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Recently, Basha (2011) established the best proximity point theorems for proximal contractions of the first and second kinds which
are extension of Banach’s contraction principle in the case of non-self-mappings.The aimof this paper is to extend and generalize the
notions of proximal contractions of the first and second kinds which aremore general than the notion of self-contractions, establish
the existence of an optimal approximate solution theorems for these non-self-mappings, and also give examples to validate ourmain
results.

1. Introduction

Since Banach’s contraction principle [1] first appeared, several
authors have generalized this principle in different directions.
However, they have shown the existence of a fixed point for
self-mappings.One of themost interesting results onBanach’s
contraction principle is the case of non-self-mappings. In
fact, for any nonempty closed subsets 𝐴 and 𝐵 of a complete
metric space (𝑋, 𝑑), a contractive non-self-mapping𝑇 : 𝐴 →

𝐵 does not necessarily have a fixed point 𝑇𝑥 = 𝑥. In this
case, a best proximity point, that is, a point 𝑥 ∈ 𝐴 for which
𝑑(𝑥, 𝑇𝑥) = 𝑑(𝐴, 𝐵) := inf{𝑑(𝑥, 𝑦) : 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵} represents
an optimal approximate solution to the equation 𝑇𝑥 = 𝑥.
It is well known that a best proximity point reduces to a
fixed point if the underlying mapping is assumed to be a self-
mapping. Consequently, best proximity point theorems are
improvement of Banach’s contraction principle in case of
non-self-mappings.

A classical best approximation theorem was introduced
by Fan [2]. Afterward, several authors including Prolla [3],
Reich [4], and Sehgal and Singh [5, 6] have derived exten-
sions of Fan’s Theorem in many directions. Other works of

the existence of a best proximity point for contractive map-
pings can be found in [7–13]. On the other hand, many best
proximity point theorems for set-valued mappings have been
established in [14–19]. In particular, Eldred et al. [20] have
obtained best proximity point theorems for relatively nonex-
pansive mappings.

Recently, Basha [21] gave necessary and sufficient condi-
tions to claim the existence of best proximity point for proxi-
mal contraction of first and second kinds which are non-self-
mapping analogues of contraction self-mappings, and they
also established some best proximity theorems. Afterward,
several mathematicians extended and improved these results
in many ways (see in [22–25]).

The purpose of this paper is to extend and generalize the
class of proximal contraction of first and second kinds which
are different from another type in the literature. For such
mappings, we seek the necessary condition for these classes
to have best proximity points and also give some examples to
illustrate our main results.The results of this paper are gener-
alizations of results of Basha in [21] and some results of the
fundamental metrical fixed point and best proximity point
theorems in the literature.
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2. Preliminaries

Throughout this paper, suppose that 𝐴 and 𝐵 are nonempty
subsets of a metric space (𝑋, 𝑑). We use the following nota-
tions:

𝑑 (𝐴, 𝐵) := inf {𝑑 (𝑥, 𝑦) : 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵} ,

𝐴
0
:= {𝑥 ∈ 𝐴 : 𝑑 (𝑥, 𝑦) = 𝑑 (𝐴, 𝐵) for some 𝑦 ∈ 𝐵} ,

𝐵
0
:= {𝑦 ∈ 𝐵 : 𝑑 (𝑥, 𝑦) = 𝑑 (𝐴, 𝐵) for some 𝑥 ∈ 𝐴} .

(1)

Remark 1. It is easy to see that𝐴
0
and𝐵

0
are nonemptywhen-

ever𝐴∩𝐵 ̸= 0. Further, if𝐴 and 𝐵 are closed subsets of a nor-
med linear space such that 𝑑(𝐴, 𝐵) > 0, then 𝐴

0
⊆ 𝐵𝑑𝑟(𝐴)

and 𝐵
0
⊆ 𝐵𝑑𝑟(𝐵), where 𝐵𝑑𝑟(𝐴) is a boundary of 𝐴.

