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In the present paper we introduce some sequence spaces over n-normed spaces defined by a Musielak-Orlicz function ./ = (M).
We also study some topological properties and prove some inclusion relations between these spaces.

1. Introduction and Preliminaries

An Orlicz function M is a function, which is continuous,
nondecreasing, and convex with M(0) = 0, M(x) > 0 for
x> 0and M(x) — ocoasx — oo.

Lindenstrauss and Tzafriri [1] used the idea of Orlicz
function to define the following sequence space. Let w be the
space of all real or complex sequences x = (x;); then

€M={xew:§M(M><oo}, (1)

k=1 P

which is called as an Orlicz sequence space. The space £, is a
Banach space with the norm

||x||:inf{p>0:§M(|x—;|)Sl}. (2)

k=1

It is shown in [1] that every Orlicz sequence space €y,
contains a subspace isomorphic to €, (p > 1). The A,-
condition is equivalent to M(Lx) < kLM(x) for all values
of x > 0 and for L > 1. A sequence ./# = (M,) of Orlicz
functions is called a Musielak-Orlicz function (see [2, 3]). A
sequence /" = (N ) defined by

N () =sup{vlu-M, w):u=0}, k=12,..., (3)

is called the complementary function of a Musielak-Orlicz
function . For a given Musielak-Orlicz function ., the
Musielak-Orlicz sequence space t , and its subspace h ,, are
defined as follows:

ty={x€w:1I,(cx) < oo for some c > 0},

(4)
hy={xew:I,(cx)<ocoVc>0},
where I ;, is a convex modular defined by
Ly(x)= Z (M) (i), x = (xi) €ty (5)
k=1
We consider t , equipped with the Luxemburg norm
. X
||x||=1nf{k>0:Iﬂ(E>§1} (6)
or equipped with the Orlicz norm
Ix]° = inf {% (141, (k) : k> o} . %

Let X be a linear metric space. A function p: X — Riis
called paranorm if

(1) p(x) = 0forall x € X,
(2) p(-x) = p(x) forall x € X,



(3) px+y) < p(x) + p(y) forall x, y € X,

(4) (A,) isasequence of scalarswithA,, — A as
oo and (x,,) is a sequence of vectors with p(x, — x)
— O0asn — o0; then p(A,x, — Ax) — 0 as
n — oo.

n —

A paranorm p for which p(x) = 0 implies x = 0 is
called total paranorm and the pair (X, p) is called a total
paranormed space. It is well known that the metric of any
linear metric space is given by some total paranorm (see [4],
Theorem 10.4.2, pp. 183). For more details about sequence
spaces, see [5-12] and references therein.

A sequence of positive integers 0 = (k,) is called lacunary
ifky, =0,0 <k, <k,,,andh, =k, -k,_, > coasr —
00. The intervals determined by 0 will be denoted by I, =
(k,_1,k,) and g, = k,/k,_,. The space of lacunary strongly
convergent sequences Ny was defined by Freedman et al. [13]
as

1
Nog=q1xecw: lim—Z|xk—l|:O, for some I . (8)
r—»oohrkEIy

Strongly almost convergent sequence was introduced and
studied by Maddox [14] and Freedman et al. [13]. Parashar
and Choudhary [15] have introduced and examined some
properties of four sequence spaces defined by using an
Orlicz function M, which generalized the well-known Orlicz
sequence spaces [C, 1, p], [C, 1, p]y, and [C, 1, p] .. It may be
noted here that the space of strongly summable sequences was
discussed by Maddox [16] and recently in [17].

Mursaleen and Noman [18] introduced the notion of A-
convergent and A-bounded sequences as follows.

