦 − 4𝑚

2
𝑦
2
+ 8𝑛
2 ln 1

𝑚𝑦 + 𝑛
+ 8𝑛
2ln (𝑚𝑦 + 𝑛) − 4(𝑚𝑦 + 𝑛)

2
𝑦
2
)

𝐼
2
=
1

8
(−2𝑚

2
𝑥
3
+ 4𝑚𝑛𝑥𝑦 + 2𝑚

2
𝑥𝑦
2
− 6𝑚𝑥

2
(𝑚𝑦 + 𝑛) 𝑦



+2𝑚𝑦
2
(𝑚𝑦 + 𝑛) 𝑦


− 4𝑥(𝑚𝑦 + 𝑛)

2
𝑦
2
)

𝐼
3
= −

1

8
(−𝑚
2
𝑥
4
+ 4𝑚𝑛𝑥

2
𝑦 − 4𝑛

2
𝑦
2
+ 2𝑚
2
𝑥
2
𝑦
2
− 4𝑚𝑛𝑦

3
− 𝑚
2
𝑦
4
− 4𝑚𝑥

3
(𝑚𝑦 + 𝑛) 𝑦



+8𝑛𝑥𝑦 (𝑚𝑦 + 𝑛) 𝑦

+ 4𝑚𝑥𝑦

2
(𝑚𝑦 + 𝑛) 𝑦


− 4𝑥
2
(𝑚𝑦 + 𝑛)

2
𝑦
2
)

𝐼
4
= 𝑚𝑥 + (𝑚𝑦 + 𝑛)𝑦, 𝐼

5
=
1

8
(4𝑚𝑥

2
− 8𝑛𝑦 − 4𝑚𝑦

2
+ 8𝑥 (𝑚𝑦 + 𝑛) 𝑦


)

𝑓(𝑦) = 𝑦
𝑛 𝜉 = 𝑐

1
𝑦
−2𝑛

, 𝜂 = 0, 𝐼 = −
1

2
𝑦
−2𝑛

(1 + 𝑦
2
)

be a Lie point symmetry of (51), and then the characteristic
of 𝜐 is

O̧ = 𝜂 − 𝜉𝑦

, (56)

and for the path equation (16) the total derivative operator
can be written as

𝐴 =
𝜕

𝜕𝑥
+ 𝑦
 𝜕

𝜕𝑦
+ (1 + 𝑦

2

)
𝑓

(𝑦)

𝑓 (𝑦)

𝜕

𝜕𝑦
; (57)

thus the vector field 𝜕
𝑦
is called 𝜆-symmetry of (16) if the

following equality is satisfied.

𝜆 =
𝐴 (O̧)
O̧

(58)

The following four steps can be defined for finding 𝜆-
symmetries and first integrals.

(1) Find a first integral 𝑤(𝑥, 𝑦, 𝑦) of 𝜐[𝜆,(1)], that is, a
particular solution of the equation

𝑤
𝑦
+ 𝜆𝑤
𝑦
 = 0, (59)

where 𝜐[𝜆,(1)] is the first-order 𝜆-prolongation of the
vector field 𝜐.

(2) The solution of (59) will be in terms of first order
derivative of 𝑦. To write equation of (51) in terms of
the reduced equation of 𝑤, we can obtain the first-
order derivative the solution of (59) and we can write
(51) equation in terms of 𝑤.

(3) Let 𝐺 be an arbitrary constant of the solution of the
reduced equation written in terms of 𝑤. Therefore,

𝜇 = 𝐺
𝑤
𝑤
𝑦
 (60)

is an integrating factor of (51).
(4) The solution of 𝑤(𝑥, 𝑦, 𝑦


) is the first integral of

𝜐
[𝜆,(1)].

4.1. 𝜆-Symmetries Using Lie Symmetries of Path Equation. Let
us consider an 𝑛th-order ODE as follows:

𝑦
(𝑛)

= 𝑓 (𝑥, 𝑦, 𝑦

, 𝑦

, . . . , 𝑦

(𝑛−1)
) . (61)

Thus the invariance criterion of (61) is

pr𝑋(𝑦
(𝑛)

− 𝑓 (𝑥, 𝑦, 𝑦

, 𝑦

, . . . , 𝑦

(𝑛−1)
)
 𝑦(𝑛)=𝑓

= 0. (62)
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The expansion of relation (62) gives the determining equation
related to path equation, which is the system of partial dif-
ferential equations. In this system there are three unknowns,
namely, 𝜆, 𝜉, and 𝜂, which are difficult to solve because
they are highly nonlinear. In the literature [10–12], for the
convenience the 𝜆 function are chosen generally in the form

𝜆 (𝑥, 𝑦, 𝑦

) = 𝜆
1
(𝑥, 𝑦) 𝑦


+ 𝜆
2
(𝑥, 𝑦) . (63)

In addition, for solving the remaining determining equations,
the infinitesimal functions 𝜉 and 𝜂 are chosen specifically
as 𝜉 = 0 and 𝜂 = 1 [10–12]. Therefore, the number
of unknowns in the equation is reduced to find 𝜆

1
(𝑥, 𝑦)

and 𝜆
2
(𝑥, 𝑦) functions, and finally, 𝜆-symmetries can be

determined explicitly.
However, for the path equation (16), it is possible to check

that 𝜆-symmetries of this equation cannot be determined by
taking the form of 𝜆 in (63). Thus, we study 𝜆-symmetries
of path equation by using the relation with the Lie point
symmetries of the same equation [2, 19]. Here Lie point
symmetries of path equation are examined by considering
four different cases of function 𝑓(𝑦).

4.1.1. Arbitrary 𝑓(𝑦). For arbitrary 𝑓(𝑦) the one-parameter
Lie group of transformations is

𝜉 = 𝑎, 𝜂 = 0, (64)

and the generator is

𝑋 = 𝑎
𝜕

𝜕𝑥
. (65)

Applying this generator (56), we obtain the characteristic

O̧ = −𝑎𝑦

. (66)

Using (58), the 𝜆-symmetry is obtained in the following
form:

𝜆 =
𝐴 (O̧)
O̧

=

(1 + 𝑦
2

)𝑓

(𝑦)

𝑓 (𝑦) 𝑦
. (67)

If we substitute 𝜆-symmetry (67) in (59), then we have

𝑤
𝑦
+

(1 + 𝑦
2

)𝑓

(𝑦)

𝑓 (𝑦) 𝑦
𝑤
𝑦
 = 0. (68)

It is clear that a solution of (68) is

𝑤(𝑥, 𝑦, 𝑦

) =

1

2
ln(

(1 + 𝑦
2

)

𝑓(𝑦)
2

) . (69)

To write (16) in terms of {𝑥, 𝑤, 𝑤}, we can express the
following equality using (69):

𝑦

= √−1 + 𝑒2𝑤(𝑥)𝑓(𝑦 (𝑥))

2

. (70)

