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We consider the periodic discrete nonlinear Schrödinger equations with the temporal frequency belonging to a spectral gap. By
using the generalized Nehari manifold approach developed by Szulkin and Weth, we prove the existence of ground state solutions
of the equations. We obtain infinitely many geometrically distinct solutions of the equations when specially the nonlinearity is odd.
The classical Ambrosetti-Rabinowitz superlinear condition is improved.

1. Introduction

The following discrete nonlinear Schrödinger equation
(DLNS):
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) , 𝑛 ∈ Z, (1)

where 𝜎 = ±1 and

Δ𝜓
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= 𝜓
𝑛+1

+ 𝜓
𝑛−1

− 2𝜓
𝑛

(2)

is the discrete Laplacian operator, appears in many physical
problems, like polarons, energy transfer in biological materi-
als, nonlinear optics, and so forth (see [1]). The parameter 𝜎

characterizes the focusing properties of the equation: if 𝜎 = 1,
the equation is self-focusing, while 𝜎 = −1 corresponds to the
defocusing equation. The given sequences {𝜀

𝑛
} and {𝜒

𝑛
} are

assumed to be 𝑇-periodic in 𝑛, that is, 𝜀
𝑛+𝑇

= 𝜀
𝑛
and 𝜒

𝑛+𝑇
=

𝜒
𝑛
. Moreover, {𝜒

𝑛
} is a positive sequence. Here, 𝑇 is a positive

integer. We assume that 𝑓
𝑛
(0) = 0 and the nonlinearity 𝑓

𝑛
(𝑢)

is gauge invariant, that is,

𝑓
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𝑖𝜃
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(𝑢) , 𝜃 ∈ R. (3)

We are interested in the existence of solitons of (1), that
is, solutions which are spatially localized time-periodic and
decay to zero at infinity. Thus, 𝜓

𝑛
has the form

𝜓
𝑛

= 𝑢
𝑛
𝑒
−𝑖𝜔𝑡

,

lim
|𝑛|→∞

𝜓
𝑛

= 0,
(4)

where {𝑢
𝑛
} is a real-valued sequence and 𝜔 ∈ R is the

temporal frequency. Then, (1) becomes

−Δ𝑢
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𝑢
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= 𝜎𝜒
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(𝑢
𝑛
) , 𝑛 ∈ Z, (5)

lim
|𝑛|→∞

𝑢
𝑛

= 0 (6)

holds. Naturally, if we look for solitons of (1), we just need to
get the solutions of (5) satisfying (6).

Actually, we consider a more general equation:

𝐿𝑢
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= 𝜎𝜒
𝑛
𝑓
𝑛

(𝑢
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) , 𝑛 ∈ Z, (7)

with the same boundary condition (6). Here, 𝐿 is a second-
order difference operator
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where {𝑎
𝑛
} and {𝑏

𝑛
} are real-valued 𝑇-periodic sequences.

When 𝑎
𝑛

≡ −1 and 𝑏
𝑛

= 2 + 𝜀
𝑛
, we obtain (5).

We consider (7) as a nonlinear equation in the space 𝑙
2

of two-sided infinite sequences. Note that every element of 𝑙
2

automatically satisfies (6).
As it is well known, the operator 𝐿 is a bounded and self-

adjoint operator in 𝑙
2.The spectrum 𝜎(𝐿) is a union of a finite

number of closed intervals, and the complement R \ 𝜎(𝐿)

consists of a finite number of open intervals called spectral
gaps. Two of them are semi-infinite (see [2]). If 𝑇 = 1, then
finite gaps do not exist. However, in general, finite gaps exist,
and the most interesting case in (7) is when the frequency 𝜔

belongs to a finite spectral gap. Let us fix any spectral gap and
denote it by (𝛼, 𝛽).

DNLS equation is one of the most important inherently
discrete models. DNLS equation plays a crucial role in the
modeling of a great variety of phenomena, ranging from solid
state and condensed matter physics to biology (see [1, 3–6]
and references therein). In the past decade, solitons of the
periodic DNLS have become a hot topic. The existence of
solitons for the periodic DNLS equations with superlinear
nonlinearity [7–10] and with saturable nonlinearity [11–13]
has been studied, respectively. If 𝜔 is below or above the
spectrum of the difference operator −Δ + 𝜀

𝑛
, solitons were

shown by using the Nehari manifold approach and a discrete
version of the concentration compactness principle in [14].
If 𝜔 is a lower edge of a finite spectral gap, the existence
of solitons was obtained by using variant generalized weak
linking theorem in [10]. If 𝜔 lies in a finite spectral gap, the
existence of solitons was proved by using periodic approxi-
mations in combination with the linking theorem in [8] and
the generalizedNeharimanifold approach in [9], respectively.
The results were extended by Chen and Ma in [7]. In this
paper, we employ the generalized Nehari manifold approach
instead of periodic approximation technique to obtain the
existence of a kind of special solitons of (7), which called
ground state solutions, that is, nontrivial solutions with least
possible energy in 𝑙

2. We should emphasize that the results
are obtained under more general super nonlinearity than
the classical Ambrosetti-Rabinowitz superlinear condition
[8, 9, 15].

This paper is organized as follows. In Section 2, we first
establish the variational framework associated with (7) and
transfer the problem on the existence of solutions in 𝑙

2

of (7) into that on the existence of critical points of the
corresponding functional. We then present the main results
of this paper and compare them with existing ones. Section 3
is devoted to the proofs of the main results.

2. Preliminaries and Main Results

The following are the basic hypotheses to establish the main
results of this paper:

(𝑉
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(𝑓
3
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𝐹
𝑛
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2

= ∞, where 𝐹
𝑛
(𝑢) is the primitive

function of 𝑓
𝑛
(𝑢), that is,
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𝑢

0
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𝑛
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(𝑓
4
) 𝑢 → 𝑓

𝑛
(𝑢)/|𝑢| is strictly increasing on (−∞, 0) and

(0, ∞).

To state our results, we introduce some notations. Let

𝐴 = 𝐿 − 𝜔, 𝐸 = 𝑙
2

(Z) . (11)

Consider the functional 𝐽 defined on 𝐸 by

𝐽 (𝑢) =
1

2
(𝐴𝑢, 𝑢)

𝐸
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𝑛∈Z
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𝑛
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𝑛
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𝑛
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where (⋅, ⋅)
𝐸
is the inner product in 𝐸 and ‖ ⋅ ‖

𝐸
is the

corresponding norm in𝐸.Thehypotheses on𝑓
𝑛
(𝑢) imply that

the functional 𝐽 ∈ 𝐶
1

(𝐸,R) and (7) is easily recognized as the
corresponding Euler-Lagrange equation for 𝐽. Thus, to find
nontrivial solutions of (7), we need only to look for nonzero
critical points of 𝐽 in 𝐸.

For the derivative of 𝐽, we have the following formula:

(𝐽


(𝑢) , V) = (𝐴𝑢, V)
𝐸
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𝑛∈Z
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𝑛
𝑓
𝑛
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𝑛
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By (𝑉
1
), we have 𝜎(𝐴) ⊂ R\(𝛼−𝜔, 𝛽−𝜔). So,𝐸 = 𝐸

+

⊕𝐸
−

corresponds to the spectral decomposition of 𝐴 with respect
to the positive and negative parts of the spectrum, and

(𝐴𝑢, 𝑢)
𝐸
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+
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𝐸
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𝐸
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−
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For any 𝑢, V ∈ 𝐸, letting 𝑢 = 𝑢
+

+ 𝑢
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±

∈ 𝐸
± and

V = V+ + V− with V± ∈ 𝐸
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product (⋅, ⋅) and the corresponding norm ‖ ⋅ ‖ on 𝐸 by
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+
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−
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−
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𝐸
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, (15)

respectively. So, 𝐽 can be rewritten as
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We define for 𝑢 ∈ 𝐸 \ 𝐸
−, the subspace
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−
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+
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−
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of 𝐸, where, as usual, R+

= [0, ∞). Let

M = {𝑢 ∈ 𝐸 \ 𝐸
−

: 𝐽


(𝑢) 𝑢 = 0, 𝐽


(𝑢) V = 0 ∀V ∈ 𝐸
−
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In this paper, we also consider themultiplicity of solutions
of (7).

For each ℓ ∈ Z, let

ℓ ∗ 𝑢 = (𝑢
𝑛+ℓ𝑇

)
𝑛∈Z

, ∀𝑢 = (𝑢
𝑛
)
𝑛∈Z

, (21)

which defines a Z-action on 𝐸. By the periodicity of the
coefficients, we know that both 𝐽 and 𝐽

 are Z-invariants.
Therefore, if𝑢 ∈ 𝐸 is a critical point of 𝐽, so is ℓ∗𝑢. Two critical
points 𝑢

1
, 𝑢

2
∈ 𝐸 of 𝐽 are said to be geometrically distinct if

𝑢
1

̸= ℓ ∗ 𝑢
2
for all ℓ ∈ Z.

Now, we are ready to state the main results.

Theorem 1. Suppose that conditions (𝑉
1
), (𝑓

1
)–(𝑓

4
) are satis-

fied. Then, one has the following conclusions.
(1) If either 𝜎 = 1 and 𝛽 ̸= ∞ or 𝜎 = −1 and 𝛼 ̸= −∞, then

(7) has at least a nontrivial ground state solution.
(2) If either 𝜎 = 1 and 𝛽 = ∞ or 𝜎 = −1 and 𝛼 = −∞,

then (7) has no nontrivial solution.

Theorem 2. Suppose that conditions (𝑉
1
), (𝑓

1
)–(𝑓

4
) are satis-

fied and 𝑓
𝑛
is odd in 𝑢. If either 𝜎 = 1 and 𝛽 ̸= ∞ or 𝜎 = −1

and𝛼 ̸= −∞, then (7) has infinitelymany pairs of geometrically
distinct solutions.