Let A = (A2, be a strictly increasing sequence of
positive real numbers tending to infinity; that is,

O0<Ay<A;<-+, Ap—00 ask—o00, (9)
and it is said that a sequence x = (x;) € w is A-convergent
to the number L, called the A-limit of x if A, (x) — L as

m — 00, where

1 m
A () = =" (M = Aiy) X (10)
Amici
The sequence x = (x;) € w is A-bounded if

sup,,|A,,(x)| < oo. It is well known [18] that if lim,,x,, = a
in the ordinary sense of convergence, then

1%(%(Z(Ak—Ak_l)lxk—a|>> =0. (11)
m \ k=1

This implies that

. . 1 ¢
hnrqn|Am(x)—a| :llrﬁn A_Z(Ak—kkfl)(xk_a) :O)

m k=1

(12)

which yields that lim,,A,,, (x) = aand hence x = (x;) € wis
A-convergent to a.
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The concept of 2-normed spaces was initially developed
by Gihler [19] in the mid 1960s, while for that of n-normed
spaces one can see Misiak [20]. Since then, many others
have studied this concept and obtained various results; see
Gunawan ([21, 22]) and Gunawan and Mashadi [23]. Let n €
N and let X be a linear space over the field K, where K is
the field of real or complex numbers of dimension d, where
d > n > 2. A real valued function [|-,...,-| on X" satisfying
the following four conditions

@ llxys x5 ... x,ll = 0if and only if x;, x,,..., x,, are
linearly dependent in X;
(2) lIxy5 %55 - - ., X, || is invariant under permutation;
(3) llexy, x55 .5 x,l = |l %y, %5, .., x, || for any & €
<5
(4) ||x+x',x2, B N R [ N o IIx',xz, e X,
is called an n-norm on X, and the pair (X, [-,...,||) is called

an n-normed space over the field K.

For example, if we may take X = R” being
equipped with the n-norm |lx;, x,,...,x,ll; = the volume
of the n-dimensional parallelepiped spanned by the vectors
X1, X5, .., X, which may be given explicitly by the formula

”xl’xZ""’xn”E = |det (xij)" (13)

where x; = (x;1,Xp,...,%;,) € R" foreachi = 1,2,...,n,
leting (X, [|,...,-|) be an #n-normed space of dimension d >
n > 2 and {a,,a,,...,a,} be linearly independent set in X,
then the following function |-, ..., ||, on X" defined by

1> %0 - o> %1 [l

(14)

= max {|x, x5 ..., %, a1 i=1,2,...,n}

defines an (1 — 1)-norm on X with respect to {a,,a,,...,a,}.
A sequence (x;) in an n-normed space (X, [-,...,[) is
said to converge to some L € X if

klim [xx = Lyzys ..z, = 0
for every z,,...,2,; € X.
A sequence (x;) in an n-normed space (X, [,...,[) is
said to be Cauchy if
khj?o ”xk — Xp 215 ...,z,H" =0
pmeo (16)
for every z,,...,2,, € X.

If every Cauchy sequence in X converges to some L € X,
then X is said to be complete with respect to the n-norm. Any
complete n-normed space is said to be n-Banach space.
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Let # = (M,) be a Musielak-Orlicz function, and let
p = (pi) be abounded sequence of positive real numbers. We
define the following sequence spaces in the present paper:

wh (M, A pos, |-

:{x:(xk)ew: rli)ngohi

I

p>0,520},

R zn—l

A
g (22
kel, P

W (M, s sl

1
= = N 1’ —_—
fe= ) cws im g

X Zk_s [Mk (
kel,

215205+ > Zp g

I

‘Ak(.x)—L

=0, for some L, p >0, 520},
0
w, (A, pys, .. osll)