Definition 2 (see [21]). A mapping 𝑇 : 𝐴 → 𝐵 is called a
proximal contraction of the first kind if there exists 𝛼 ∈ [0, 1)

such that, for all 𝑎, 𝑏, 𝑥, 𝑦 ∈ 𝐴,

𝑑 (𝑎, 𝑇𝑥) = 𝑑 (𝐴, 𝐵) ,

𝑑 (𝑏, 𝑇𝑦) = 𝑑 (𝐴, 𝐵)
⇒ 𝑑 (𝑎, 𝑏) ≤ 𝛼𝑑 (𝑥, 𝑦) . (2)

Remark 3. If 𝑇 is self-mapping, then 𝑇 is a proximal contrac-
tion of the first kind deduced to𝑇which is a contractionmap-
ping. But a non-self-proximal contraction is not necessarily a
contraction.

Definition 4 (see [21]). A mapping 𝑇 : 𝐴 → 𝐵 is said to
be a proximal contraction of the second kind if there exists
𝛼 ∈ [0, 1) such that, for all 𝑎, 𝑏, 𝑥, 𝑦 ∈ 𝐴,

𝑑 (𝑎, 𝑇𝑥) = 𝑑 (𝐴, 𝐵) ,

𝑑 (𝑏, 𝑇𝑦) = 𝑑 (𝐴, 𝐵)
⇒ 𝑑 (𝑇𝑎, 𝑇𝑏) ≤ 𝛼𝑑 (𝑇𝑥, 𝑇𝑦) . (3)

The necessary condition for a self-mapping 𝑇 to be a
proximal contraction of the second kind is that

𝑑 (𝑇𝑇𝑥, 𝑇𝑇𝑦) ≤ 𝛼𝑑 (𝑇𝑥, 𝑇𝑦) (4)

for all 𝑥, 𝑦 in the domain of 𝑇. Therefore, every contraction
self-mapping is a proximal contraction of the second kind,
but the converse is not true (see Example 5).

Example 5. Consider R endowed with the Euclidean metric.
Let the self-mapping𝑇 : [0, 1] → [0, 1] be defined as follows:

𝑇 (𝑥) = {
0 if 𝑥 is rational,
1 otherwise.

(5)

It is easy to prove that 𝑇 is a proximal contraction of the sec-
ond kind. However, 𝑇 is not a contraction mapping.

The above example also exhibits that a self-mapping, that
is, a proximal contraction of the second kind, is not necessa-
rily continuous.

Definition 6. Let 𝑆 : 𝐴 → 𝐵 and T : 𝐵 → 𝐴 be mappings.
The pair (𝑆, 𝑇) is said to be

(1) a cyclic contractive pair if 𝑑(𝐴, 𝐵) < 𝑑(𝑥, 𝑦) ⇒

𝑑(𝑆𝑥, 𝑇𝑦) < 𝑑(𝑥, 𝑦) for all 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵;

(2) a cyclic expansive pair if 𝑑(𝐴, 𝐵) < 𝑑(𝑥, 𝑦) ⇒

𝑑(𝑆𝑥, 𝑇𝑦) > 𝑑(𝑥, 𝑦) for all 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵;

(3) a cyclic inequality pair if 𝑑(𝐴, 𝐵) < 𝑑(𝑥, 𝑦) ⇒

𝑑(𝑆𝑥, 𝑇𝑦) ̸= 𝑑(𝑥, 𝑦) for all 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵.

Definition 7. Let 𝑆 : 𝐴 → 𝐵 and 𝑇 : 𝐵 → 𝐴 be mappings.
The pair (𝑆, 𝑇) is said to satisfy min-max condition if, for all
𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵,

𝑑 (𝐴, 𝐵) < 𝑑 (𝑥, 𝑦) ⇒ min (𝑆𝑥,T𝑦) ̸= max (𝑆𝑥, 𝑇𝑦) , (6)

where min(𝑆𝑥, 𝑇𝑦) and max(𝑆𝑥, 𝑇𝑦) are defined by

min (𝑆𝑥, 𝑇𝑦) = min {𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑆𝑥) , 𝑑 (𝑦, 𝑇𝑦) ,