In what follows, we always assume that 𝜎 = 1. The other
case can be reduced to 𝜎 = 1 by switching 𝐿 to −𝐿 and 𝜔 to
−𝜔.

Remark 3. In [8], the author considered (7) with 𝑓
𝑛
defined

by

𝑓
𝑛

(𝑢) = |𝑢|
2

𝑢, (22)

which obviously satisfies (𝑓
1
)–(𝑓

4
); the author also discussed

the case where 𝑓 satisfies the Ambrosetti-Rabinowitz condi-
tion; that is, there exists 𝜇 > 2 such that

0 < 𝜇𝐹
𝑛

(𝑢) ≤ 𝑓
𝑛

(𝑢) 𝑢, 𝑢 ̸= 0. (23)

Clearly, (23) implies that 𝐹
𝑛
(𝑢) ≥ 𝑐|𝑢|

𝜇

> 0 for |𝑢| ≥ 1. So, it
is a stronger condition than (𝑓

3
).

Remark 4. In [9], the author assumed that 𝑓
𝑛
satisfies the

following condition: there exists 𝜃 ∈ (0, 1) such that

0 < 𝑢
−1

𝑓
𝑛

(𝑢) ≤ 𝜃𝑓


𝑛
(𝑢) , 𝑢 ̸= 0. (24)

Obviously, (24) implies (23) with 𝜇 = 1 + (1/𝜃), so it is
a stronger condition than the Ambrosetti-Rabinowitz con-
dition. In our paper, the nonlinearities satisfy more general
superlinear assumptions instead of (24) which also implies
(𝑓

4
). However, we do not assume that 𝑓

𝑛
is differentiable and

satisfies (24),M is not a𝐶
1 manifold of𝐸, and theminimizers

onMmaynot be critical points of 𝐽. Hence, themethod of [9]
does not apply anymore. Nevertheless,M is still a topological
manifold, naturally homeomorphic to the unit sphere in 𝐸

+

(see in detail in Section 3). We use the generalized Nehari
manifold approach developed by Szulkin and Weth which is
based on reducing the strongly indefinite variational problem
to a definite one and prove that the minimizers of 𝐽 onM are
indeed critical points of 𝐽.

Remark 5. In [7], it is shown that (7) has at least a nontrivial
solution 𝑢 ∈ 𝑙

2 if 𝑓 satisfies (𝑉
1
), (𝑓

2
), (𝑓

3
), and the following

conditions:

(𝐵
1
) 𝐹

𝑛
(𝑢) ≥ 0 for any 𝑢 ∈ R and 𝐻

𝑛
(𝑢) := (1/2)𝑓

𝑛
(𝑢)𝑢 −

𝐹
𝑛
(𝑢) > 0 if 𝑢 ̸= 0,

(𝐵
2
) 𝐻

𝑛
(𝑢) → ∞ as |𝑢| → ∞, and there exist 𝑟

0
> 0 and

𝛾 > 1 such that |𝑓
𝑛
(𝑢)|

𝛾

/|𝑢|
𝛾

≤ 𝑐
0
𝐻

𝑛
(𝑢) if |𝑢| ≥ 𝑟

0
,

where 𝑐
0
is a positive constant,

In our paper, we use (9) and (𝑓
4
) instead of (𝐵

1
) and (𝐵

2
).

3. Proofs of Main Results

We assume that (𝑉
1
) and (𝑓

1
)–(𝑓

4
) are satisfied from now on.

Lemma 6. 𝐹
𝑛
(𝑢) > 0 and (1/2)𝑓

𝑛
(𝑢)𝑢 > 𝐹

𝑛
(𝑢) for all 𝑢 ̸= 0.

Proof. By (𝑓
2
) and (𝑓

4
), it is easy to get that

𝐹
𝑛

(𝑢) > 0 ∀𝑢 ̸= 0. (25)

Set 𝐻
𝑛
(𝑢) = (1/2)𝑓

𝑛
(𝑢)𝑢 − 𝐹

𝑛
(𝑢). It follows from (𝑓

4
) that

𝐻
𝑛

(𝑢) =
𝑢

2
𝑓
𝑛

(𝑢) − ∫

𝑢

0

𝑓
𝑛

(𝑠) 𝑑𝑠

>
𝑢

2
𝑓
𝑛

(𝑢) −
𝑓
𝑛

(𝑢)

𝑢
∫

𝑢

0

𝑠𝑑𝑠 = 0.

(26)

So, (1/2)𝑓
𝑛
(𝑢)𝑢 > 𝐹

𝑛
(𝑢) for all 𝑢 ̸= 0.

To continue the discussion, we need the following propo-
sition.

Proposition 7 (see [16, 17]). Let 𝑢, 𝑠, V ∈ R be numbers with
𝑠 ≥ −1 and 𝑤 := 𝑠𝑢 + V ̸= 0. Then,

𝑓
𝑛

(𝑢) [𝑠 (
𝑠

2
+ 1) 𝑢 + (1 + 𝑠) V] + 𝐹

𝑛
(𝑢) − 𝐹

𝑛
(𝑢 + 𝑤) < 0.

(27)

Lemma 8. If 𝑢 ∈ M, then

𝐽 (𝑢 + 𝑤) < 𝐽 (𝑢) 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑤 ∈ 𝑈

:= {𝑠𝑢 + V : 𝑠 ≥ −1, V ∈ 𝐸
−

} , 𝑤 ̸= 0.

(28)

Hence, 𝑢 is the unique global maximum of 𝐽|
𝐸(𝑢)

.

Proof. We rewrite 𝐽 by

𝐽 (𝑢) =
1

2
(𝐴𝑢

+

, 𝑢
+

)
𝐸

+
1

2
(𝐴𝑢

−

, 𝑢
−

)
𝐸

− 𝜎 ∑

𝑛∈Z

𝜒
𝑛
𝐹
𝑛

(𝑢
𝑛
) .

(29)
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Since 𝑢 ∈ M, we have

0 = (𝐽


(𝑢) ,
2𝑠 + 𝑠

2

2
𝑢 + (1 + 𝑠) V)

=
2𝑠 + 𝑠

2

2
(𝐴𝑢

+

, 𝑢
+

)
𝐸

+
2𝑠 + 𝑠

2

2
(𝐴𝑢

−

, 𝑢
−

)
𝐸

+ (1 + 𝑠) (𝐴𝑢
−

, V)
𝐸

− ∑

𝑛∈Z

𝜒
𝑛
𝑓
𝑛

(𝑢
𝑛
) (

2𝑠 + 𝑠
2

2
𝑢
𝑛

+ (1 + 𝑠) V
𝑛
) .

(30)

Together with Proposition 7, we know that

𝐽 (𝑢 + 𝑤) − 𝐽 (𝑢)

=
1

2
{(𝐴 (1 + 𝑠) 𝑢

+

, (1 + 𝑠) 𝑢
+

)
𝐸

− (𝐴𝑢
+

, 𝑢
+

)
𝐸
}

+
1

2
{(𝐴 ((1 + 𝑠) 𝑢

−

+ V) , (1 + 𝑠) 𝑢
−

+ V)
𝐸

− (𝐴𝑢
−

, 𝑢
−

)
𝐸
}

+ ∑

𝑛∈Z

𝜒
𝑛
𝐹
𝑛

(𝑢
𝑛
) − ∑

𝑛∈Z

𝜒
𝑛
𝐹
𝑛

(𝑢
𝑛

+ 𝑤
𝑛
)

=
2𝑠 + 𝑠

2

2
(𝐴𝑢

+

, 𝑢
+

)
𝐸

+
2𝑠 + 𝑠

2

2
(𝐴𝑢

−

, 𝑢
−

)
𝐸

+
1

2
(𝐴V, V)

𝐸

+ (1 + 𝑠) (𝐴𝑢
−

, V)
𝐸

+ ∑

𝑛∈Z

𝜒
𝑛
𝐹
𝑛

(𝑢
𝑛
) − ∑

𝑛∈Z

𝜒
𝑛
𝐹
𝑛

(𝑢
𝑛

+ 𝑤
𝑛
)

=
1

2
(𝐴V, V)

𝐸
+ ∑

𝑛∈Z

𝜒
𝑛

{𝑓
𝑛

(𝑢
𝑛
) [𝑠 (

𝑠

2
+ 1) 𝑢

𝑛
+ (1 + 𝑠) V

𝑛
]

+ 𝐹
𝑛

(𝑢
𝑛
) − 𝐹

𝑛
(𝑢

𝑛
+ 𝑤

𝑛
) } < 0.

(31)

The proof is complete.

Lemma 9. (a) There exists 𝛼 > 0 such that 𝑐 := infM𝐽(𝑢) ≥

inf
𝑆
𝛼

𝐽(𝑢) > 0, where 𝑆
𝛼

:= {𝑢 ∈ 𝐸
+

: ‖𝑢‖ = 𝛼}.
(b) ‖𝑢

+

‖ ≥ max{‖𝑢
−

‖, √2𝑐} for every 𝑢 ∈ M.

Proof. (a) By (𝑓
1
) and (𝑓

2
), it is easy to show that for any 𝜀 >

0, there exists 𝑐
𝜀

> 0 such that

𝑓𝑛
(𝑢)

 ≤ 𝜀 |𝑢| + 𝑐
𝜀
|𝑢|

𝑝−1

,
𝐹𝑛

(𝑢)
 ≤ 𝜀|𝑢|

2

+ 𝑐
𝜀
|𝑢|

𝑝

.