= {xz (xx) € w:suphi

r

§ A P
XZkS[qu k(x),zl,zz,...,zn,1 )] < 00,
kel,
p>0, 520}.
(17)
If we take ./ (x) = x, we get
0
wy (A ps sl osell)
o .
= x—(xk)ew.rirréoh—r
Pr
Zk“s[ k(x),zl,zz,...,zn_l] =0,
kel,
p >0, 520},

we (A;P;S; ”'3"')'”)
. 1
= {xz(xk)ew: lim —

r—ooj

3
L P
ka“S[ k(x) ,zl,zz,...,zn,l] =0,
kel,
for some L, p >0, 520},
0
we, (A psillseeosell)
1
:{x:(xk)ew:suph—
P
Zk‘s[ (x),zl,zz,...,zn_l] < 00,
kel,
p>0, 520}.
(18)
If we take p = (p;) = 1 for all k € N, we have
wd (M A s, -
— — . l 1
= x—(xk)Ew.rgréoh—
A
x Zk“s [Mk( k(x),zl,zz,...,zn,1 )] =0,
kel,
p>0, 520]»,
w’ (M, A, ol
—{x—(x)ew- lim —
- Tk T rooof
A -L
X Zk"s [Mk< L,zl,zz,...,zn_1 >]
kel,
=0, for some L, p >0, 520},
wly (M, A, -l
1
={x=(xk)ew:sup—
r h,
- A
X Zk s [Mk< k(x),zl,zz,...,zn,1 )] < 00,
kel,
p>0, 520]».
(19)

The following inequality will be used throughout the
paper. If 0 < p; < sup p, = H, K = max(1,2""™"), then

lag + b ™ < K {Jac[™ + ||} (20)

forall kand a, b, € C. Also |a|* < max(1, la|™) foralla € C.



In this paper, we introduce sequence spaces defined
by a Musielak-Orlicz function over n-normed spaces. We
study some topological properties and prove some inclusion
relations between these spaces.

2. Main Results

Theorem 1. Let M =
function, and let p =

positive real numbers, then the

(M) be a Musielak-Orlicz
(pi) be a bounded sequence of

spaces wg(/%, A, p,

S, ”a)”)) u)g(ﬂ,A,p,s, "a)"): and wgo(/%J\)P)
S I+ ..,-|) are linear spaces over the field of complex number
C.

Proof. Let x = (x;), let y = () € wS(M, A, p, s, ...,
and let o, § € C. In order to prove the result, we need to find
some p; such that

A + P
le—Zk [ (’k(Lﬁ"v),zl,zz,...,zn_1 )]
rooh 7 kel, P3

=0.
(21)
Sincex = (x;), ¥y = () € wg(,/%, A, p, s, .. 5[, there
exist positive numbers p;, p, > 0 such that
1 —-s Ak(x) P
rlim h—rk;k M, —1,21,22,...,2,,_1 =0,
A Pr
le —Zk [Mk( k(y),zl,zz,...,zn_1 )] =0.
rooh T kel, 2
(22)

Define p; = max(2|a|p;,2|Blp,). Since (M,) is nondecreas-
ing, convex function and by using inequality (20), we have
2k

2 s

52 [

ax +
/jy),zl,zz,...

> Zn-1

ol (x)

215295+ > Zpy

3215295+ v > Ty

s

s
I

1A

1215295+ 5 Zp g

lAk(x)

1

1 1
<K—)Y —k°|M
=%h Lon [ "(

A
el ik-s[Mk< ()
hrkel,zk

2

2215295 e 2y
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1 A (x) Px
e -
1 —s Ak(y) b
+Kh_rkezlk [Mk( o 21529y e > Zpy
— 0 as r — 00.
(23)
Thus, we have ax + By € Wi, A p,s ..., ).
Hence, wg(./%,A,p,s, lo....-I) is a linear space.
Similarly, we can prove that we(./%, A p,s,ls...sl) and
wzo(ﬂ, A p,s, ..., -) are linear spaces. O

Theorem 2. Let # = (M) be a Musielak-Orlicz function,
and let p = (p) be a bounded sequence of positive real
numbers. Then wg(ﬂ, A, p,s I -ll) is a topological linear
space paranormed by

g (x)

:mf{pprm

1 _
=V
(i3

Ay (%)
—

X

1/H

Z15Z9s 5%y

|)

Proof. Clearly g(x) > 0 for x = (x) €
Wl (M, A, s, |-, -]). Since My(0) = 0, we get g(0) = 0.
Again if g(x) = 0, then

inf<|pp'/H :

where H = max(1, sup; py) < 00.