𝑑 (𝑆𝑥, 𝑇𝑦) , 𝑑 (𝑥, 𝑆𝑇𝑦) ,

𝑑 (𝑦, 𝑇𝑆𝑥) , 𝑑 (𝑆𝑥, 𝑇𝑆𝑥) ,

𝑑 (𝑇𝑦, 𝑆𝑇𝑦) , 𝑑 (𝑇𝑆𝑥, 𝑆𝑇𝑦)} ,

max (𝑆𝑥, 𝑇𝑦) = max {𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑆𝑥) , 𝑑 (𝑦, 𝑇𝑦) ,

𝑑 (𝑥, 𝑇𝑦) , 𝑑 (𝑦, 𝑆𝑥) , 𝑑 (𝑆𝑥, 𝑇𝑦) ,

𝑑 (𝑥, 𝑇𝑆𝑥) , 𝑑 (𝑦, 𝑆𝑇𝑦) , 𝑑 (𝑥, 𝑆𝑇𝑦) ,

𝑑 (𝑦, 𝑇𝑆𝑥) , 𝑑 (𝑆𝑥, 𝑇𝑆𝑥) ,

𝑑 (𝑇𝑦, 𝑆𝑇𝑦) , 𝑑 (𝑇𝑆𝑥, 𝑆𝑇𝑦)} .

(7)

We observe that the cyclic contractive pairs, cyclic expan-
sive pairs, and cyclic inequality pairs satisfy themin-max con-
dition.

Definition 8. Let 𝑇 : 𝐴 → 𝐵 a mapping and 𝑔 : 𝐴 → 𝐴 be
an isometry.Themapping 𝑇 is said to preserve isometric dis-
tance with respect to 𝑔 if

𝑑 (𝑇𝑔𝑥, 𝑇𝑔𝑦) = 𝑑 (𝑇𝑥, 𝑇𝑦) (8)

for all 𝑥, 𝑦 ∈ 𝐴.

Definition 9. A point 𝑥 ∈ 𝐴 is said to be a best proximity
point of a mapping 𝑇 : 𝐴 → 𝐵 if it satisfies the condition
that

𝑑 (𝑥, 𝑇𝑥) = 𝑑 (𝐴, 𝐵) . (9)

Observe that a best proximity reduces to a fixed point if
the underlying mapping is a self-mapping.

Definition 10. 𝐴 is said to be approximatively compact with
respect to 𝐵 if every sequence {𝑥

𝑛
} in𝐴 satisfies the condition

that 𝑑(𝑦, 𝑥
𝑛
) → 𝑑(𝑦, 𝐴) for some 𝑦 ∈ 𝐵 has a convergent

subsequence.

Remark 11. Any nonempty subset of metric space (𝑋, 𝑑) is
approximatively compact with respect to itself.
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3. Main Results

In this section, we introduce the notions of generalized proxi-
mal contractionmappings of the first and second kindswhich
are different from another type in the literature. We also give
the existence theorems of an optimal approximate solution
for these mappings.

Definition 12. Let 𝐴, 𝐵 be nonempty subset of metric space
(𝑋, 𝑑), 𝑇 : 𝐴 → 𝐵 andK : 𝐴 → [0, 1). A mapping 𝑇 is said
to be a generalized proximal contraction of the first kind with
respect toK if

𝑑 (𝑎, 𝑇𝑥) = 𝑑 (𝐴, 𝐵) ,

𝑑 (𝑏, 𝑇𝑦) = 𝑑 (𝐴, 𝐵)
⇒ 𝑑 (𝑎, 𝑏) ≤ K (𝑥) 𝑑 (𝑥, 𝑦) (10)

for all 𝑎, 𝑏, 𝑥, 𝑦 ∈ 𝐴.