(32)

‖⋅‖ is equivalent to the𝐸normon𝐸
+ and𝐸 ⊂ 𝑙

𝑞 for 2 ≤ 𝑞 ≤ ∞

with ‖𝑢‖
𝑙
𝑞 ≤ ‖𝑢‖

𝐸
. Hence, for any 𝜀 ∈ (0, 1/2) and 𝑢 ∈ 𝐸

+, we
have

𝐽 (𝑢) ≥
1

2
‖𝑢‖

2

− 𝜀‖𝑢‖
2

− 𝑐
𝜀
𝜒‖𝑢‖

𝑝

, (33)

which implies inf
𝑆
𝛼

𝐽(𝑢) > 0 for some 𝛼 > 0 (small enough),
where 𝜒 = max{𝜒

𝑛
}.

The first inequality is a consequence of Lemma 8 since for
every 𝑢 ∈ M, there is 𝑠 > 0 such that 𝑠𝑢

+

∈ 𝐸(𝑢) ∩ 𝑆
𝛼
.

(b) For 𝑢 ∈ M, by (25), we have

𝑐 ≤
1

2

𝑢
+

2

−
1

2

𝑢
−

2

− ∑

𝑛∈Z

𝜒
𝑛
𝐹
𝑛

(𝑢
𝑛
)

≤
1

2
(
𝑢

+

2

−
𝑢

−

2

) .

(34)

Hence, ‖𝑢
+

‖ ≥ max{‖𝑢
−

‖, √2𝑐}.

Lemma 10. LetW ⊂ 𝐸
+

\ {0} be a compact subset.Then, there
exists 𝑅 > 0 such that 𝐽 ≤ 0 on 𝐸(𝑢) \ 𝐵

𝑅
(0) for every 𝑢 ∈ W,

where 𝐵
𝑅
(0) denotes the open ball with radius 𝑅 and center 0.

Proof. Suppose by contradiction that there exist 𝑢
(𝑘)

∈ W

and 𝑤
(𝑘)

∈ 𝐸(𝑢
(𝑘)

), 𝑘 ∈ N, such that 𝐽(𝑤
(𝑘)

) > 0 for all 𝑘

and ‖𝑤
(𝑘)

‖ → ∞ as 𝑘 → ∞. Without loss of generality,
we may assume that ‖𝑢

(𝑘)

‖ = 1 for 𝑘 ∈ Z. Then, there exists
a subsequence, still denoted by the same notation, such that
𝑢
(𝑘)

→ 𝑢 ∈ 𝐸
+. Set V(𝑘) = 𝑤

(𝑘)

/‖𝑤
(𝑘)

‖ = 𝑠
(𝑘)

𝑢
(𝑘)

+ V(𝑘)−.
Then,

0 <

𝐽 (𝑤
(𝑘)

)

𝑤(𝑘)


2
=

1

2
((𝑠

(𝑘)

)
2

−

V
(𝑘)−



2

)

− ∑

𝑛∈Z

𝜒
𝑛

𝐹
𝑛

(𝑤
(𝑘)

𝑛
)

(𝑤
(𝑘)

𝑛
)
2

(V
(𝑘)

𝑛
)
2

.

(35)

By (25), we have


V
(𝑘)−



2

≤ (𝑠
(𝑘)

)
2

= 1 −

V
(𝑘)−



2

. (36)

Consequently, we know that ‖V(𝑘)−‖ ≤ 1/√2 and 1/√2 ≤

𝑠
(𝑘)

≤ 1. Passing to a subsequence if necessary, we assume
that 𝑠

(𝑘)

→ 𝑠 ∈ [1/√2, 1], V(𝑘) ⇀ V, V(𝑘)− ⇀ V−
∗

∈ 𝐸
−, and

V(𝑘)
𝑛

→ V
𝑛
for every 𝑛. Hence, V = 𝑠𝑢 + V−

∗
̸= 0 and V−

∗
= V−. It

follows that for 𝑛
0

∈ Z with V
𝑛
0

̸= 0, |𝑤
(𝑘)

𝑛
0

| = ‖𝑤
(𝑘)

‖ ⋅ |V(𝑘)
𝑛
0

| →

∞, as 𝑘 → ∞. Then, by (𝑓
3
), we have

∑

𝑛∈Z

𝜒
𝑛

𝐹
𝑛

(𝑤
(𝑘)

𝑛
)

(𝑤
(𝑘)

𝑛
)
2

(V
(𝑘)

𝑛
)
2

→ ∞, (37)

which contradicts with (35).

Lemma 11. For each 𝑢 ∈ 𝐸
+

\ {0}, the set M ∩ 𝐸(𝑢) consists
of precisely one point which is the unique global maximum of
𝐽|

𝐸(𝑢)
.

Proof. By Lemma 8, it suffices to show that M ∩ 𝐸(𝑢) ̸= 0.
Since 𝐸(𝑢) = 𝐸(𝑢

+

/‖𝑢
+

‖), we may assume that 𝑢 ∈ 𝑆
+. By

Lemma 10, there exists 𝑅 > 0 such that 𝐽 ≤ 0 on 𝐸(𝑢) \ 𝐵
𝑅
(0)

provided that 𝑅 is large enough. By Lemma 9 (a), 𝐽(𝑡𝑢) > 0

for small 𝑡 > 0. Moreover, 𝐽 ≤ 0 on 𝐸(𝑢) \ 𝐵
𝑅
(0). Hence,

0 < sup
𝐸(𝑢)

𝐽 < ∞.
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Let V(𝑘) ⇀ V in 𝐸(𝑢). Then, V(𝑘)
𝑛

→ V
𝑛
as 𝑘 → ∞ for all 𝑛

after passing to a subsequence if necessary.Hence,𝐹
𝑛
(V(𝑘)

𝑛
) →

𝐹
𝑛
(V

𝑛
). Let 𝜑(V) = ∑

𝑛∈Z 𝜒
𝑛
𝐹
𝑛
(V

𝑛
). Then,

𝜑 (V) = ∑

𝑛∈Z

lim
𝑘→∞

𝜒
𝑛
𝐹
𝑛

(V
(𝑘)

𝑛
)

≤ lim inf
𝑘→∞

∑

𝑛∈Z

𝜒
𝑛
𝐹
𝑛

(V
(𝑘)

𝑛
)

= lim inf
𝑘→∞

𝜑 (V
(𝑘)

) ;

(38)

that is, 𝜑 is a weakly lower semicontinuous. From the weak
lower semi-continuity of the norm, it is easy to see that 𝐽 is
weakly upper semicontinuous on 𝐸(𝑢). Therefore, 𝐽(𝑢

0
) =

sup
𝐸(𝑢)

𝐽 for some 𝑢
0

∈ 𝐸(𝑢) \ {0}. By the proof of Lemma 10,
𝑢
0
is a critical point of 𝐽|

𝐸(𝑢)
. It follows that (𝐽



(𝑢
0
), 𝑢

0
) =

(𝐽


(𝑢
0
), 𝑧) = 0 for all 𝑧 ∈ 𝐸 and hence 𝑢

0
∈ M. To summarize,

𝑢
0

∈ M ∩ 𝐸(𝑢).

According to Lemma 11, for each 𝑢 ∈ 𝐸
+

\ {0}, we may
define the mapping �̂� : 𝐸

+

\ {0} → M, 𝑢 → �̂�(𝑢), where
�̂�(𝑢) is the unique point ofM ∩ 𝐸(𝑢).

Lemma 12. 𝐽 is coercive onM; that is, 𝐽(𝑢) → ∞ as ‖𝑢‖ →

∞, 𝑢 ∈ M.

Proof. Suppose, by contradiction, that there exists a sequence
{𝑢

(𝑘)

} ⊂ M such that ‖𝑢
(𝑘)

‖ → ∞ and 𝐽(𝑢
(𝑘)

) ≤ 𝑑 for
some 𝑑 ∈ [𝑐, ∞). Let V(𝑘) = 𝑢

(𝑘)

/‖𝑢
(𝑘)

‖. Then, there exists
a subsequence, still denoted by the same notation, such that
V(𝑘) ⇀ V and V(𝑘)

𝑛
→ V

𝑛
for every 𝑛 as 𝑘 → ∞.

First, we know that there exist 𝛿 > 0 and 𝑛
𝑘

∈ Z such that

V
(𝑘)+

𝑛
𝑘


≥ 𝛿. (39)

Indeed, if not, then V(𝑘)+ → 0 in 𝑙
∞ as 𝑘 → ∞. By

Lemma 9(b), 1/2 ≤ ‖V(𝑘)+‖
2

≤ 1, which means that ‖V(𝑘)+‖
𝑙
2

is bounded. For 𝑞 > 2,


V
(𝑘)+



𝑞

𝑙
𝑞

≤

V
(𝑘)+



𝑞−2

𝑙
∞


V
(𝑘)+



2

𝑙
2
. (40)

Then, V(𝑘)+ → 0 in all 𝑙
𝑞

, 𝑞 > 2. By (32), for any 𝑠 ∈ R,

∑

𝑛∈Z

𝜒
𝑛
𝐹
𝑛

(𝑠V
(𝑘)+

𝑛
) ≤ 𝜀𝑠

2

𝜒

V
(𝑘)+



2

𝑙
2

+ 𝑐
𝜀
𝑠
𝑝

𝜒

V
(𝑘)+



𝑞

𝑙
𝑝
, (41)

which implies that ∑
𝑛∈Z 𝜒

𝑛
𝐹
𝑛
(𝑠V(𝑘)+

𝑛
) → 0 as 𝑘 → ∞.

Since 𝑠V(𝑘)+ ∈ 𝐸(𝑢
(𝑘)

) for 𝑠 ≥ 0, Lemma 8 implies that

𝑑 ≥ 𝐽 (𝑢
(𝑘)

) ≥ 𝐽 (𝑠V
(𝑘)+

)

=
𝑠
2

2


V
(𝑘)+



2

− ∑

𝑛∈Z

𝜒
𝑛
𝐹
𝑛

(𝑠V
(𝑘)+

𝑛
)

≥
𝑠
2

4
− ∑

𝑛∈Z

𝜒
𝑛
𝐹
𝑛

(𝑠V
(𝑘)+

𝑛
) →

𝑠
2

4
,

(42)

as 𝑘 → ∞. This is a contradiction if 𝑠 > √4𝑑.