< Zk (A (x),
rkeI P
e\ VH
21,29 rZp 1 ):I ) g1}=0.

(25)

This implies that for a given € > 0, there exist some p,(0 <
pe < €) such that

(2o

1/H

).

(26)

22152955 2y

‘ & (%)
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Thus,

VH

)

(27)

Suppose that (x;)#0 for each k e N. This implies that
A (x)#0 foreach k € N. Lete — 0, then

A
H k(x),zl,zz,...,zn_1 — 00. (28)
€
It follows that
1/H
—s Ak (X) P
Zk M, 321529 > 2y
f kel, € (29)
— 00,

which is a contradiction. Therefore, A . (x) = 0 for each k, and
thus (x;) = 0 for each k € N. Let p; > 0 and p, > 0 be the
case such that

(5w
(g m(]

Let p = p; + p,; then, by using Minkowski’s inequality, we

J)

(2P e

(e m(]

(30)

1/H

Ay (%) + Ay ()
PLt P2 ’

1/H

215295032y

|)

(hze|»

<(55%)
i

(i

1

T kel,

+( P )
prLtp

< rkeI

Yk

i

(G

1

A

+Pz>

()
P2

Ay (x)

Ay ()
P

21525

1215295+ +> 2y

V2152

215295 - -

-1

> Zp-1

° Zn—l

> Zp-1

Since p, p;, and p, are nonnegative, we have

g(x+y)

=inf4p

p/H

(e

<inf4{(p,

[

)Pr/H .

1 s
w2k

T kel,

("

Z1,25 ..

g

P

P1

21,25

k(x+y)

>

»Zp-1

Ay (%)

> Zp-1

)

)

)

1/H

<1

1/H

[G3%)

)

)

1/H

1/H

(31)

<1



6
p/H
+inf 1 (p,)

A

<i2k_s Mk( «0)

hrkgjr p2

Px 1/H

2152950052, >] > <1

(32)

Therefore, g(x + ¥) < g(x) + g(y). Finally we prove that
the scalar multiplication is continuous. Let 4 be any complex
number. By definition,

g (px)

:inf{p[”/H :

1 - Ay (px)
— YK M _
(hrkgI, |: k( P
Pr 1/H
31}.
(33)
Thus,
g (px)
p/H
=infq (|ut)
1 —-s Ak(x)
-_— k Mk )
Pr 1/H
1}
(34)

where 1/t = p/|pl. Since |ulPr < max(1, |u|**P ), we have

g (ux)

< max (1, |pt|supp')

Abstract and Applied Analysis

xinf{tp’/H:
(e
)

< 1} . (35)

So the fact that scalar multiplication is continuous follows
from the above inequality. This completes the proof of the
theorem. O

Ay (x)
—

1/H

Z152Z55. 032

Theorem 3. Let /4 = (M) be a Musielak-Orlicz func-
tion. If sup;[M(x)]P* < oo for all fixed x > O, then

Wi (M A, pys, Ny l) S Wl (M A s, D).

Proof Let x = (x) € wi(M, A, p,s,|-...,-|); then there
exists positive number p; such that
Pk
)| o

1o A
Jim - ) k [Mk( A
(36)

22152955 Zp g

7 kel, 1

Define p = 2p,. Since (M) is nondecreasing and convex and
by using inequality (20), we have

1 - A P
sup— Zk S[Mk<| k(x),zl,zz,...,z,H )]
r hT kel,
1 s Ak(x)+L—L
ot [
r hrkeZL P
Pk
21523502 Zpey >]

1 1 A (x)-L
SKSllph— Zk ﬁ [Mk<‘lkp—s
" ker, 1

)