Taking derivative of (70) with respect to 𝑥 gives

𝑦

= 𝑒
2𝑤(𝑥)

𝑓 (𝑦 (𝑥))

× (𝑓

(𝑦 (𝑥)) +

𝑓 (𝑦 (𝑥))𝑤

(𝑥)

√−1 + 𝑒2𝑤(𝑥)𝑓(𝑦 (𝑥))
2

),

(71)

and by using 𝑦 and 𝑦
, (16) becomes

𝑤

(𝑥) = 0. (72)

It is easy to see that the general solution of this equation
is

𝑤 (𝑥) = 𝐺, 𝐺 ∈ R. (73)

According to (60),we find the integration factor 𝜇 to be of
the form

𝜇 =
𝑦


1 + 𝑦2
. (74)

Then the conserved form satisfies the following equality:

𝐷
𝑥
(
1

2
ln(

1 + 𝑦

(𝑥)
2

𝑓(𝑦 (𝑥))
2
)) = 0, (75)

which gives the original path equation. Thus the reduced
equation is

1

2
ln(

1 + 𝑦

(𝑥)
2

𝑓(𝑦 (𝑥))
2
) − 𝑘 = 0, (76)

where 𝑘 is a constant, and the solution of (76) is determined
for two different cases of arbitrary 𝑓(𝑦) function.

(i) For 𝑓(𝑦) = 𝑦,

𝑦 (𝑥) =
1

4
𝑒
−𝑘−𝑒
𝑘
𝑥−𝑒
𝑘
𝑐
1 (4𝑒
2𝑒
𝑘

+ 𝑒
2𝑒
𝑘
𝑐
1) , (77)

where 𝑐
1
is a constant, is the solution of original path

equation (16).
(ii) For 𝑓(𝑦) = 𝑒

𝑦,

𝑦 (𝑥) = −𝑘 + ln (−cot (𝑥 − 𝑐
1
))√1 + tan (𝑥 − 𝑐

1
)
2 (78)

is the other solution of the same equation.

4.1.2. 𝑓(𝑦) = 𝑘 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡. For another case 𝑓(𝑦) = 𝑘, the
infinitesimal generators are

𝑋
1
= 𝑥𝑦

𝜕

𝜕𝑥
+ 𝑦
2 𝜕

𝜕𝑦
, 𝑋

2
= 𝑦

𝜕

𝜕𝑥
,

𝑋
3
= 𝑥
2 𝜕

𝜕𝑥
+ 𝑥𝑦

𝜕

𝜕𝑦
, 𝑋

4
= 𝑥

𝜕

𝜕𝑥
,

𝑋
5
= 𝑥

𝜕

𝜕𝑥
, 𝑋

6
= 𝑦

𝜕

𝜕𝑦
, 𝑋

6
= 𝑥

𝜕

𝜕𝑦
,

𝑋
7
=

𝜕

𝜕𝑦
, 𝑋

8
=

𝜕

𝜕𝑥
.

(79)
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Thus, we can calculate 𝜆-symmetry of path equation
using, for example,𝑋

1
Lie symmetry generator. For this gen-

erator𝑋
1
the infinitesimals are

𝜉 = 𝑥𝑦, 𝜂 = 𝑦
2
. (80)

Therefore, the characteristic is written as

O̧ = 𝑦
2
− 𝑥𝑦𝑦


. (81)

By using (58) we obtain the 𝜆-symmetry

𝜆 =
𝑦


𝑦
. (82)

A solution of (59) for this case is

𝑤(𝑥, 𝑦, 𝑦

) =

𝑦


𝑦
, (83)

and we can write 𝑤 = 𝑦

/𝑦, then to obtain path equation in

terms of {𝑥, 𝑤, 𝑤} one can have

𝑦

= 𝑤𝑦, 𝑦


= 𝑤
2
𝑦 + 𝑦𝑤


. (84)

By using these equalities (84) we find the following
equation:

𝑤

+ 𝑤
2
= 0, (85)

in which the general solution is

𝑤 (𝑥) =
1

𝑥 − 𝐺
, 𝐺 ∈ R. (86)

To find the integration factor one can write above equa-
tion in terms of 𝐺 as

𝐺 =
𝑤𝑥 − 1

𝑤
, (87)

and then the integration factor becomes

𝜇 =
1

𝑤2𝑦
. (88)

If we substitute 𝑤 = 𝑦

/𝑦 in (87), then the reduced

equation in terms of 𝑦 is

(𝑥 −
𝑦

𝑦
) − 𝑐 = 0, (89)

and the solution of (89) is

𝑦 (𝑥) = (𝑥 − 𝑐) 𝑐
3
, (90)

where 𝑐 and 𝑐
3
are constants. It is clear that this solution

satisfies the original path equation (16). Also, one can write

𝐷
𝑥
(𝑥 −

𝑦 (𝑥)

𝑦 (𝑥)
) = 0, (91)

which is the first integral of equation that provides the path
equation (16).

4.1.3. 𝑓(𝑦) = 1/(𝑚𝑦 + 𝑛). For this case the eight-parameter
symmetry generators are obtained as follows:

𝑋
1
= (

𝑚𝑥
3

2
+ 𝑥(𝑛𝑦 +

𝑚𝑦
2

2
))

𝜕

𝜕𝑥

+ (
𝑚
2
𝑥
4

4 (𝑚𝑦 + 𝑛)

+
𝑛
2
𝑦
2
+ 𝑚𝑛𝑦

3
+ (𝑚
2
𝑦
4
/4)

𝑚𝑦 + 𝑛
)

𝜕

𝜕𝑦
,

𝑋
2
= (𝑛𝑦 +

𝑚𝑦
2

2
)

𝜕

𝜕𝑥

+ (−
𝑚
2
𝑥
3

4 (𝑚𝑦+𝑛)
−
3𝑚𝑥 (𝑛𝑦 + (𝑚𝑦

2
/2))

2 (𝑚𝑦 + 𝑛)
)

𝜕

𝜕𝑦
,

𝑋
3
=
𝑥
2

2

𝜕

𝜕𝑥
+ (−

𝑚𝑥
3

4 (𝑚𝑦 + 𝑛)
+
𝑥 (𝑛𝑦 + (𝑚𝑦

2
/2))

2 (𝑚𝑦 + 𝑛)
)

𝜕

𝜕𝑦
,

𝑋
4
= 𝑥

𝜕

𝜕𝑥
+ (

𝑦 (2𝑛 + 𝑚𝑦)

𝑚𝑦 + 𝑛
)

𝜕

𝜕𝑦
,

𝑋
5
=
2𝑛𝑦 + 𝑚(𝑥

2
+ 𝑦
2
)

2 (𝑚𝑦 + 𝑛)

𝜕

𝜕𝑦
,

𝑋
6
=

𝑥

𝑚𝑦 + 𝑛

𝜕

𝜕𝑦
, 𝑋

7
=

1

𝑚𝑦 + 𝑛

𝜕

𝜕𝑦
, 𝑋

8
=

𝜕

𝜕𝑥
⋅

(92)