Due to the periodicity of coefficients, both 𝐽 and M are
invariant under 𝑇-translation. Making such shifts, we can
assume that 1 ≤ 𝑛

𝑘
≤ 𝑇 − 1 in (39). Moreover, passing

to a subsequence if needed, we can assume that 𝑛
𝑘

= 𝑛
0
is

independent of 𝑘. Next, we may extract a subsequence, still
denoted by {V(𝑘)}, such that V(𝑘)+

𝑛
→ V+

𝑛
for all 𝑛 ∈ Z. In

particular, for 𝑛 = 𝑛
0
, inequality (39) shows that |V+

𝑛
0

| ≥ 𝛿 and
hence V+ ̸= 0.

Since |𝑢
(𝑘)

𝑛
| → ∞ as 𝑘 → ∞, it follows again from (𝑓

3
)

and Fatou’s lemma that

0 ≤

𝐽 (𝑢
(𝑘)

)

𝑢(𝑘)


2
=

1

2
(

V
(𝑘)+



2

−

V
(𝑘)−



2

)

− ∑

𝑛∈Z

𝜒
𝑛

𝐹
𝑛

(𝑢
(𝑘)

𝑛
)

(𝑢
(𝑘)

𝑛
)
2

× (V
(𝑘)

𝑛
)
𝑉

→ −∞ as 𝑘 → ∞,

(43)

a contradiction again. The proof is finished.

Lemma 13. (a)Themapping �̂� : 𝐸
+

\{0} → M is continuous.
(b) The mapping 𝑚 = �̂�|

𝑆
+ : 𝑆

+

→ M is a
homeomorphism between 𝑆

+ and M, and the inverse of 𝑚 is
given by 𝑚

−1

(𝑢) = 𝑢
+

/‖𝑢
+

‖, where 𝑆
+

:= {𝑢 ∈ 𝐸
+

: ‖𝑢‖ = 1}.
(c) The mapping 𝑚

−1

: M → 𝑆
+ is the Lipschitz

continuous.

Proof. (a) Let (𝑢
(𝑘)

) ⊂ 𝐸
+

\ {0} be a sequence with 𝑢
(𝑘)

→

𝑢. Since �̂�(𝑤) = �̂�(𝑤
+

/‖𝑤
+

‖), without loss of generality,
we may assume that ‖𝑢

(𝑘)

‖ = 1 for all 𝑘. Then, �̂�(𝑢
(𝑘)

) =

‖�̂�(𝑢
(𝑘)

)
+

‖𝑢
(𝑘)

+ �̂�(𝑢
(𝑘)

)
−. By Lemma 10, there exists 𝑅 > 0

such that

𝐽 (�̂� (𝑢
(𝑘)

)) = sup
𝐸(𝑢(𝑘))

𝐽 ≤ sup
𝐵
𝑅
(0)

𝐽

≤ sup
𝑢∈𝐵
𝑅
(0)

𝑢
+

2

= 𝑅
2 for every 𝑘.

(44)

It follows from Lemma 12 that �̂�(𝑢
(𝑘)

) is bounded. Passing to
a subsequence if needed, we may assume that

𝑡
(𝑘)

:=

�̂�(𝑢

(𝑘)

)
+

→ 𝑡,

�̂�(𝑢
(𝑘)

)
−

⇀ 𝑢
−

∗
in𝐸 as 𝑘 → ∞,

(45)

where 𝑡 ≥ √2𝑐 > 0 by Lemma 9(b). Moreover, by Lemma 11,

𝐽 (�̂� (𝑢
(𝑘)

)) ≥ 𝐽 (𝑡
(𝑘)

𝑢
(𝑘)

+ �̂�(𝑢)
−

) → 𝐽 (𝑡𝑢 + �̂�(𝑢)
−

)

= 𝐽 (�̂� (𝑢)) .

(46)
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Therefore, using the weak lower semicontinuity of the norm
and 𝜑 (defined in Lemma 11), we get

𝐽 (�̂� (𝑢)) ≤ lim
𝑘→∞

𝐽 (�̂� (𝑢
(𝑘)

))

= lim
𝑘→∞

(
1

2
(𝑡

(𝑘)

)
2

−
1

2


�̂�(𝑢

(𝑘)

)
−

2

− ∑

𝑛∈Z

𝜒
𝑛
𝐹
𝑛

(�̂� (𝑢
(𝑘)

𝑛
)))

≤
1

2
𝑡
2

−
1

2

𝑢
−

∗



2

− ∑

𝑛∈Z

𝜒
𝑛
𝐹
𝑛

(𝑡𝑢
𝑛

+ 𝑢
−

∗,𝑛
)

= 𝐽 (𝑡𝑢 + 𝑢
−

∗
) ≤ 𝐽 (�̂� (𝑢)) ,

(47)

which implies that all inequalities above must be equalities
and �̂�(𝑢

(𝑘)

)
−

→ 𝑢
−

∗
. By Lemma 11, 𝑢

−

∗
= �̂�(𝑢)

− and hence
�̂�(𝑢

(𝑘)

) → �̂�(𝑢).
(b) This is an immediate consequence of (a).
(c) For 𝑢, V ∈ M, by (b), we have


𝑚

−1

(𝑢) − 𝑚
−1

(V)


=



𝑢
+

‖𝑢+
‖

−
V+

‖V+‖



=



𝑢
+

− V+

‖𝑢+
‖

+
(
V

+ −
𝑢

+) V+

‖𝑢+
‖ ‖V+‖



≤
2

‖𝑢+
‖

(𝑢 − V)
+ ≤ √

2

𝑐
‖𝑢 − V‖ .

(48)

We will consider the functional Ψ̂ : 𝐸
+

\ {0} → R and
Ψ : 𝑆

+

→ R defined by

Ψ̂ := 𝐽 (�̂� (𝑤)) , Ψ := Ψ̂|
𝑆
+ . (49)

Lemma 14. (a) Ψ̂ ∈ 𝐶
1

(𝐸
+

\ {0},R) and

Ψ̂


(𝑤) 𝑧 =

�̂�(𝑤)
+

‖𝑤‖
𝐽


(�̂� (𝑤)) 𝑧 ∀𝑤, 𝑧 ∈ 𝐸
+

, 𝑤 ̸= 0. (50)

(b) Ψ ∈ 𝐶
1

(𝑆
+

,R) and

Ψ


(𝑤) 𝑧 =
�̂�(𝑤)

+ 𝐽


(𝑚 (𝑤)) 𝑧 ∀𝑧 ∈ 𝑇
𝑤

𝑆
+

= {V ∈ 𝐸
+

: (𝑤, V) = 0} .

(51)

(c) {𝑤
𝑛
} is a Palais-Smale sequence for Ψ if and only if

{𝑚(𝑤
𝑛
)} is a Palais-Smale sequence for 𝐽.

(d) 𝑤 ∈ 𝑆
+ is a critical point of Ψ if and only if 𝑚(𝑤) ∈ M

is a nontrivial critical point of 𝐽. Moreover, the corresponding
values of Ψ and 𝐽 coincide and inf

𝑆
+Ψ = infM𝐽 = 𝑐.

Proof. (a) We put 𝑢 = �̂�(𝑤) ∈ M, so we have 𝑢 =

(‖𝑢
+

‖/‖𝑤‖)𝑤 + 𝑢
−. Let 𝑧 ∈ 𝐸

+. Choose 𝛿 > 0 such that 𝑤
𝑡

:=

𝑤+𝑡𝑧 ∈ 𝐸
+

\ {0} for |𝑡| < 𝛿 and put 𝑢
𝑡

= �̂�(𝑤
𝑡
) ∈ M. Wemay

write 𝑢
𝑡

= 𝑠
𝑡
𝑤

𝑡
+𝑢

−

𝑡
with 𝑠

𝑡
> 0. From the proof of Lemma 13,

the function 𝑡 → 𝑠
𝑡
is continuous. Then, 𝑠

0
= ‖𝑢

+

‖/‖𝑤‖. By
Lemma 11 and the mean value theorem, we have

Ψ̂ (𝑤
𝑡
) − Ψ̂ (𝑤) = 𝐽 (𝑢

𝑡
) − 𝐽 (𝑢)

= 𝐽 (𝑠
𝑡
𝑤

𝑡
+ 𝑢

−

𝑡
) − 𝐽 (𝑠

0
𝑤 + 𝑢

−

)

≤ 𝐽 (𝑠
𝑡
𝑤

𝑡
+ 𝑢

−

𝑡
) − 𝐽 (𝑠

𝑡
𝑤 + 𝑢

−

𝑡
)

= 𝐽


(𝑠
𝑡
[𝑤 + 𝜂

𝑡
(𝑤

𝑡
− 𝑤)] + 𝑢

−

𝑡
) 𝑠

𝑡
𝑡𝑧

(52)

with some 𝜂
𝑡

∈ (0, 1). Similarly,

Ψ̂ (𝑤
𝑡
) − Ψ̂ (𝑤) = 𝐽 (𝑠

𝑡
𝑤

𝑡
+ 𝑢

−

𝑡
) − 𝐽 (𝑠

0
𝑤 + 𝑢

−

)

≥ 𝐽 (𝑠
0
𝑤

𝑡
+ 𝑢

−

) − 𝐽 (𝑠
0
𝑤 + 𝑢

−

)

= 𝐽


(𝑠
0

[𝑤 + 𝜏
𝑡
(𝑤

𝑡
− 𝑤)] + 𝑢

−

) 𝑠
0
𝑡𝑧,

(53)

with some 𝜏
𝑡

∈ (0, 1). Combining these inequalities and the
continuity of function 𝑡 → 𝑠

𝑡
, we have

lim
𝑡→0

Ψ̂ (𝑤
𝑡
) − Ψ̂ (𝑤)

𝑡
= 𝑠

0
𝐽


(𝑢) 𝑧 =

�̂�(𝑤)
+

‖𝑤‖
𝐽


(�̂� (𝑤)) 𝑧.