2152 >Zp g
1o, 1 L P
+ Ksup— ks—[Mk<‘—,z,z,...,z, )]
1 hrkezlz, 25 o 122 n-1
1 - A -L P
sKsup—Zk S[Mk<‘L,zl,zz,...,zn,1 )]
r hrkeI,
1 L P
+ Ksup— k_s[Mk< 21y 2y s 2 )]
r hr;;r P1 "
< co.
(37)
Hence, x = (x;) € wl (M, A, p,s, [, ]). O
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Theorem 4. Let 0 < infp, = h < p, < supp, = H < 00
and let M = (M), #' = (M;) be Musielak-Orlicz functions
satisfying A ,-condition, then one has

G) W' A p,s N ) € Wit o ' A, pys,

-5l
(11) wg(ﬂl,A)p)s) ”’ ’”) C we(ﬂ ° ﬂ,)A) P; S,
s
(iii) W (' A pos, ..o l) € W (o A, pys,
(PP )2
Proof. Let x = (x;) € wg(/%',A,p, s, |-, |l), then we have
A Pr
rlLr%o_Zk I:Mk(‘ k(x))z1$22)-..,zn_1 >] =0.
kaI

(38)

Lete > 0and choose d with 0 < § < 1such that M, (f) < e

for0 <t < 8. Let (y) = M,'c[||Ak(x)/p,zl,zz,...,zn_lll] for
all k € N. We can write
= Zk_s(Mk [y]) = h_ Z KMy [ye])™
fkeI T kel,
V<6
X (39)
+ n Z k(M [}’k])pk
yizo

So, we have

— Z K “< My (1)]Hhi 2 k(M [y)™

V kel T kel,
k<0 k<8

< [M, @)= Y K (M )™

T kel
V<6

(40)

For y, > 8, ¥ < %/8 < 1+ y,/8. Since (My)'s are nonde-
creasing and convex, it follows that

M, (3,) < Mk<1 + %) < %Mk ) + %Mk (%) (41)

Since M = (M) satisfies A ,-condition, we can write

1,y 1.y b
M, (y) < ETE"M,C () + ETEkMk Q) = TEkMk (2)(. |
42
Hence,
1 =
o kM [y )
2o
(43)

Smax(l,(TMk(2)> ) r;k Iy ]

<8

From (40) and (43), we have x = (x;) ¢ wg(/% °
M A, P, s, |- ...,-|). This completes the proof of (i). Simi-
larly we can prove that

w’ (', A, pys -0l

o (Mol A pys .o,
(44)
wl, (M, A, pys, I )

cwl (Mol A s, ).
O

Theorem 5. Let0 < h = inf p, = p < supp, = H < o0.
Then for a Musielak-Orlicz function M = (M) which satisfies
A ,-condition, one has

) c Wt A, pys, ..o
) cwlt, A, s, s 1D;
) cwl (A s,

() WA, pos ..
(i) WP (A, pos, 15
(i) w? (A, p,s, [l ..

Proof . Tt is easy to prove, so we omit the details. O

Theorem 6. Let # = (M) be a Musielak-Orlicz function

and let 0 < h = inf p;. Then wzo(.%,A,p,S, l....:) ¢
0NN B ) ifand only if
Jim — Zk_S(M )" = o (45)
fkeI

for somet > 0.

Proof. Let w® (M, A, p,s, Il ..,-1) € wi(A, pys, ...l
Suppose that (45) does not hold. Therefore, there are subin-
terval I, ;) of the set of interval I, and a number ¢, > 0, where

A
ty = IIM,ZI,ZZ,...,Z,H Vk, (46)
such that
1 -s
= Y (M (1)) <K <oco, m=1,2,3,....
() kel
(47)
Let us define x = (x;) as follows:
pto, k€L
A (x) = (48)
k( ) {0’ k ¢ I r(j)
Thus, by (47), x € wl (M, A p,s|...,-|). But x ¢

w2 (A, p,s, |- .., -ll). Hence, (45) must hold.
Conversely, suppose that (45) holds and let x €
wl (M, A, p,s,|-...,-|). Then for each r,

[Mk ( ‘Ak(x)
T kel,

o Zk 1215295 - - -

Pr
2y 1 >] <K < o0.