Remark 13. If we take K(𝑥) = 𝛼 for all 𝑥 ∈ 𝐴, where
𝛼 ∈ [0, 1), then a generalized proximal contraction of the first
kind with respect toK reduces to a proximal contraction of
the first kind (Definition 2). In case of a self-mapping, it is
apparent that the class of contractionmapping is contained in
the class of generalized proximal contraction of the first kind
with respect toKmapping.

Now, we give an example to claim that the class of proxi-
mal contractionmapping of the first kind is a proper subclass
of the class of generalized proximal contractions of the first
kind with respect toKmapping.

Example 14. Consider the metric space R2 with Euclidean
metric. Let 𝐴 = {(0, 𝑦) : −1 < 𝑦 < 1} and 𝐵 = {(1, 𝑦) :

−1 < 𝑦 < 1}. Define a mapping 𝑇 : 𝐴 → 𝐵 as follows:

𝑇 ((0, 𝑦)) = (1,
𝑦
2

2
) (11)

for all (0, 𝑦) ∈ 𝐴.
It is easy to check that there is no 𝛼 ∈ [0, 1) satisfing

𝑑 (𝑎, 𝑇𝑥) = 𝑑 (𝑏, 𝑇𝑦) = 𝑑 (𝐴, 𝐵) ⇒ 𝑑 (𝑎, 𝑏) ≤ 𝛼𝑑 (𝑥, 𝑦)

(12)

for all 𝑎, 𝑏, 𝑥, 𝑦 ∈ 𝐴. Therefore, 𝑇 is not a proximal contrac-
tion of the first kind.

Consider a functionK : 𝐴 → [0, 1) defined by

K ((0, 𝑦)) =

𝑦
 + 1

2
. (13)

Next, we claim that𝑇 is a generalized proximal contraction of
the first kind with respect toK.

If (0, 𝑦
1
), (0, 𝑦

2
) ∈ 𝐴 such that

𝑑 (𝑎, 𝑇 ((0, 𝑦
1
))) = 𝑑 (𝐴, 𝐵) = 1,

𝑑 (𝑏, 𝑇 ((0, 𝑦
2
))) = 𝑑 (𝐴, 𝐵) = 1,

(14)

for all 𝑎, 𝑏 ∈ 𝐴, then we have

𝑎 = (0,
𝑦
2

1

2
) , 𝑏 = (0,

𝑦
2

2

2
) . (15)

Therefore, it follows that

𝑑 (𝑎, 𝑏) = 𝑑((0,
𝑦
2

1

2
) , (0,

𝑦
2

2

2
))

=



𝑦
2

1

2
−
𝑦
2

2

2



= (

𝑦1 + 𝑦
2



2
)
𝑦1 − 𝑦

2



≤ (

𝑦1
 +

𝑦2


2
)
𝑦1 − 𝑦

2



≤ (

𝑦1
 + 1

2
)
𝑦1 − 𝑦

2



= K ((0, 𝑦
1
)) 𝑑 ((0, 𝑦

1
) , (0, 𝑦

2
)) .

(16)

This implies that 𝑇 is a generalized proximal contraction of
the first kind with respect toK.

Definition 15. Let 𝐴, 𝐵 be nonempty subset of metric space
(𝑋, 𝑑), 𝑇 : 𝐴 → 𝐵 andK : 𝐴 → [0, 1). A mapping 𝑇 is said
to be a generalized proximal contraction of the second kind
with respect toK if

𝑑 (𝑎, 𝑇𝑥) = 𝑑 (𝐴, 𝐵) ,

𝑑 (𝑏, 𝑇𝑦) = 𝑑 (𝐴, 𝐵)
⇒ 𝑑 (𝑎, 𝑏) ≤ K (𝑥) 𝑑 (𝑇𝑥, 𝑇𝑦) (17)

for all 𝑎, 𝑏, 𝑥, 𝑦 ∈ 𝐴.

Clearly, a proximal contraction of the second kind
(Definition 4) is a generalized proximal contraction of the
second kind.

Next, we extend the results of Basha [21] andmany results
in the literature.