(54)

Hence, the Gâteaux derivative of Ψ̂ is bounded linear in 𝑧 and
continuous in 𝑤. It follows that Ψ̂ is of class 𝐶

1 (see [15]).
(b) It follows from (a) by noting that 𝑚(𝑤) = �̂�(𝑤) since

𝑤 ∈ 𝑆
+.

(c) Let {𝑤
𝑛
} be a Palais-Smale sequence forΨ, and let 𝑢

𝑛
=

𝑚(𝑤
𝑛
) ∈ M. Since for every 𝑛 ∈ Z, we have an orthogonal

splitting 𝐸 = 𝑇
𝑤
𝑛

𝑆
+

⊕ 𝐸(𝑤
𝑛
); using (b), we have


Ψ



(𝑤
𝑛
)


= sup
𝑧∈𝑇
𝑤𝑛

𝑆
+

‖𝑧‖=1

Ψ


(𝑤
𝑛
) 𝑧

=

𝑚(𝑤

𝑛
)
+

sup
𝑧∈𝑇
𝑤𝑛

𝑆
+

‖𝑧‖=1

𝐽


(𝑚 (𝑤
𝑛
)) 𝑧

=
𝑢

+

𝑛

 sup
𝑧∈𝑇
𝑤𝑛

𝑆
+

‖𝑧‖=1

𝐽


(𝑢
𝑛
) 𝑧,

(55)

because 𝐽


(𝑢
𝑛
)V = 0 for all V ∈ 𝐸(𝑤

𝑛
) and 𝐸(𝑤

𝑛
) is orthogonal

to 𝑇
𝑤
𝑛

𝑆
+. Using (b) again, we have


Ψ



(𝑤
𝑛
)


≤
𝑢

+

𝑛




𝐽


(𝑢
𝑛
)


=
𝑢

+

𝑛

 sup
𝑧∈𝑇
𝑤𝑛

𝑆
+

,V∈𝐸(𝑤𝑛)
𝑧+V ̸= 0

𝐽


(𝑢
𝑛
) (𝑧 + V)

‖𝑧 + V‖

≤
𝑢

+

𝑛

 sup
𝑧∈𝑇
𝑤𝑛

𝑆
+
\{0}

𝐽


(𝑢
𝑛
) (𝑧)

‖𝑧‖
=


Ψ



(𝑤
𝑛
)


.

(56)

Therefore,

Ψ



(𝑤
𝑛
)


=
𝑢

+

𝑛




𝐽


(𝑢
𝑛
)


. (57)
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According to Lemma 9(b) and Lemma 12, √2𝑐 ≤ ‖𝑢
+

𝑛
‖ ≤

sup
𝑛
‖𝑢

+

𝑛
‖ < ∞. Hence, {𝑤

𝑛
} is a Palais-Smale sequence for

Ψ if and only if {𝑢
𝑛
} is a Palais-Smale sequence for 𝐽.

(d) By (57), Ψ


(𝑤) = 0 if and only if 𝐽


(𝑚(𝑤)) = 0. The
other part is clear.

Proof of Theorem 1. (1)We know that 𝑐 > 0 by Lemma 9(a). If
𝑢
0

∈ M satisfies 𝐽(𝑢
0
) = 𝑐, then 𝑚

−1

(𝑢
0
) ∈ 𝑆

+ is a minimizer
ofΨ and therefore a critical point ofΨ and also a critical point
of 𝐽 by Lemma 14.We shall show that there exists aminimizer
𝑢 ∈ M of 𝐽|M. Let {𝑤

(𝑘)

} ⊂ 𝑆
+ be a minimizing sequence

for Ψ. By Ekeland’s variational principle, we may assume that
Ψ(𝑤

(𝑘)

) → 𝑐 andΨ


(𝑤
(𝑘)

) → 0 as 𝑘 → ∞.Then, 𝐽(𝑢
(𝑘)

) →

𝑐 and 𝐽


(𝑢
(𝑘)

) → 0 as 𝑘 → ∞ by Lemma 14(c), where 𝑢
(𝑘)

:=

𝑚(𝑤
(𝑘)

) ∈ M. By Lemma 12, {𝑢
(𝑘)

} is bounded, and hence
{𝑢

(𝑘)

} has a weakly convergent subsequence.
First, we show that there exist 𝛿 > 0 and 𝑛

𝑘
∈ Z such that


𝑢
(𝑘)

𝑛
𝑘


≥ 𝛿. (58)

Indeed, if not, then 𝑢
(𝑘)

→ 0 in 𝑙
∞ as 𝑘 → ∞. From the

simple fact that for 𝑞 > 2,


𝑢
(𝑘)



𝑞

𝑙
𝑞

≤

𝑢
(𝑘)



𝑞−2

𝑙
∞


𝑢
(𝑘)



2

𝑙
2
, (59)

we have 𝑢
(𝑘)

→ 0 in all 𝑙
𝑞

, 𝑞 > 2. By (32), we know that

∑

𝑛∈Z

𝜒
𝑛
𝑓
𝑛

(𝑢
(𝑘)

𝑛
) 𝑢

(𝑘)+

𝑛
≤ 𝜀𝜒 ∑

𝑛∈Z


𝑢
(𝑘)

𝑛


⋅

𝑢
(𝑘)+

𝑛



+ 𝑐
𝜀
𝜒 ∑

𝑛∈Z


𝑢
(𝑘)

𝑛



𝑝−1

⋅

𝑢
(𝑘)+

𝑛



≤ 𝜀𝜒

𝑢
(𝑘)

𝑙2
⋅

𝑢
(𝑘)+

𝑙2

+ 𝑐
𝜀
𝜒


𝑢
(𝑘)



𝑝−1

𝑙
𝑝

⋅

𝑢
(𝑘)+

𝑙𝑝

≤ 𝜀𝜒

𝑢
(𝑘)

𝑙2
⋅

𝑢
(𝑘)+



+ 𝑐
𝜀
𝜒


𝑢
(𝑘)



𝑝−1

𝑙
𝑝

⋅

𝑢
(𝑘)+


,

(60)

which implies that∑
𝑛∈Z 𝜒

𝑛
𝑓
𝑛
(𝑢

(𝑘)

𝑛
)𝑢

(𝑘)+

𝑛
= 𝑜(‖ 𝑢

(𝑘)+

‖) as 𝑘 →

∞. Therefore,

𝑜 (

𝑢
(𝑘)+


) = (𝐽



(𝑢
(𝑘)

) , 𝑢
(𝑘)+

)

=

𝑢
(𝑘)+



2

− ∑

𝑛∈Z

𝜒
𝑛
𝑓
𝑛

(𝑢
(𝑘)

𝑛
) 𝑢

(𝑘)+

𝑛

=

𝑢
(𝑘)+



2

− 𝑜 (

𝑢
(𝑘)+


) .

(61)

Then, ‖ 𝑢
(𝑘)+

‖
2

→ 0 as 𝑘 → ∞, contrary to Lemma 9(b).
From the periodicity of the coefficients, we know that 𝐽

and 𝐽
 are both invariant under 𝑇-translation. Making such

shifts, we can assume that 1 ≤ 𝑛
𝑘

≤ 𝑇 − 1 in (58). Moreover,
passing to a subsequence, we can assume that 𝑛

𝑘
= 𝑛

0
is

independent of 𝑘.

Next, we may extract a subsequence, still denoted by
{𝑢

(𝑘)

}, such that 𝑢
(𝑘)

⇀ 𝑢 and 𝑢
(𝑘)

𝑛
→ 𝑢

𝑛
for all 𝑛 ∈ Z.

Particularly, for 𝑛 = 𝑛
0
, inequality (58) shows that |𝑢

𝑛
0

| ≥ 𝛿,
so 𝑢 ̸= 0. Moreover, we have

(𝐽


(𝑢) , V) = lim
𝑘→∞

(𝐽


(𝑢
(𝑘)

) , V) = 0, ∀V ∈ 𝐸; (62)

that is, 𝑢 is a nontrivial critical point of 𝐽.
Finally, we show that 𝐽(𝑢) = 𝑐. By Lemma 6 and Fatou’s

lemma, we have

𝑐 = lim
𝑘→∞

(𝐽 (𝑢
(𝑘)

) −
1

2
𝐽


(𝑢
(𝑘)

) 𝑢
(𝑘)

)

= lim
𝑘→∞

∑

𝑛∈Z

𝜒
𝑛

(
1

2
𝑓
𝑛

(𝑢
(𝑘)

𝑛
) 𝑢

(𝑘)

𝑛
− 𝐹

𝑛
(𝑢

(𝑘)

𝑛
))

≥ ∑

𝑛∈Z

𝜒
𝑛

(
1

2
𝑓
𝑛

(𝑢
𝑛
) 𝑢

𝑛
− 𝐹

𝑛
(𝑢

𝑛
))

= 𝐽 (𝑢) −
1

2
𝐽


(𝑢) 𝑢 = 𝐽 (𝑢) ≥ 𝑐.

(63)

Hence, 𝐽(𝑢) = 𝑐.That is, 𝑢 is a nontrivial ground state solution
of (7).