(49)




Suppose that x ¢ w, (A p>S Il ..., I1). Then for some number
€ > 0, there is a number k such that for a subinterval L, ;), of
the set of interval I,

HAk(x)

12152952 || > € for k= k. (50)

From properties of sequence of Orlicz functions, we obtain
A
[ M, ( I k (%)

p
which contradicts (45), by using (49). Hence, we get

)]Pk > Mi(e)s,  (51)

1215295+ > %y

Wl (A s, o) €Wl (A pysi e sel). (52)

This completes the proof. O

Theorem 7. Let # = (M) be a Musielak-Orlicz function.
Then the following statements are equivalent:
(1) wzo(A’ P: S, ”) cees ") C wgo(-%) A> P> S, ") e "))
(11) wg(A, p; S, ") s ") C wzo(ﬂ: Aa Ps S, ”a e ”))
(iii) sup, 1/h, Yper. k™5 (M(£))P* < 0o for all t > 0.

Proof. (i) = (ii). Let (i) hold. To verify (ii), it is enough to
prove

Wy (A pr s, reenll) € Wl (M A s lesl). (53)

Let x = (x;) € wg(A,p,s, lIs...,-l). Then for € > 0, there

exists ¥ > 0, such that

—Zk [

V kel,

x (x)

Pr
321> %5+ > 2 ] <e.  (54)

Hence, there exists K > 0 such that

suph Zk [

T kel,

Ay (%)

Pr
321529505 Zp1 ] < K. (55)

So, we get x = (x;.) € wl (M, A, pss, I,
(ii) = (iii). Let (ii) hold. Suppose (iii) does not hold. Then
for some t > 0

1« . '
sup— ) k(M. (1) = oo, (56)

r kel,

and therefore we can find a subinterval I ) of the set of
interval I,, such that

i (AN
Zk(Mk<}>> >j j=L23,... (5)

() kel

Let us define x = (x;) as follows:

P

s ke Ir(j)

Ap(x)=147J (58)
0, k¢l
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Then x = (x) € wo(A Pl
woo(,/%,A,p,s,II,...,
must holds.

(iii) = (i). Let (iii) hold and suppose that x =

.»-ID. But by (57), x ¢
-, which contradicts (ii). Hence, (iii)

(xk) € wzo(A’p’S’”"""'”)- suppOSe that x = (_xk) ¢
wgo(ﬂ,A,P,S,"‘,...,-");then
A P
sup- Zkﬁ kw umﬁpawqa4>] - .
rkeI
(59)

Lett = [|Ay (x)/p, 21,2552, for each k; then by (59),

sup - Zk (M (6)P = oo, (60)
T kel,
which contradicts (iii). Hence, (i) must hold. O

Theorem 8. Let M/ = (M,) be a Musielak-Orlicz function.
Then the following statements are equivalent:

() Wy (M, A, s, Il l) Cwg(A, s, [l

(i) Wi (M, A, p,s, ) € WS (A syl
(iii) inf, 1/h, Yye; k(M) > 0 for all t > 0.
Proof. (i) = (ii). It is obvious.

(ii) = (iii). Let (ii) hold. Suppose that (iii) does not hold.
Then

1nf— Zk (M, ()" =0 for some t > 0, (61)
rkeI

and we can find a subinterval ,;), of the set of interval I,,
such that

Z kis(M (.] pk _~7 j: 1)2) 3’ (62)
() kel,;

Let us define x = (x;) as follows:

pj kel
A = J 63
k (%) ‘[0) kel (63)

Thus, by (62), x = (x) € wg(/%,A, ps s, butx =
(xe) ¢ wl (A, p,s, ..., l), which contradicts (ii). Hence,
(iii) must hold.