Now let us consider 𝑋
1
operator, and then the corre-

sponding infinitesimals 𝜉 and 𝜂 are

𝜉 =
𝑚𝑥
3

2
+ 𝑥(𝑛𝑦 +

𝑚𝑦
2

2
) ,

𝜂 = −
𝑚
2
𝑥
4

4 (𝑚𝑦 + 𝑛)
+
𝑛
2
𝑦
2
+ 𝑚𝑛𝑦

3
+ (𝑚
2
𝑦
4
/4)

𝑚𝑦 + 𝑛
⋅

(93)

Using these infinitesimals we find the characteristic

O̧ = ((2𝑛𝑦 + 𝑚(𝑥
2
+ 𝑦
2
))

× (2𝑛 (𝑦 − 𝑥𝑦

) + 𝑚 (−𝑥

2
+ 𝑦
2
− 2𝑥𝑦𝑦


)))

× (4 (𝑚𝑦 + 𝑛))
−1

,

(94)

and the 𝜆-symmetry is

𝜆 =
2𝑛
2
𝑦

+ 2𝑚𝑛 (𝑥 + 𝑦𝑦


) + 𝑚

2
(2𝑥𝑦 − 𝑥

2
𝑦

+ 𝑦
2
𝑦

)

(𝑚𝑦 + 𝑛) (2𝑛𝑦 + 𝑚 (𝑥2 + 𝑦2))
⋅

(95)
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By using (95) the equation (59) becomes

𝑤
𝑦
+
2𝑛
2
𝑦

+ 2𝑚𝑛 (𝑥 + 𝑦𝑦


) + 𝑚

2
(2𝑥𝑦 − 𝑥

2
𝑦

+ 𝑦
2
𝑦

)

(𝑚𝑦 + 𝑛) (2𝑛𝑦 + 𝑚 (𝑥2 + 𝑦2))

× 𝑤
𝑦
 = 0.

(96)

A solution of (96) is

𝑤(𝑥, 𝑦, 𝑦

) =

𝑚𝑥 + 𝑛𝑦

+ 𝑚𝑦𝑦



𝑚𝑥2 + 2𝑛𝑦 + 𝑚𝑦2
. (97)

This equation can be written as

𝑦

=
−𝑚𝑥 + 𝑚𝑤𝑥

2
+ 2𝑛𝑤𝑦 + 𝑚𝑤𝑦

2

𝑚𝑦 + 𝑛
⋅ (98)

By differentiation of (98) we have

𝑦

=
−𝑚(𝑚𝑥 − 𝑤 (𝑚𝑥

2
+ 2𝑛𝑦 + 𝑚𝑦

2
))
2

(𝑚𝑦 + 𝑛)
3

+
−𝑚+2𝑤

2
(𝑚𝑥
2
+2𝑛𝑦+𝑚𝑦

2
)+(𝑚𝑥

2
+2𝑛𝑦+𝑚𝑦

2
)𝑤


𝑚𝑦+𝑛
,

(99)

and if we substitute (98) and (99) into the path equation, we
obtain

𝑤

+ 2𝑤
2
= 0, (100)

and the solution of (100) is

𝑤 (𝑥) =
1

2𝑥 − 𝐺
, 𝐺 ∈ R. (101)

To define 𝐺, one can write

𝐺 =
2𝑤𝑥 − 1

𝑤
. (102)

Therefore, by using the relation (60) we find the integra-
tion factor

𝜇 =
𝑚𝑦 + 𝑛

𝑤2 (𝑚𝑥2 + 2𝑛𝑦 + 𝑚𝑦2)
⋅ (103)

If we rewrite (102) in terms of 𝑦 and then we substitute
this expression into integration factor, the reduced equation
of path equation becomes

( − 𝑚𝑦(𝑥)
2
+ 𝑥 (𝑚𝑥 + 2𝑛𝑦


(𝑥)

−2𝑦 (𝑥) (𝑛 − 𝑚𝑥𝑦

(𝑥))))

× (𝑚𝑥 + (𝑚𝑦 (𝑥) + 𝑛) 𝑦

(𝑥))
−1

− 𝑐 = 0,

(104)

where 𝑐 is a constant. By the solution of (104), we obtain the
solution that satisfies the original path equation (16) as

𝑦 (𝑥) = (−2𝑛 + 𝑚√−
1

𝑚(𝑐 − 2𝑥)
2
(𝑐 − 2𝑥)

×√2𝑐2 −
4𝑛
2

𝑚
+4𝑚𝑥 (𝑥 − 2𝑐

3
)+4𝑐𝑚 (𝑐

3
− 𝑥))

× (2𝑚)
−1
,

(105)

where 𝑐
3
is a constant, and the corresponding conservation

law is

𝐷
𝑥
( (−𝑚𝑦(𝑥)

2

+𝑥 (𝑚𝑥 + 2𝑛𝑦

(𝑥) − 2𝑦 (𝑥) (𝑛 − 𝑚𝑥𝑦


(𝑥))))

× (𝑚𝑥 + (𝑚𝑦 (𝑥) + 𝑛) 𝑦

(𝑥))
−1

)

= 0.

(106)

4.1.4. 𝑓(𝑦) = 𝑘𝑒
𝛼𝑦. For this case the infinitesimal generators

of path equation are

𝑋
1
= 𝑒
−𝛼𝑦 cos𝛼𝑥 𝜕

𝜕𝑥
+ 𝑒
−𝛼𝑦 sin𝛼𝑥 𝜕

𝜕𝑦
,

𝑋
2
= 𝑒
−𝛼𝑦 sin𝛼𝑥 𝜕

𝜕𝑥
− 𝑒
−𝛼𝑦 cos𝛼𝑥 𝜕

𝜕𝑦
,

𝑋
3
= cos 2𝛼𝑥 𝜕

𝜕𝑥
+ sin 2𝛼𝑥 𝜕

𝜕𝑦
,

𝑋
4
= sin 2𝛼𝑥 𝜕

𝜕𝑥
− cos 2𝛼𝑥 𝜕

𝜕𝑦
,

𝑋
5
=

𝜕

𝜕𝑥
, 𝑋

6
=

𝜕

𝜕𝑦
,

𝑋
7
= 𝑒
𝛼𝑦 cos𝛼𝑥 𝜕

𝜕𝑥
, 𝑋

8
= 𝑒
𝛼𝑦 sin𝛼𝑥 𝜕

𝜕𝑥
⋅

(107)

If we consider, for example, 𝑋
1
symmetry generator and

then 𝜉 and 𝜂 are

𝜉 = 𝑒
−𝛼𝑦 cos𝛼𝑥, 𝜂 = 𝑒

𝛼𝑦 sin𝛼𝑥, (108)

then the characteristic by (56) is

O̧ = −𝑒
−𝑦𝛼

𝑦
 cos𝑥𝛼 − 𝑒

−𝑦𝛼 sin𝑥𝛼. (109)