Theorem 16. Let (𝑋, 𝑑) a complete metric space and 𝐴, 𝐵 be
nonempty closed subsets of 𝑋 such that 𝐴

0
and 𝐵

0
are non-

empty. Suppose that 𝑇 : 𝐴 → 𝐵, 𝑔 : 𝐴 → 𝐴, andK : 𝐴 →

[0, 1) are mappings satisfying the following conditions:
(a) 𝑇 is a continuous generalized proximal contraction of

first kind with respect toK;
(b) 𝑇(𝐴

0
) ⊆ 𝐵
0
and 𝐴

0
⊆ 𝑔(𝐴

0
);

(c) 𝑔 is an isometry;
(d) K(𝑥) ≤ K(𝑦), whenever 𝑑(𝑔𝑥, 𝑇𝑦) = 𝑑(𝐴, 𝐵).

Then there exists a unique point 𝑥 ∈ 𝐴 such that 𝑑(𝑔𝑥, 𝑇𝑥) =
𝑑(𝐴, 𝐵).

Proof. Let 𝑥
0
be a fixed element in𝐴

0
. From 𝑇(𝐴

0
) ⊆ 𝐵
0
and

𝐴
0
⊆ 𝑔(𝐴

0
), it follows that there exists a point 𝑥

1
∈ 𝐴
0
such

that

𝑑 (𝑔𝑥
1
, 𝑇𝑥
0
) = 𝑑 (𝐴, 𝐵) . (18)

Again, since 𝑇𝑥
1
∈ 𝑇(𝐴

0
) ⊆ 𝐵
0
and 𝐴

0
⊆ 𝑔(𝐴

0
), there exists

a point 𝑥
2
∈ 𝐴
0
such that

𝑑 (𝑔𝑥
2
, 𝑇𝑥
1
) = 𝑑 (𝐴, 𝐵) . (19)
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Continuing this process, we can construct the sequence {𝑥
𝑛
}

in 𝐴
0
such that

𝑑 (𝑔𝑥
𝑛
, 𝑇𝑥
𝑛−1

) = 𝑑 (𝐴, 𝐵) (20)

for all 𝑛 ∈ N. Since 𝑇 is a generalized proximal contraction of
the first kind with respect toK, it follows that

𝑑 (𝑔𝑥
𝑛+1

, 𝑔𝑥
𝑛
) ≤ K (𝑥

𝑛
) 𝑑 (𝑥
𝑛
, 𝑥
𝑛−1

) (21)

for all 𝑛 ∈ N. Also, since 𝑔 is an isometry, we have

𝑑 (𝑥
𝑛+1

, 𝑥
𝑛
) ≤ K (𝑥

𝑛
) 𝑑 (𝑥
𝑛
, 𝑥
𝑛−1

) (22)

for all 𝑛 ∈ N. By using (20) and (d), we have

𝑑 (𝑥
𝑛+1

, 𝑥
𝑛
) ≤ K (𝑥

𝑛
) 𝑑 (𝑥
𝑛
, 𝑥
𝑛−1

)

≤ K (𝑥
𝑛−1

) 𝑑 (𝑥
𝑛
, 𝑥
𝑛−1

)

≤ K (𝑥
𝑛−2

) 𝑑 (𝑥
𝑛
, 𝑥
𝑛−1

)

...

≤ K (𝑥
0
) 𝑑 (𝑥
𝑛
, 𝑥
𝑛−1

)

(23)

for all 𝑛 ∈ N. By repeating (23), we get

𝑑 (𝑥
𝑛+1

, 𝑥
𝑛
) ≤ (K(𝑥

0
))
𝑛
𝑑 (𝑥
1
, 𝑥
0
) (24)

for all 𝑛 ∈ N. Now, we let 𝑘 := K(𝑥
0
) ∈ [0, 1). For positive

integers𝑚 and 𝑛 with 𝑛 > 𝑚, it follows from (24) that

𝑑 (𝑥
𝑛
, 𝑥
𝑚
)