(2) If 𝛽 = ∞, by way of contradiction, we assume that (7)
has a nontrivial solution 𝑢 ∈ 𝐸. Then, 𝑢 is a nonzero critical
point of 𝐽 in 𝐸. Thus, 𝐽



(𝑢) = 0. But by Lemma 6,

(𝐽


(𝑢) , 𝑢) = ((𝐿 − 𝜔) 𝑢, 𝑢) − ∑

𝑛∈Z

𝜒
𝑛
𝑓
𝑛

(𝑢
𝑛
) 𝑢

𝑛
< 0. (64)

This is a contradiction, so the conclusion holds.
This completes the proof of Theorem 1.

Now, we are ready to proveTheorem 2. From now on, we
always assume that 𝑓

𝑛
is odd in 𝑢. We need some notations.

For 𝑎 ≥ 𝑏 ≥ 𝑐, denote

𝐽
𝑎

= {𝑢 ∈ M : 𝐽 (𝑢) ≤ 𝑎} ,

𝐽
𝑏

:= {𝑢 ∈ M : 𝐽 (𝑢) ≥ 𝑏} ,

𝐽
𝑎

𝑏
= 𝐽

𝑎

∩ 𝐽
𝑏
,

Ψ
𝑎

= {𝑤 ∈ 𝑆
+

: Ψ (𝑤) ≤ 𝑎} ,

Ψ
𝑏

:= {𝑤 ∈ 𝑆
+

: Ψ (𝑤) ≥ 𝑏} ,

Ψ
𝑎

𝑏
= Ψ

𝑎

∩ Ψ
𝑏
,

𝐾 = {𝑤 ∈ 𝑆
+

: Ψ


(𝑤) = 0} ,

𝐾
𝑎

= {𝑤 ∈ 𝐾 : Ψ (𝑤) = 𝑎} ,

] (𝑎) = sup {‖𝑢‖ : 𝑢 ∈ 𝐽
𝑎

} .

(65)

It is easy to see that ](𝑎) < ∞ for every 𝑎 by Lemma 12.

Proof of Theorem 2. It is easy to see that mappings 𝑚, 𝑚
−1 are

equivariant with respect to theZ-action by Lemma 13; hence,
the orbits O(𝑢) ⊂ M consisting of critical points of 𝐽 are in
1-1 correspondence with the orbits O(𝑤) ⊂ 𝑆

+ consisting of
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critical points of Ψ by Lemma 14(d). Next, we may choose a
subsetF ⊂ 𝐾 such thatF = −F andF consists of a unique
representative of Z-orbits. So, we only need to prove that the
setF is infinite. By contradiction, we assume that

F is a finite set. (66)

Let

Γ
𝑗

= {𝐴 ⊂ 𝑆
+

: 𝐴 = −𝐴, 𝐴 is closed and 𝛾 (𝐴) ≥ 𝑗} , (67)

where 𝛾 denotes genus and 𝑗 ∈ N. We consider the sequence
of the Lusternik-Schnirelmann values of Ψ defined by

𝑐
𝑘

= inf {𝑑 ∈ R : 𝛾 (Ψ
𝑑

) ≥ 𝑘, 𝑘 ∈ N} . (68)

Now, we claim that

𝐾
𝑐
𝑘

̸= 0, 𝑐
𝑘

< 𝑐
𝑘+1

. (69)

Firstly, we show that

𝜅 = inf {‖V − 𝑤‖ : V, 𝑤 ∈ 𝐾, V ̸= 𝑤} > 0. (70)

In fact, there exist V(𝑘), 𝑤
(𝑘)

∈ F, and 𝑔
𝑘
, 𝑙

𝑘
∈ Z such that

V(𝑘) ∗ 𝑔
𝑘

̸= 𝑤
(𝑘)

∗ 𝑙
𝑘
for all 𝑘 and


V
(𝑘)

∗ 𝑔
𝑘

− 𝑤
(𝑘)

∗ 𝑙
𝑘


→ 𝜅 as 𝑘 → ∞. (71)

Let 𝑚
𝑘

= 𝑔
𝑘

− 𝑙
𝑘
. Passing to a subsequence, V(𝑘) = V ∈ F,

𝑤
(𝑘)

= 𝑤 ∈ F, and either𝑚
𝑘

= 𝑚 ∈ Z for all 𝑘 or |𝑚
𝑘
| → ∞.

In the first case, 0 < ‖V(𝑘) ∗ 𝑔
𝑘

− 𝑤
(𝑘)

∗ 𝑙
𝑘
‖ = ‖V − 𝑤 ∗ 𝑚‖ = 𝜅

for all 𝑘. In the second case, 𝑤 ∗ 𝑚
𝑘

⇀ 0 and therefore 𝜅 =

lim
𝑘→∞

‖V − 𝑤 ∗ 𝑚
𝑘
‖ ≥ ‖V‖ = 1. By (70), 𝛾(𝐾

𝑐
𝑘

) = 0 or 1.
Next, we consider a pseudogradient vector field ofΨ [18];

that is, there exists a Lipschitz continuous map 𝑉: 𝑆
+

\ 𝐾 →

𝑇
𝑤

𝑆
+ and for all 𝑤 ∈ 𝑆

+

\ 𝐾,

‖𝑉 (𝑤)‖ < 2

Ψ



(𝑤)


,

⟨𝑉 (𝑤) , Ψ


(𝑤)⟩ >
1

2


Ψ



(𝑤)


2

.

(72)

Let 𝜂 : D → 𝑆
+

\ 𝐾 be the corresponding Ψ-decreasing flow
defined by

𝑑

𝑑𝑡
𝜂 (𝑡, 𝑤) = −𝑉 (𝜂 (𝑡, 𝑤)) ,

𝜂 (0, 𝑤) = 𝑤,

(73)

whereD = {(𝑡, 𝑤) : 𝑤 ∈ 𝑆
+

\ 𝐾, 𝑇
−

(𝑤) < 𝑡 < 𝑇
+

(𝑤)} ⊂ R ×

(𝑆
+

\𝐾), and𝑇
−

(𝑤) < 0,𝑇+

(𝑤) > 0 are themaximal existence
times of the trajectory 𝑡 → 𝜂(𝑡, 𝑤) in negative and positive
direction. By the continuity property of the genus, there exists
𝛿 > 0 such that 𝛾(𝑈) = 𝛾(𝐾

𝑐
𝑘

), where 𝑈 = 𝑁
𝛿
(𝐾

𝑐
𝑘

) := {𝑤 ∈

𝑆
+

: dist(𝑤, 𝐾
𝑐
𝑘

) < 𝛿} and 𝛿 < 𝜅/2. Following the deformation
argument (Lemma A.3), we choose 𝜀 = 𝜀(𝛿) > 0 such that

lim
𝑡→𝑇

+
(𝑤)

Ψ (𝜂 (𝑡, 𝑤)) < 𝑐
𝑘

− 𝜀 for 𝑤 ∈ Ψ
𝑐
𝑘
+𝜀

\ 𝑈. (74)

Then, for every 𝑤 ∈ Ψ
𝑐
𝑘
+𝜀

\ 𝑈, there exists 𝑡 ∈ [0, 𝑇
+

(𝑤)) such
that Ψ(𝜂(𝑡, 𝑤)) < 𝑐

𝑘
− 𝜀. Hence, we may define the entrance

time map

𝑟 : 𝑤 ∈ Ψ
𝑐
𝑘
+𝜀

\ 𝑈 → [0, ∞) ,

𝑟 (𝑤) = inf {𝑡 ∈ [0, 𝑇
+

(𝑤)) : Ψ (𝜂 (𝑡, 𝑤)) ≤ 𝑐
𝑘

− 𝜀} ,

(75)

which satisfies 𝑟(𝑤) < 𝑇
+

(𝑤) for every 𝑤 ∈ Ψ
𝑐
𝑘
+𝜀

\ 𝑈. Since
𝑐
𝑘

− 𝜀 is not a critical value of Ψ by (74), it is easy to see that 𝑟

is a continuous and even map. It follows that the map

𝑔 : Ψ
𝑐
𝑘
+𝜀

\ 𝑈 → Ψ
𝑐
𝑘
−𝜀

, 𝑔 (𝑤) = 𝜂 (𝑟 (𝑤) , 𝑤) (76)

is odd and continuous.Then, 𝛾(Ψ
𝑐
𝑘
+𝜀

\ 𝑈) ≤ 𝛾(Ψ
𝑐
𝑘
−𝜀

) ≤ 𝑘 − 1,
and consequently,

𝛾 (Ψ
𝑐
𝑘
+𝜀

) ≤ 𝛾 (𝑈) + 𝑘 − 1 = 𝛾 (𝐾
𝑐
𝑘

) + 𝑘 − 1. (77)

So, 𝛾(𝐾
𝑐
𝑘

) ≥ 1. Therefore, 𝐾
𝑐
𝑘

̸= 0. Moreover, the definition
of 𝑐

𝑘
and of 𝑐

𝑘+1
implies that 𝛾(𝐾

𝑐
𝑘

) ≥ 1 if 𝑐
𝑘

< 𝑐
𝑘+1

and
𝛾(𝐾

𝑐
𝑘

) > 1 if 𝑐
𝑘

= 𝑐
𝑘+1

. Since 𝛾(F) = 𝛾(𝐾
𝑐
𝑘

) ≤ 1, 𝑐
𝑘

<

𝑐
𝑘+1

. Therefore, there is an infinite sequence {±𝑤
𝑘
} of pairs

of geometrically distinct critical points of Ψ with Ψ(𝑤
𝑘
) = 𝑐

𝑘
,

which contradicts with (66). Therefore, the setF is infinite.
This completes the proof of Theorem 2.

Appendix

Here, we give a proof of (74). We state the discrete property
of the Palais-Smale sequences. It yields nice properties of the
corresponding pseudogradient flow.