If we apply the operator𝐴 (52) to this characteristic (109),
we obtain 𝐴(O̧) = 0, and the 𝜆-symmetry is equal to zero.
For 𝑋

2
symmetry generator we find also 𝜆 = 0 similar to

previous one.Hence,we can use another symmetry generator,
for example,𝑋

7
to obtain 𝜆-symmetry. For this case,

𝜉 = 0, 𝜂 = 𝑒
𝑦𝛼 cos𝑥𝛼, (110)
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are infinitesimals, and the corresponding characteristic is

O̧ = 𝑒
𝑦𝛼 cos𝑥𝛼. (111)

We find the 𝜆-symmetry from (58) as in the following
form:

𝜆 = 𝛼 (𝑦

− tan𝑥𝛼) . (112)

By applying (112) to (59) we obtain the solution

𝑤(𝑥, 𝑦, 𝑦

) = 𝑒
𝑦𝛼

(𝑦

− tan𝑥𝛼) . (113)

And we write this expression (113) in terms of {𝑥, 𝑤, 𝑤} as

𝑦

= 𝑒
𝑦𝛼
𝑤 + tan𝑥𝛼. (114)

By differentiating 𝑦 (114) with respect to 𝑦 one can write

𝑦

= 𝛼sec(𝑥𝛼)2 + 𝑒

𝑦𝛼
𝛼𝑤 (tan𝑥𝛼 + 𝑒

𝑦𝛼
𝑤) + 𝑒

𝑦𝛼
𝑤

, (115)

and by substituting 𝑦
 and 𝑦

 to the original path equation
we obtain

𝑤

− 𝛼 tan (𝑥𝛼)𝑤 = 0, (116)

where the solution of (116) is

𝑤 (𝑥) = sec (𝑥𝛼) . (117)

To define this equality in terms of variable 𝑤 then 𝐺 is
defined as follows:

𝐺 = 𝑤 cos (𝑥𝛼) , (118)

so we obtain the integration factor using (60)

𝜇 = 𝑒
−𝛼𝑦 cos𝑥𝛼. (119)

Finally one can write the conservation law

𝐷
𝑥
(𝑒
−𝛼𝑦(𝑥) cos𝑥𝛼 (𝑦 (𝑥) − tan𝑥𝛼)) = 0, (120)

which gives the original path equation. And thus we can
express the first integral, which is reduced form of the path
equation

𝑒
−𝛼𝑦(𝑥) cos𝑥𝛼 (𝑦 (𝑥) − tan𝑥𝛼) − 𝑐 = 0, (121)

where 𝑐 is a constant. Integrating (121) we obtain the solution
that satisfies the original equation

𝑦 (𝑥) =
− ln (𝑐𝛼3 cos (𝑥𝛼) (−𝑐

1
− (tan𝑥𝛼/𝛼3)))

𝛼
, (122)

where 𝑐
1
is a constant.

4.1.5. 𝑓(𝑦) = 𝑦
𝑛. If 𝑓(𝑦) is assumed in the polynomial form

and then Lie symmetry generators are

𝑋
1
= 𝑥

𝜕

𝜕𝑥
+ 𝑦

𝜕

𝜕𝑦
, 𝑋

2
=

𝜕

𝜕𝑥
⋅ (123)

𝑋
2
, for example, can be used to obtain 𝜆-symmetry, and for

this generator the infinitesimals are

𝜉 = 1, 𝜂 = 0. (124)

By using 𝜉, 𝜂 the characteristic function is written as

O̧ = −𝑦

. (125)

By considering (58), the 𝜆-symmetry becomes

𝜆 =

𝑛 (1 + 𝑦
2

)

𝑦𝑦
⋅ (126)

The solution of (59) is

𝑤(𝑥, 𝑦, 𝑦

) =

1

2
ln(

(1 + 𝑦
2

)

𝑦2𝑛
) ⋅ (127)

To write (16) in terms of {𝑥, 𝑤, 𝑤}, we can express the
following equality:

𝑦

= −√−1 + 𝑒2𝑤(𝑥)𝑦(𝑥)

2𝑛
. (128)

By taking derivative (128) with respect to 𝑥, then we have

𝑦

= 𝑒
2𝑤(𝑥)

𝑦(𝑥)
(2𝑛−1)

(𝑛 −
𝑦 (𝑥)𝑤


(𝑥)

√−1 + 𝑒2𝑤(𝑥)𝑦(𝑥)
2𝑛

)⋅ (129)

If we substitute𝑦 and𝑦 into the path equation, then one
can find

𝑤

(𝑥) = 0, (130)

and a solution of this equation (130) is

𝑤 (𝑥) = 𝐺, 𝐺 ∈ R. (131)

By using (60) we find the integration factor 𝜇 of the form

𝜇 =
𝑦


1 + 𝑦2
⋅ (132)

It is easy to see that the conserved form satisfies the
following equality:

𝐷
𝑥
(
1

2
ln(

1 + 𝑦

(𝑥)
2

𝑦(𝑥)
2𝑛

)) = 0, (133)

and this equality gives the original path equation. Thus the
reduced form of path equation is

1

2
ln(

1 + 𝑦

(𝑥)
2

𝑦(𝑥)
2𝑛

) − 𝑘 = 0, (134)

where 𝑘 is a constant. And all results are summarized in
Table 2.



Abstract and Applied Analysis 11

Table 2: Table of 𝜆-symmetry classification with Lie symmetry of path equation.

Function Lie symmetries Integration factor 𝜆-Symmetries

Arbitrary 𝑓(𝑦) 𝜉 = 𝑎, 𝜂 = 0 𝜇 =
𝑦


1 + 𝑦2
𝜆 =

(1 + 𝑦
2
) 𝑓

(𝑦)

𝑓 (𝑦) 𝑦

𝑓(𝑦) = 𝑘 𝜉 = 𝑥𝑦, 𝜂 = 𝑦
2 𝜇 =

1

𝑤2𝑦
𝜆 =

𝑦


𝑦

𝑓(𝑦) = 𝑦
𝑛

𝜉 = 1, 𝜂 = 0 𝜇 =
𝑦


1 + 𝑦2
𝜆 =

𝑛(1 + 𝑦
2
)

𝑦𝑦

𝑓(𝑦) =
1

𝑚𝑦 + 𝑛

𝜉 =
𝑚𝑥
3

2
+ 𝑥(𝑛𝑦 +

𝑚𝑦
2

2
)

𝜂 = −
𝑚
2
𝑥
4

4(𝑚𝑦 + 𝑛)

+
𝑛
2
𝑦
2
+ 𝑚𝑛𝑦

3
+ (𝑚
2
𝑦
4
/4)