(iii) = (i). Let (iii) hold. Suppose that x = (x;) €

Wi (M, A, p,s, |-, -]). Then
Pr
—Zk_s[ k<||Ak(x),zl,zz,...,zn_1 )} —0
fkeI (64)

as r — OQ.

Again suppose that x = (x;) ¢ w, (A, PS5l for some
number € > 0 and a subinterval I, ;), of the set of interval I,,
we have

e

1215295+ Z,1|| 2 € VK. (65)
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Then from properties of the Orlicz function, we can write
A
[ M, ( I k(%)

Consequently, by (64), we have

)]pk > (M, (). (66)

1215295+ > 2y

Jim Zk (M, (e))P* = (67)
?’ kel,
which contradicts (iii). Hence, (i) must hold. O

Theorem 9. Let 0 < p, < gy for all k and let (q;/py) be
bounded. Then

W (A G5 s l) S W (M A s e sel) . (68)

Proof. Letx = (x;) € W, A, @ S I+ - .. -Il); write
A 9k
t, = [Mk<’M,zl,zz,..-,zn_1 >] (69)
p

and yy = pi/qi forallk € N. Then 0 < y; < 1forallk € N.
Take 0 < p <y for k € N. Define sequences (1) and (v;) as
follows.

Fort, > 1,letu, =t andv, = 0,and fort;, < 1,letu, =0
and v, = t;.. Then clearly for all k € N, we have

— e _ o P Hic
b = U + Vg bl =+ vk (70)

Now it follows that u{* < u; < f; and v{* < v/. Therefore,

- Zt“"— h Z(uk +14%)

T kel, T kel,
: (71)
< h_ Ztk + — ka
fkeI
Now for each k,
1 © x 1\ 1\
2426 )
hfkeI, kel, hr hr
(Z[G-)T7)
< _Vk> ]
kel, hr
(72)

and so
) “
- > vk> . (73)

Hence, x = (x;) € we(./%, A p,s, Il ... l). This completes
the proof of the theorem. O

Theorem 10. (i) If0 < inf p; < p, < 1 forallk €N, then
W (M, s, s el) Swf (A s, |l (74)

(ii) If 1 < pi < sup pr = H < 00, forall k € N, then

W (A5 s l) < WP (A s, sl . (75)
Proof. (i) Let x = (x;) € WP (M, A, p, s, |-s...,-])); then
L Pr
hm—Zk [Mk<l k(x) 32159505 %1 >:| =0.
fkeI P

(76)

Since 0 < inf p; < p; < 1, this implies that

A _
ILm — Z kK [ < £ () 1215255 > %1 )]
roeh 7 kel,
(x) Pk.
rlirrgo—r;k [Mk<‘ P ,zl,zz,...,zn,1 ;
(77)
therefore,
L
le—Zk_S [Mk<' () = 21529 s 2y )] =0.
rooh T kel,
(78)
Hence,

W (M P, s l) S0 (A s sl (79)

(ii) Let pp > 1 for each k and sup p; < co. Let x = (x;) €
W, Ass

i L [, (222,
rocoh i p

-|); then for each p > 0, we have

(80)

I
s

> Zp-1

Z15Z95 052

Since 1 < p;. < sup p; < 00, we have

hm—Zk [Mk<‘ () -L
rooh 7 kel,
r—)OO rkeI p

=0

1215295+ > %y

V2152

)

<1
(81)

Therefore, x = (x;) € we(/%, A posils...s
Hence,

|1), foreach p > 0.

W (M A s ) S0l (A syl (82)

This completes the proof of the theorem. O
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Theorem 11. If0 < inf p, < p, < sup p, = H < oo, for all
k e N, then

W (M s s l) = 08 (A s o). (83)
Proof. It is easy to prove so we omit the details. O
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