Lemma A.1. Let 𝑑 ≥ 𝑐. If {𝑤
(𝑘)

1
}, {𝑤

(𝑘)

2
} ⊂ Ψ

𝑑 are two Palais-
Smale sequences for Ψ, then either ‖𝑤

(𝑘)

1
− 𝑤

(𝑘)

2
‖ → 0 as

𝑘 → ∞ or lim sup
𝑘→∞

‖𝑤
(𝑘)

1
− 𝑤

(𝑘)

2
‖ ≥ (𝑑) > 0, where (𝑑)

depends on 𝑑 but not on the particular choice of the Palais-
Smale sequences.

Proof. Set 𝑢
(𝑘)

1
= 𝑚(𝑤

(𝑘)

1
) and 𝑢

(𝑘)

2
= 𝑚(𝑤

(𝑘)

2
). Then, {𝑢

(𝑘)

1
},

{𝑢
(𝑘)

2
} ⊂ 𝐽

𝑑 are the bounded Palais-Smale sequences for 𝐽. We
fix 𝑝 in (𝑓

2
) and consider the following two cases.

(i) ‖ 𝑢
(𝑘)

1
− 𝑢

(𝑘)

2
‖
𝑙
𝑝 → 0 as 𝑘 → ∞.

By a straightforward calculation and (32), for any 𝜀 > 0,
there exist 𝐶

1
, 𝐶

2
> 0, and 𝑘

0
such that for all 𝑘 ≥ 𝑘

0
,


(𝑢

(𝑘)

1
− 𝑢

(𝑘)

2
)
+

2

= 𝐽


(𝑢
(𝑘)

1
) (𝑢

(𝑘)

1
− 𝑢

(𝑘)

2
)
+

− 𝐽


(𝑢
(𝑘)

2
) (𝑢

(𝑘)

2
− 𝑢

(𝑘)

2
)
+

+ ∑

𝑛∈Z

𝜒
𝑛

[𝑓
𝑛

(𝑢
(𝑘)

1𝑛
) − 𝑓

𝑛
(𝑢

(𝑘)

2𝑛
)] (𝑢

(𝑘)

1
− 𝑢

(𝑘)

2
)
+

≤ 𝜀

(𝑢

(𝑘)

1
− 𝑢

(𝑘)

2
)
+

2
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+ 𝜒 ∑

𝑛∈Z

[𝜀 (

𝑢
(𝑘)

1𝑛


+


𝑢
(𝑘)

2𝑛


)

+ 𝑐
𝜀
(

𝑢
(𝑘)

1𝑛



𝑝−1

+

𝑢
(𝑘)

2𝑛



𝑝−1

)]

×

(𝑢

(𝑘)

1
− 𝑢

(𝑘)

2
)
+

≤ 𝜀

(𝑢

(𝑘)

1
− 𝑢

(𝑘)

2
)
+

+ 𝜒𝜀 (

𝑢
(𝑘)

1


+


𝑢
(𝑘)

2


)


(𝑢

(𝑘)

1
− 𝑢

(𝑘)

2
)
+

+ 𝜒𝑐
𝜀
(

𝑢
(𝑘)

1



𝑝−1

𝑙
𝑝

+

𝑢
(𝑘)

2



𝑝−1

𝑙
𝑝

)

(𝑢

(𝑘)

1
− 𝑢

(𝑘)

2
)
+𝑙𝑝

≤ 𝜀

(𝑢

(𝑘)

1
− 𝑢

(𝑘)

2
)
+

+ 𝜒𝜀𝐶
1


(𝑢

(𝑘)

1
− 𝑢

(𝑘)

2
)
+

+ 𝜒𝑐
𝜀
𝐶

2


𝑢
(𝑘)

1
− 𝑢

(𝑘)

2

𝑙𝑝
.

(A.1)

This implies lim sup
𝑘→∞

‖(𝑢
(𝑘)

1
− 𝑢

(𝑘)

2
)
+

‖

2

≤ lim sup
𝑘→∞

(1 +

𝜒𝐶
1
)𝜀‖(𝑢

(𝑘)

1
− 𝑢

(𝑘)

2
)
+

‖. Hence, ‖(𝑢
(𝑘)

1
− 𝑢

(𝑘)

2
)
+

‖ → 0. Similarly,
‖(𝑢

(𝑘)

1
− 𝑢

(𝑘)

2
)
−

‖ → 0. Therefore, ‖𝑢
(𝑘)

1
− 𝑢

(𝑘)

2
‖ → 0 as 𝑘 →

∞. By Lemma 13(c), we have ‖𝑤
(𝑘)

1
− 𝑤

(𝑘)

2
‖ = ‖𝑚

−1

(𝑢
(𝑘)

1
) −

𝑚
−1

(𝑢
(𝑘)

2
)‖ → 0 as 𝑘 → ∞.

(ii) ‖𝑢
(𝑘)

1
− 𝑢

(𝑘)

2
‖
𝑙
𝑝  0 as 𝑘 → ∞.

There exist 𝛿 > 0 and 𝑛
𝑘

∈ Z such that

𝑢
(𝑘)

1𝑛
𝑘

− 𝑢
(𝑘)

2𝑛
𝑘


≥ 𝛿. (A.2)

For bounded sequences {𝑢
(𝑘)

1
}, {𝑢

(𝑘)

2
}, we may pass to subse-

quences so that

𝑢
(𝑘)

1
⇀ 𝑢

1
∈ 𝐸, 𝑢

(𝑘)

2
⇀ 𝑢

2
∈ 𝐸, (A.3)

where 𝑢
1

̸= 𝑢
2
by (A.2) and 𝐽



(𝑢
1
) = 𝐽



(𝑢
2
) = 0, and


(𝑢

(𝑘)

1
)
+

→ 𝛼
1
,


(𝑢

(𝑘)

1
)
+

→ 𝛼
2
, (A.4)

where √2𝑐 ≤ 𝛼
𝑖
≤ ](𝑑), 𝑖 = 1, 2 by Lemma 9(b).

If 𝑢
1

̸= 0 and 𝑢
2

̸= 0.Then, 𝑢
1
, 𝑢

2
∈ M and𝑤

1
= 𝑚

−1

(𝑢
1
) ∈

𝐾, 𝑤
2

= 𝑚
−1

(𝑢
2
) ∈ 𝐾, 𝑤

1
̸= 𝑤

2
. Therefore,

lim inf
𝑘→∞


𝑤

(𝑘)

1
− 𝑤

(𝑘)

2


= lim inf

𝑘→∞



(𝑢
(𝑘)

1
)
+


(𝑢

(𝑘)

1
)
+

−

(𝑢
(𝑘)

2
)
+


(𝑢

(𝑘)

2
)
+



≥



𝑢
+

1

𝛼
1

−
𝑢
+

2

𝛼
2



=
𝛽

1
𝑤

1
− 𝛽

2
𝑤

2

 ,

(A.5)

where 𝛽
1

= ‖𝑢
+

1
‖/𝛼

1
≥ √2𝑐/](𝑑) and 𝛽

2
= ‖𝑢

+

2
‖/𝛼

2
≥

√2𝑐/](𝑑). Since ‖𝑤
1
‖ = ‖𝑤

2
‖ = 1, we have

lim inf
𝑘→∞


𝑤

(𝑘)

1
− 𝑤

(𝑘)

2


≥

𝛽
1
𝑤

1
− 𝛽

2
𝑤

2



≥ min {𝛽
1
, 𝛽

2
}

𝑤
1

− 𝑤
2

 ≥
√2𝑐𝜅

] (𝑑)
.

(A.6)

If 𝑢
1

= 0, then 𝑢
2

̸= 0 and

lim inf
𝑘→∞


𝑤

(𝑘)

1
− 𝑤

(𝑘)

2


= lim inf

𝑘→∞



(𝑢
(𝑘)

1
)
+


(𝑢

(𝑘)

1
)
+

−

(𝑢
(𝑘)

2
)
+


(𝑢

(𝑘)

2
)
+



≥

𝑢
+

2



𝛼
2

≥
√2𝑐

] (𝑑)
.

(A.7)

Similarly, if 𝑢
2

= 0, then 𝑢
1

̸= 0 and lim inf
𝑘→∞

‖𝑤
(𝑘)

1
−𝑤

(𝑘)

2
‖ ≥

√2𝑐/](𝑑).
The proof is complete.

Lemma A.2. For every 𝑤 ∈ 𝑆
+, the limit lim

𝑡→𝑇
+
(𝑤)

𝜂(𝑡, 𝑤)

exists and is a critical point of Ψ.

Proof. Fix𝑤 ∈ 𝑆
+ and set 𝑑 = Ψ(𝑤).We distinguish two cases

to finish the proof.

Case 1 (𝑇
+

(𝑤) < ∞). For 0 ≤ 𝑠 < 𝑡 < 𝑇
+

(𝑤), by (72) and (73),
we have

𝜂 (𝑡, 𝑤) − 𝜂 (𝑠, 𝑤)


≤ ∫

𝑡

𝑠

𝑉 (𝜂 (𝜏, 𝑤))
 𝑑𝜏

≤ 2√2 ∫

𝑡

𝑠

√⟨Ψ ( 𝜂 (𝜏, 𝑤)) , 𝑉 (𝜂 (𝜏, 𝑤))⟩𝑑𝜏

≤ 2√2 (𝑡 − 𝑠)(∫

𝑡

𝑠

⟨Ψ


(𝜂 (𝜏, 𝑤)) , 𝑉 (𝜂 (𝜏, 𝑤))⟩ 𝑑𝜏)

1/2

= 2√2 (𝑡 − 𝑠)[Ψ (𝜂 (𝑠, 𝑤)) − Ψ (𝜂 (𝑡, 𝑤))]
1/2

≤ 2√2 (𝑡 − 𝑠)[Ψ (𝑤) − 𝑐]
1/2

.