𝑚𝑦 + 𝑛

𝜇 =
𝑚𝑦 + 𝑛

𝑤2(𝑚𝑥2 + 2𝑛𝑦 + 𝑚𝑦2)

𝜆 =
2𝑛
2
𝑦

+ 2𝑚𝑛(𝑥 + 𝑦𝑦


)

(𝑚𝑦 + 𝑛)(2𝑛𝑦 + 𝑚(𝑥2 + 𝑦2))

+
𝑚
2
(2𝑥𝑦 − 𝑥

2
𝑦
1
+ 𝑦
2
𝑦

)

(𝑚𝑦 + 𝑛)(2𝑛𝑦 + 𝑚(𝑥2 + 𝑦2))

𝑓(𝑦) =

𝑘Exp(𝛼𝑦) 𝜉 = 0, 𝜂 = 𝑒
𝑦𝛼 cos 𝑥𝛼 𝜇 = 𝑒

−𝛼𝑦 cos𝑥𝛼 𝜆 = 𝛼(𝑦

− tan𝑥𝛼)

5. 𝜆-Symmetries and Jacobi
Last Multiplier Approach

Definition of 𝜆 ∈ 𝐶
∞
(𝑀
(1)
)-Symmetry. Let V be a vector field

on𝑀which is open subset, and has the property of𝑀 ⊂ 𝑋×

𝑌. For 𝑘 ∈ N,𝑀(𝑘) ⊂ 𝑋 × 𝑌
(𝑘) denotes the corresponding 𝑘-

jet space, and their elements are (𝑥, 𝑦(𝑘)) = (𝑥, 𝑦, 𝑦
1
, . . . , 𝑦

𝑘
),

where, for 𝑖 = 1, . . . , 𝑘, 𝑦
𝑖
denotes the derivative of order 𝑖 of

𝑦 with respect to 𝑥. In addition let𝑋 = 𝜉(𝑥, 𝑦)𝜕
𝑥
+ 𝜂(𝑥, 𝑦)𝜕

𝑦

be a vector field defined on 𝑀, and let 𝜆 ∈ 𝐶
∞
(𝑀
(1)
) be an

arbitrary function. Then the 𝜆-prolongation of𝑋 is

pr𝑋 = 𝜉 (𝑥, 𝑦) 𝜕
𝑥
+ 𝜂 (𝑥, 𝑦) 𝜕

𝑦

+ 𝜂
(1)

(𝑥, 𝑦, 𝑦

, 𝑦

, . . . , 𝑦

(𝑛−1)
) 𝜕
𝑦


+ 𝜂
(2)

(𝑥, 𝑦, 𝑦

, 𝑦

, . . . , 𝑦

(𝑛−1)
) 𝜕
𝑦
 ,

(135)

with

𝜂
(𝑛+1)

= [(𝐷
𝑥
+ 𝜆) 𝜂

(𝑛)
− 𝑦

(𝐷
𝑥
+ 𝜆) 𝜉] , (136)

where 𝐷
𝑥
is total derivative operator with respect to 𝑥 such

that

𝐷
𝑥
= 𝜕
𝑥
+

𝑛

∑

𝑘=0

𝑦
(𝑘+1)

𝜕
𝑦
(𝑘) , 𝑦

(0)
≡ 𝑦, 𝜂

(0)
≡ 𝜂.

(137)

In this section we analyze 𝜆-symmetries of path equation
by using Jacobi last multiplier as another approach. First (61)
can be written by using system of first-order equations, which
is equivalent to the expression

𝑤


𝑖
= 𝑊
𝑖
(𝑡, 𝑤
1
, . . . , 𝑤

𝑛
) , (138)

and by solving the following differential equation, the Jacobi
last multiplier of (138)𝑀 is found:

𝑑 log (𝑀)

𝑑𝑡
+

𝑛

∑

𝑖=1

𝜕𝑊
𝑖

𝜕𝑤
𝑖

= 0, (139)

where, namely,𝑀 is

𝑀 = exp (−∫

𝑛

∑

𝑖=1

𝜕𝑊
𝑖

𝜕𝑤
𝑖

𝑑𝑡) . (140)

The nonlocal approach [13, 20] to 𝜆-symmetries is ana-
lyzed to seek 𝜆-symmetries such that

𝑤

= 𝜆 =

𝑛

∑

𝑖=1

𝜕𝑊
𝑖

𝜕𝑤
𝑖

⋅ (141)

With this idea 𝑤 always can be considered to be of the
form such as 𝑤 = log (1/𝑀). But this relation cannot be
considered if the divergence of (138) Div ≡ ∑

𝑛

𝑖=1
(𝜕𝑊
𝑖
/𝜕𝑤
𝑖
)

is equal to zero. So 𝑤 is chosen like this form because any
Jacobi last multiplier is a first integral of (138). In this section
we again consider different choices of 𝑓(𝑦) for 𝜆-symmetry
classification.

5.1. 𝑓(𝑦) = 𝑘 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡. For this case the divergence of the
path equation yields

𝜆
𝑗
= 0. (142)

Substituting 𝜆
𝑗
into (135) then from the solution of the

determining equations (62) we obtain eight-parameter 𝜆-
infinitesimals

𝜉
(𝜆)

= 𝑦 (𝑐
2
+ 𝑐
1
𝑥) + 𝑐

3
𝑥
2
+ 𝑐
8
𝑥 + 𝑐
7
,

𝜂
(𝜆)

= 𝑦 (𝑐
4
+ c
3
𝑥) + 𝑐

5
𝑥 + 𝑐
1
𝑦
2
+ 𝑐
6
,

(143)

and the generators are

𝑋
(𝜆)

1
= 𝑦𝑥

𝜕

𝜕𝑥
+ 𝑦
2 𝜕

𝜕𝑦
, 𝑋

(𝜆)

2
= 𝑦

𝜕

𝜕𝑥
,

𝑋
(𝜆)

3
= 𝑥
2 𝜕

𝜕𝑥
+ 𝑦𝑥

𝜕

𝜕𝑥
, 𝑋

(𝜆)

4
= 𝑦

𝜕

𝜕𝑦
,
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𝑋
(𝜆)

5
= 𝑥

𝜕

𝜕𝑦
, 𝑋

(𝜆)

6
=

𝜕

𝜕𝑦
,

𝑋
(𝜆)

7
=

𝜕

𝜕𝑥
, 𝑋

(𝜆)

8
= 𝑥

𝜕

𝜕𝑥
,

(144)

which corresponds to the classical Lie point symmetries since
𝜆
𝑗
is equal to zero.

5.2. 𝑓(𝑦) = 𝑦. Another special form we consider here is
𝑓(𝑦) = 𝑦. For this case we obtain the divergence of (16) in
the form

𝜆
𝑗
=
2𝑦


𝑦
, (145)

and by substituting 𝜆
𝑗
into the prolongation formula, the 𝜆-

infinitesimals can be found as follows:

𝜉
(𝜆)

=
𝑐
1

𝑦2
, 𝜂

(𝜆)
= 0, (146)

and the corresponding generator is

𝑋
(𝜆)

1
=

1

𝑦2

𝜕

𝜕𝑥
⋅ (147)

which is a new 𝜆-symmetry.

5.3.𝑓(𝑦) = 𝑘𝑒
𝛼𝑦. For this case of𝑓(𝑦) the divergence of (16)

gives

𝜆
𝑗
= 2𝛼𝑦


, (148)

and the corresponding 𝜆-infinitesimals are

𝜉
(𝜆)

= 𝑒
−3𝑦𝛼

(𝑐
1
cos𝑥𝛼 + 𝑐

2
sin𝑥𝛼

+
𝑒
𝑦𝛼

𝛼
(2𝑐
4
𝛼 − 𝑐
5
cos 2𝑥𝛼 + 𝑐

6
sin 2𝑥𝛼)) ,

𝜂
(𝜆)

= 𝑒
−3𝑦𝛼

(𝑐
1
sin𝑥𝛼 − 𝑐

2
cos𝑥𝛼

+ 𝑒
2𝑦𝛼

(𝑐
7
cos𝑥𝛼 + 𝑐

8
sin𝑥𝛼)

+𝑒
𝑦𝛼

(𝑐
3
−

1

2𝛼
𝑐
6
cos 2𝑥𝛼 + 𝑐

5
sin 2𝑥𝛼)) ,

(149)

while the corresponding new 𝜆-symmetries are found to be
as follows

𝑋
(𝜆)

1
= 𝑒
−3𝑦𝛼 cos𝑥𝛼 𝜕

𝜕𝑥
+ 𝑒
−3𝑦𝛼 sin𝑥𝛼 𝜕

𝜕𝑦
,

𝑋
(𝜆)

2
= 𝑒
−3𝑦𝛼 sin𝑥𝛼 𝜕

𝜕𝑥
− 𝑒
−3𝑦𝛼 cos𝑥𝛼 𝜕

𝜕𝑦
,

𝑋
(𝜆)

3
= 𝑒
−2𝑦𝛼 𝜕

𝜕𝑦
, 𝑋

(𝜆)

4
= 𝑒
−2𝑦𝛼 𝜕

𝜕𝑥
,

𝑋
(𝜆)

5
= −𝑒
−2𝑦𝛼 cos 2𝑥𝛼

2𝛼

𝜕

𝜕𝑥
− 𝑒
−2𝑦𝛼 sin 2𝑥𝛼

2𝛼

𝜕

𝜕𝑦
,

𝑋
(𝜆)

6
= 𝑒
−2𝑦𝛼 sin 2𝑥𝛼

2𝛼

𝜕

𝜕𝑥
− 𝑒
−2𝑦𝛼 cos 2𝑥𝛼

2𝛼

𝜕

𝜕𝑦
,

𝑋
(𝜆)

7
= 𝑒
−𝑦𝛼 cos𝑥𝛼 𝜕

𝜕𝑦
, 𝑋

(𝜆)

8
= 𝑒
−𝑦𝛼 sin𝑥𝛼 𝜕

𝜕𝑦
.

(150)

5.4. 𝑓(𝑦) = 1/(𝑚𝑦 + 𝑛). For this case we find that

𝜆
𝑗
= −

2𝑚𝑦


𝑚𝑦 + 𝑛
, (151)

and it is clear that 𝜆-infinitesimal functions are

𝜉
(𝜆)

= (𝑚𝑦 + 𝑛)
2

(𝑐
1
𝑚
2
𝑥
3
+ 3𝑐
2
𝑚
2
𝑥
2
+ 2𝑐
3
𝑥
2
+ 𝑐
6
𝑥 + 𝑐
5
)

+(𝑚𝑦 + 𝑛)
4

(𝑐
1
𝑥 + 𝑐
2
) ,

𝜂
(𝜆)

=
1

2
(𝑚𝑦 + 𝑛)

× (2𝑐
7
+
𝑐
1
(𝑚𝑦 + 𝑛)

2

(𝑚
2
𝑦
2
+ 2𝑚𝑛𝑦 − 𝑛

2
)

𝑚

+ 2(𝑚𝑦 + 𝑛)
2

(𝑎
4
+ 𝑎
3
𝑥)

− 𝑥 (−2𝑐
8
+ 𝑚𝑥 (2𝑐

6
− 2𝑚𝑐

4

+ 2𝑎
1
𝑛
2
+ 2𝑐
3
𝑚𝑥

+4𝑐
2
𝑚
2
𝑥 + 𝑐
1
𝑚
2
𝑥
2
))) .

(152)

Therefore, we find new 𝜆-symmetries as follows:

𝑋
(𝜆)

1
= (𝑚𝑦 + 𝑛)

4

𝑥 + 𝑚
2
(𝑚𝑦 + 𝑛) 𝑥

3 𝜕

𝜕𝑥
+
1

2
(𝑚𝑦 + 𝑛)

× (
(𝑚𝑦 + 𝑛)

2

(−𝑛
2
+ 2𝑚𝑛𝑦 + 𝑚

2
𝑦
2
)

𝑚

−𝑚𝑥
2
(2𝑛
2
+ 𝑚
2
𝑥
2
))

𝜕

𝜕𝑦
,

𝑋
(𝜆)

2
= ((𝑚𝑦 + 𝑛)

4

+ 3𝑚
2
(𝑚𝑦 + 𝑛)

2

𝑥
2
)

𝜕

𝜕𝑥

− 2𝑚
3
(𝑚𝑦 + 𝑛) 𝑥

3 𝜕

𝜕𝑦
,

𝑋
(𝜆)

3
= 2𝑚(𝑚𝑦 + 𝑛)

2

𝑥
2 𝜕

𝜕𝑥

+ (𝑚𝑦 + 𝑛) ((𝑚𝑦 + 𝑛)
2

𝑥 − 𝑚
2
𝑥
3
)

𝜕

𝜕𝑦
,

𝑋
(𝜆)

4
= (𝑚𝑦 + 𝑛) ((𝑚𝑦 + 𝑛)

2

+ 𝑚
2
𝑥
2
)

𝜕

𝜕𝑦
,
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𝑋
(𝜆)

5
= (𝑚𝑦 + 𝑛)

2 𝜕

𝜕𝑥
,

𝑋
(𝜆)

6
= (𝑚𝑦 + 𝑛)

2 𝜕

𝜕𝑥
− 𝑚 (𝑚𝑦 + 𝑛) 𝑥

2 𝜕

𝜕𝑦
,

𝑋
(𝜆)

7
= (𝑚𝑦 + 𝑛)

𝜕

𝜕𝑥
, 𝑋

(𝜆)

8
= (𝑚𝑦 + 𝑛)

𝜕

𝜕𝑥
.