(A.8)

Since 𝑇
+

(𝑤) < ∞, this implies that lim
𝑡→𝑇

+
(𝑤)

𝜂(𝑡, 𝑤) exists
and is a critical point of Ψ, otherwise the trajectory 𝑡 →

𝜂(𝑡, 𝑤) could be continued beyond 𝑇
+

(𝑤).

Case 2 (𝑇
+

(𝑤) = ∞). To prove that lim
𝑡→𝑇

+
(𝑤)

𝜂(𝑡, 𝑤) exists,
we claim that for every 𝜀 > 0, there exists 𝑡

𝜀
> 0 such that

‖𝜂(𝑡
𝜀
, 𝑤) − 𝜂(𝑡, 𝑤)‖ < 𝜀 for 𝑡 ≥ 𝑡

𝜀
. If not, then there exist

0 < 𝜀
0

< (1/2)(𝑑) ((𝑑) is the same number in Lemma A.1)
and a sequence {𝑡

𝑛
} ⊂ [0, ∞) with 𝑡

𝑛
→ ∞ such that

‖𝜂(𝑡
𝑛
, 𝑤) − 𝜂(𝑡

𝑛+1
, 𝑤)‖ = 𝜀

0
for every 𝑛. Choose the smallest

𝑡
1

𝑛
∈ (𝑡

𝑛
, 𝑡

𝑛+1
) such that ‖𝜂(𝑡

𝑛
, 𝑤) − 𝜂(𝑡

1

𝑛
, 𝑤)‖ = 𝜀

0
/3. Let

𝜄
𝑛

= min
𝑠∈[𝑡
𝑛
,𝑡
1

𝑛
]
‖Ψ



(𝜂(𝑠, 𝑤))‖. By (72) and (73), we have

𝜀
0

3
=


𝜂 (𝑡

1

𝑛
, 𝑤) − 𝜂 (𝑡

𝑛
, 𝑤)



≤ ∫

𝑡
1

𝑛

𝑡
𝑛

𝑉 (𝜂 (𝜏, 𝑤))
 𝑑𝜏

≤ 2 ∫

𝑡
1

𝑛

𝑡
𝑛


Ψ



(𝜂 (𝜏, 𝑤))


𝑑𝜏
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≤
2

𝜄
𝑛

∫

𝑡
1

𝑛

𝑡
𝑛


Ψ



(𝜂 (𝜏, 𝑤))


2

𝑑𝜏

≤
4

𝜄
𝑛

∫

𝑡
1

𝑛

𝑡
𝑛

⟨Ψ


(𝜂 (𝜏, 𝑤)) , 𝑉 (𝜂 (𝜏, 𝑤))⟩ 𝑑𝜏

=
4

𝜄
𝑛

(Ψ (𝜂 (𝑡
𝑛
, 𝑤)) − Ψ (𝜂 (𝑡

1

𝑛
, 𝑤))) .

(A.9)

Since Ψ(𝜂(𝑡
𝑛
, 𝑤)) − Ψ(𝜂(𝑡

1

𝑛
, 𝑤)) → 0 as 𝑛 → ∞, 𝜄

𝑛
→ 0

and there exist �̃�
1

𝑛
∈ [𝑡

𝑛
, 𝑡

1

𝑛
] such that Ψ



(𝑤
1

𝑛
) → 0, where

𝑤
1

𝑛
= 𝜂(�̃�

1

𝑛
, 𝑤). Similarly, we choose the largest 𝑡

2

𝑛
∈ (𝑡

1

𝑛
, 𝑡

𝑛+1
)

such that ‖𝜂(𝑡
𝑛+1

, 𝑤) − 𝜂(𝑡
2

𝑛
, 𝑤)‖ = 𝜀

0
/3. Then, there exist �̃�

2

𝑛
∈

[𝑡
2

𝑛
, 𝑡

𝑛+1
] such that Ψ



(𝑤
2

𝑛
) → 0, where 𝑤

2

𝑛
= 𝜂(�̃�

2

𝑛
, 𝑤). Since

‖𝑤
1

𝑛
−𝜂(𝑡

𝑛
, 𝑤)‖ ≤ 𝜀

0
/3 and ‖𝑤

2

𝑛
−𝜂(𝑡

𝑛+1
, 𝑤)‖ ≤ 𝜀

0
/3, {𝑤1

𝑛
}, {𝑤

2

𝑛
}

are two the Palais-Smale sequences such that

𝜀
0

3
≤


𝑤

1

𝑛
− 𝑤

2

𝑛



≤

𝑤

1

𝑛
− 𝜂 (𝑡

𝑛
, 𝑤)



+
𝜂 (𝑡

𝑛
, 𝑤) − 𝜂 (𝑡

𝑛+1
, 𝑤)

 +

𝑤

2

𝑛
− 𝜂 (𝑡

𝑛+1
, 𝑤)



≤ 2𝜀
0

<  (𝑑) ,

(A.10)

which contradicts with Lemma A.1. This proves the claim.
Therefore, lim

𝑡→𝑇
+
(𝑤)

𝜂(𝑡, 𝑤) exists, and, obviously, it must be
a critical point of Ψ. This completes the proof.

Lemma A.3. Let 𝑑 ≥ 𝑐. Then, for every 𝛿 > 0, there exists
𝜀 = 𝜀(𝛿) > 0 such that

(a) Ψ
𝑑+𝜀

𝑑−𝜀
∩ 𝐾 = 𝐾

𝑑
,

(b) lim
𝑡→𝑇

+
(𝑤)

Ψ(𝜂(𝑡, 𝑤)) < 𝑑 − 𝜀 for 𝑤 ∈ Ψ
𝑑+𝜀

\ 𝑁
𝛿
(𝐾

𝑑
).

Proof. (a) According to (66), for 𝜀 > 0 small enough, it is easy
to see that (a) is satisfied.

(b) Without loss of generality, we may assume that
𝑁

𝛿
(𝐾

𝑑
) ⊂ Ψ

𝑑+1 and 𝛿 < (𝑑 + 1). Set

𝜏 = inf {

Ψ



(𝑤)


: 𝑤 ∈ 𝑁
𝛿

(𝐾
𝑑
) \ 𝑁

𝛿/2
(𝐾

𝑑
)} . (A.11)

We claim that 𝜏 > 0. Indeed, if not, then there exists a
sequence {𝑤

(𝑘)

1
} ⊂ 𝑁

𝛿
(𝐾

𝑑
) \ 𝑁

𝛿/2
(𝐾

𝑑
) such that Ψ



(𝑤
(𝑘)

1
) →

0. By the Z-invariance of Ψ and assumption (66), we may
assume 𝑤

(𝑘)

1
∈ 𝑁

𝛿
(𝑤

0
) \ 𝑁

𝛿/2
(𝑤

0
) for some 𝑤

0
∈ 𝐾

𝑑
after

passing to a subsequence. Let 𝑤
(𝑘)

2
→ 𝑤

0
. Then, Ψ

(𝑤
(𝑘)

2
) →

0 and

𝛿

2
≤ lim sup

𝑛→∞


𝑤

(𝑘)

1
− 𝑤

(𝑘)

2


≤ 𝛿 <  (𝑑 + 1) , (A.12)

which contradicts with Lemma A.1. This proves the claim.
Let

𝑀 = sup {

Ψ



(𝑤)


: 𝑤 ∈ 𝑁
𝛿

(𝐾
𝑑
) \ 𝑁

𝛿/2
(𝐾

𝑑
)} . (A.13)

Choose 𝜀 < 𝛿𝜏
2

/8𝑀 such that (a) holds. By Lemma A.1 and
(a), the only way that (b) can fail is that 𝜂(𝑡, 𝑤) → 𝑤 ∈ 𝐾

𝑑
as

𝑡 → 𝑇
+

(𝑤) for some 𝑤 ∈ Ψ
𝑑+𝜀

\ 𝑁
𝛿
(𝐾

𝑑
). In this case, we let

𝑡
1

= sup {𝑡 ∈ [0, 𝑇
+

(𝑤)) : 𝜂 (𝑡, 𝑤) ∉ 𝑁
𝛿

(𝑤)} ,

𝑡
2

= inf {𝑡 ∈ (𝑡
1
, 𝑇

+

(𝑤)) : 𝜂 (𝑡, 𝑤) ∈ 𝑁
𝛿/2

(𝑤)} .

(A.14)

Then,

𝛿

2
=

𝜂 (𝑡
1
, 𝑤) − 𝜂 (𝑡

2
, 𝑤)



≤ ∫

𝑡
2

𝑡
1

𝑉 (𝜂 (𝜏, 𝑤))
 𝑑𝜏

≤ 2 ∫

𝑡
2

𝑡
1


Ψ



(𝜂 (𝜏, 𝑤))


𝑑𝜏

≤ 2𝑀 (𝑡
2

− 𝑡
1
) ,

Ψ (𝜂 (𝑡
2
, 𝑤)) − Ψ (𝜂 (𝑡

1
, 𝑤))

= − ∫

𝑡
2

𝑡
1

⟨Ψ


(𝜂 (𝜏, 𝑤)) , 𝑉 (𝜂 (𝜏, 𝑤))⟩ 𝑑𝑠

≤ −
1

2
∫

𝑡
2

𝑡
1


Ψ



(𝜂 (𝑠, 𝑤))


2

𝑑𝑠

≤ −
1

2
𝜏
2

(𝑡
2

− 𝑡
1
) ≤ −

𝛿𝜏
2

8𝑀
.

(A.15)

It follows that Ψ(𝜂(𝑡
2
, 𝑤)) ≤ 𝑑 + 𝜀 − (𝛿𝜏

2

/8𝑀) < 𝑑 and
therefore 𝜂(𝑡

2
, 𝑤)  𝑤, a contradiction again.This completes

the proof.
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