(153)

5.5. 𝑓(𝑦) = 𝑦
𝑛, 𝑛 ̸= 1/3, 1/2, 1. The divergence of the path

equation yields

𝜆
𝑗
=
2𝑛𝑦


𝑦
. (154)

If we substitute (154) 𝜆
𝑗
into (135), we obtain 𝜆-

infinitesimals

𝜉
(𝜆)

= 𝑐
1
𝑦
((√(𝑛−1)

2
(3𝑛−1)/√3𝑛−1)+(1/2)(1−5𝑛−√(𝑛−1)

2
(3𝑛−1)/√3𝑛−1))

,

𝜂
(𝜆)

= 0

(155)

and the corresponding one-parameter 𝜆-generator

𝑋
(𝜆)

= 𝑦
((√(𝑛−1)

2
(3𝑛−1)/√3𝑛−1)+(1/2)(1−5𝑛−√(𝑛−1)

2
(3𝑛−1)/√3𝑛−1)) 𝜕

𝜕𝑥
.

(156)

It is clear that we should analyze two specific values for 𝑛.

Case 1 (𝑛 = 1/3). The divergence of path equation for this
value of 𝑛 is

𝜆
𝑗
=
2𝑦


3𝑦
, (157)

the 𝜆-infinitesimals can be written as

𝜉
(𝜆)

= −
3𝑐
1

2𝑦2/3
, 𝜂

(𝜆)
= 0, (158)

and the 𝜆-generator is

𝑋
(𝜆)

= −
3

2𝑦2/3

𝜕

𝜕𝑥
. (159)

Case 2 (𝑛 = 1/2). For another specific value of 𝑛 the
divergence is

𝜆
𝑗
=
𝑦


𝑦
, (160)

the 𝜆-infinitesimals are found as follows:

𝜉
(𝜆)

=
𝑐
1

𝑦
, 𝜂

(𝜆)
= 0. (161)

and the 𝜆-generator is

𝑋
(𝜆)

=
1

𝑦

𝜕

𝜕𝑥
, (162)

In summary all new 𝜆-symmetries are presented in
Table 3.

5.6. Invariant Solutions. In this section we present some
invariant solutions based on Jacobi multiplier approach.

Case 1. For the case𝑓(𝑦) = 𝑘𝑒
𝛼𝑦 we can investigate𝑋𝜆

1
to find

the invariant solution of path equation.The first prolongation
of𝑋𝜆
1
is

Pr𝑋𝜆
1
= 𝑒
−𝑦𝛼 cos𝑥𝛼𝜕

𝑦
+ 𝑒
−𝑦𝛼

(𝛼𝑦
 cos𝑥𝛼 − 𝛼 sin𝑥𝛼) 𝜕

𝑦
 ,

(163)

and the Lagrange equations are

𝑑𝑥

0
=

𝑑𝑦

𝑒−𝑦𝛼 cos𝑥𝛼
=

𝑑𝑦


𝑒−𝑦𝛼 (𝛼𝑦 cos𝑥𝛼 − 𝛼 sin𝑥𝛼)
,

(164)

gives the first order invariants

𝑥 = 𝑥, 𝑦 =
𝑦

− tan𝑥𝛼
𝑒𝑦𝛼

, (165)

that replaced into path equation generate the first-order
equation

𝑑𝑦

𝑑𝑥
= 𝑦𝛼 tan𝑥𝛼, (166)

the solution of this equation yields

𝑦 cos𝑥𝛼 = 𝑐
1
, (167)

and the first integral is

𝐷
𝑥
((

𝑦

− tan𝑥𝛼
𝑒𝑦𝛼

) cos𝑥𝛼) = 0; (168)

this equality gives the original path equation (16). The
reduced form of path equation is

(
𝑦

− tan𝑥𝛼
𝑒𝑦𝛼

) cos𝑥𝛼 − 𝑐 = 0, (169)

in which the solution of (169) is

𝑦 (𝑥) = −
1

𝛼
ln(𝑐𝛼3 cos𝑥𝛼(−𝑐

1
−
tan𝑥𝛼
𝛼3

)) , (170)

where 𝑐
1
and 𝑐 are constants. It is clear that (170) is similar to

the solutions (48) and (122). If we apply similar process for
the 𝑋

2
symmetry generator, we obtain first-order invariants

for this case as

𝑥 = 𝑥, 𝑦 =
𝑦

+ cot𝑥𝛼
𝑒𝑦𝛼

, (171)

and the first integral is

𝐷
𝑥
((

𝑦

+ cot𝑥𝛼
𝑒𝑦𝛼

) sin𝑥𝛼) = 0; (172)

another reduced form of path equation (16) is

(
𝑦

+ cot𝑥𝛼
𝑒𝑦𝛼

) sin𝑥𝛼 − 𝑐 = 0. (173)
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Table 3: 𝜆-Symmetry classification table of path equation with Jacobi last multiplier.

Function 𝜆-Symmetries with Jacobi last multiplier

𝑓(𝑦) = 𝑘
𝜉
(𝜆)

= 𝑦(𝑐
2
+ 𝑐
1
𝑥) + 𝑐

3
𝑥
2
+ 𝑐
8
𝑥 + 𝑐
7

𝜂
(𝜆)

= 𝑦(𝑐
4
+ 𝑐
3
𝑥) + 𝑐

5
𝑥 + 𝑐
1
𝑦
2
+ 𝑐
6

𝑓(𝑦) = 𝑦 𝜉
(𝜆)

=
𝑐
1

𝑦2
, 𝜂
(𝜆)

= 0

𝜉
(𝜆)

= 𝑒
−3𝑦𝛼

(𝑐
1
cos 𝑥𝛼 + 𝑐

2
sin𝑥𝛼 +

𝑒
𝑦𝛼

𝛼
(2𝑐
4
𝛼 − 𝑐
5
cos 2𝑥𝛼 + 𝑐

6
sin 2𝑥𝛼))

𝑓(𝑦) = 𝑘𝑒
𝛼𝑦

𝜂
(𝜆)

= 𝑒
−3𝑦𝛼

(𝑐
1
sin𝑥𝛼 − 𝑐

2
cos𝑥𝛼 + 𝑒

2𝑦𝛼
(𝑐
7
cos𝑥𝛼 + 𝑐

8
sin𝑥𝛼)

+𝑒
𝑦𝛼
(𝑐
3
−

1

2𝛼
𝑐
6
cos 2𝑥𝛼 + 𝑐

5
sin 2𝑥𝛼))

𝑓(𝑦) =
1

𝑚𝑦 + 𝑛

𝜉
(𝜆)

= (𝑚𝑦 + 𝑛)
2
(𝑐
1
𝑚
2
𝑥
3
+ 3𝑐
2
𝑚
2
𝑥
2
+ 2𝑐
3
𝑥
2
+ 𝑐
6
𝑥 + 𝑐
5
) + (𝑚𝑦 + 𝑛)

4
(𝑐
1
𝑥 + 𝑐
2
)

𝜂
(𝜆)

=
1

2
(𝑚𝑦 + 𝑛)(2𝑐

7
+
𝑐
1
(𝑚𝑦 + 𝑛)

2
(𝑚
2
𝑦
2
+ 2𝑚𝑛𝑦 − 𝑛

2
)

𝑚
+ 2(𝑚𝑦 + 𝑛)

2
(𝑎
4
+ 𝑎
3
𝑥))

𝑓(𝑦) = 𝑦
𝑛
, 𝑛 > 1 𝜉

(𝜆)
= 𝑐
1
𝑦
(√(𝑛−1)

2
(3𝑛−1)/√3𝑛−1)+(1/2)(1−5𝑛−(√(𝑛−1)

2
(3𝑛−1)/√3𝑛−1))

, 𝜂
(𝜆)

= 0

𝑓(𝑦) = 𝑦
𝑛
, 𝑛 = 1/3 𝜉

(𝜆)
= −

3𝑐
1

2𝑦2/3
, 𝜂
(𝜆)

= 0

𝑓(𝑦) = 𝑦
𝑛
, 𝑛 = 1/2 𝜉

(𝜆)
=
𝑐
1

𝑦
, 𝜂
(𝜆)

= 0

The solution of (173) is given by

𝑦 (𝑥) = −
1

𝛼
ln(𝑐𝛼3 sin𝑥𝛼(−𝑐

1
−
cot𝑥𝛼
𝛼3

)) . (174)

Case 2. As another case 𝑓(𝑦) = 1/(𝑚𝑦 + 𝑛), we can analyze
𝑋
𝜆

4
generator to find the invariant solution of path equation.

The first prolongation of𝑋𝜆
4
is written as

Pr𝑋𝜆
4
= (𝑚𝑦 + 𝑛) ((𝑚𝑦 + 𝑛)

2

+ 𝑚
2
𝑥
2
) 𝜕
𝑦

+ 𝑚 (2𝑚𝑥 (𝑚𝑦 + 𝑛)

+ (𝑛
2
+ 2𝑚𝑛𝑦 + 𝑚

2
(𝑦
2
− 𝑥
2
)) 𝑦

) 𝜕
𝑦


(175)

and the Lagrange equation are

𝑑𝑥

0
=

𝑑𝑦

(𝑚𝑦 + 𝑛) ((𝑚𝑦 + 𝑛)
2

+ 𝑚2𝑥2)

=
𝑑𝑦


𝑚(2𝑚𝑥 (𝑚𝑦 + 𝑛) + (𝑛2 + 2𝑚𝑛𝑦 + 𝑚2 (𝑦2 − 𝑥2)) 𝑦)
,

(176)

and the corresponding first-order invariants become

𝑥 = 𝑥, 𝑦 =
𝑦

(𝑚𝑦 + 𝑛) + 𝑚𝑥

𝑛2 + 𝑚2𝑥2 + 2𝑚𝑛𝑦 + 𝑚2𝑦2
, (177)

that replaced into path equation generate the first order
equation

𝑑𝑦

𝑑𝑥
+ 2𝑚𝑦

2
= 0. (178)

The solution of (178) is

2𝑚𝑥𝑦 − 1

𝑦
= 𝑐
1
, (179)

and the first integral is

𝐷
𝑥
(
𝑚
2
𝑥
2
− 𝑛
2
− 𝑚
2
𝑦
2
+ 2𝑚𝑛𝑥𝑦


+ 2𝑚𝑦 (𝑚𝑥𝑦


− 𝑛)

𝑦 (𝑚𝑦 + 𝑛) + 𝑚𝑥
) = 0,

(180)

which is equal to the original path equation (16). The new
reduced form is

𝑚
2
𝑥
2
− 𝑛
2
− 𝑚
2
𝑦
2
+ 2𝑚𝑛𝑥𝑦


+ 2𝑚𝑦 (𝑚𝑥𝑦


− 𝑛)

𝑦 (𝑚𝑦 + 𝑛) + 𝑚𝑥
− 𝑐 = 0,

(181)

and the solution of (181) is

𝑦 (𝑥) =
1

2𝑚√1/𝑚(𝑐 − 2𝑚𝑥)
2
(2𝑚𝑥 − 𝑐)

× (2𝑐𝑛√
1

𝑚(𝑐 − 2𝑚𝑥)
2
− 4𝑚𝑛𝑥√

1

𝑚(𝑐 − 2𝑚𝑥)
2

±√−
2𝑐
2

𝑚
+ 4𝑐𝑥 − 4𝑚𝑥2 + 4𝑚𝑐

1
− 8𝑚2𝑥𝑐

1
) ,

(182)

where 𝑐
1
and c are constants, and it is clear that (182) is similar

to the solution (105).
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6. Conclusion

The aim of this study is to classify Noether and 𝜆-symmetries
of path equation describing the minimum drag work. The
symmetry classification of the equation is analyzed with
respect to different choices of altitude-dependent arbitrary
function 𝑓(𝑦) of the governing equation, which represents
a combination of the density, the drag coefficient, the cross
sectional area, and the velocity. It is a fact that an ordinary
differential equation should have a Lagrangian function to
obtain Noether symmetries. In this study we consider the
partial Lagrangian approach for obtaining Noether symme-
tries and constructing a classification in the problem. Thus,
new first integrals (conserved forms) are obtained directly
by using each Noether symmetry given by symmetry of the
equation.With this point of view we find and classify the new
forms of first integrals, and then the invariant solutions of
path equation are constructed for specific forms of 𝑓(𝑦).

In the literature, as a different and a new concept, 𝜆-
symmetries of the second order ordinary differential equa-
tions are analyzed by assuming 𝜆-function in the linear form.
However, in our study, we prove that it is not possible to
obtain 𝜆-symmetries of the drag equation by selecting 𝜆-
function in a linear form. So we study another approach to
obtain 𝜆-symmetries based on using Lie point symmetries
of the path equation. Thus, we have derived 𝜆-symmetries,
integrating factors, first integrals, and the reduced form of
the original path equation. Based on using these new 𝜆-
symmetries, we present some new different invariant solu-
tions by calculating new reduced forms and first integrals.

In our study, additionally, the Jacobi last multiplier
concept is presented as a new and an alternative approach
to construct 𝜆-symmetries of the path equation algorith-
mically. In this method, first, 𝜆-function is determined by
taking divergence of the governing equation and then the
infinitesimals functions 𝜉 and 𝜂 are determined from the
determining equations, then we calculate new 𝜆-symmetries.
In this study we generate first-order equations by using
these new symmetries, which provide invariant solutions
of path equation. After all calculations we present that all
methods discussed in this study have their own important
properties to find first integrals and invariant solutions of
ordinary differential equations, and the advantages of these
approaches are given for specific cases. Furthermore, all
symmetry classifications are presented in tables.
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