≤ 𝑑 (𝑥
𝑛
, 𝑥
𝑛−1

) + 𝑑 (𝑥
𝑛−1

, 𝑥
𝑛−2

) + ⋅ ⋅ ⋅ + 𝑑 (𝑥
𝑚+1

, 𝑥
𝑚
)

≤ 𝑘
𝑛−1

𝑑 (𝑥
1
, 𝑥
0
) + 𝑘
𝑛−2

𝑑 (𝑥
1
, 𝑥
0
) + ⋅ ⋅ ⋅ + 𝑘

𝑚
𝑑 (𝑥
1
, 𝑥
0
)

≤ (
𝑘
𝑚

1 − 𝑘
)𝑑 (𝑥

1
, 𝑥
0
) .

(25)

Since 𝑘 ∈ [0, 1), we have (𝑘𝑚/(1 − 𝑘))𝑑(𝑥
1
, 𝑥
0
) → 0 as𝑚 →

∞, which implies that {𝑥
𝑛
} is a Cauchy sequence in 𝑋. Since

𝑋 is complete, it follows that the sequence {𝑥
𝑛
} converges to

point 𝑥 ∈ 𝑋. Since 𝑇 and 𝑔 are continuous, we get

𝑑 (𝑔𝑥, 𝑇𝑥) = lim
𝑛→∞

𝑑 (𝑔𝑥
𝑛+1

, 𝑇𝑥
𝑛
) = 𝑑 (𝐴, 𝐵) . (26)

Next, we suppose that 𝑥∗ is another point in𝑋 such that

𝑑 (𝑔𝑥
∗
, 𝑇𝑥
∗
) = 𝑑 (𝐴, 𝐵) . (27)

Since 𝑇 is a generalized proximal contraction of the first kind
with respect toK, by using (26) and (27), we get

𝑑 (𝑔𝑥, 𝑔𝑥
∗
) ≤ K (𝑥) 𝑑 (𝑥, 𝑥

∗
) . (28)

Since 𝑔 is an isometry, it follows that

𝑑 (𝑥, 𝑥
∗
) ≤ K (𝑥) 𝑑 (𝑥, 𝑥

∗
) , (29)

which implies that 𝑥 = 𝑥
∗. This completes the proof.

Now, we give an example to illustrate Theorem 16.

Example 17. Consider the complete metric space R2 with
Euclidean metric. Let 𝐴 = {(0, 𝑦) : −1 ≤ 𝑦 ≤ 1} and 𝐵 =

{(1, 𝑦) : −1 ≤ 𝑦 ≤ 1}. Define two mappings 𝑇 : 𝐴 → 𝐵 and
𝑔 : 𝐴 → 𝐴 as follows:

𝑇 ((0, 𝑦)) = (1,
𝑦
2

4
) , 𝑔 ((0, 𝑦)) = (0, −𝑦) (30)

for all (0, 𝑦) ∈ 𝐴. Then it is easy to see that 𝑑(𝐴, 𝐵) = 1,
𝐴
0
= 𝐴, 𝐵

0
= 𝐵, and the mapping 𝑔 is an isometry.

Consider a functionK : 𝐴 → [0, 1) defined by

K ((0, 𝑦)) =

𝑦
 + 1

4
. (31)

Next, we claim that 𝑇 is a generalized proximal contrac-
tion of the first kind with respect toK. If (0, 𝑦

1
), (0, 𝑦

2
) ∈ 𝐴

such that

𝑑 (𝑎, 𝑇 ((0, 𝑦
1
))) = 𝑑 (𝐴, 𝐵) = 1,

𝑑 (𝑏, 𝑇 ((0, 𝑦
2
))) = 𝑑 (𝐴, 𝐵) = 1,

(32)

for all 𝑎, 𝑏 ∈ 𝐴, then we have

𝑎 = (0,
𝑦
2

1

4
) , 𝑏 = (0,

𝑦
2

2

4
) . (33)

Therefore, it follows that

𝑑 (𝑎, 𝑏) = 𝑑((0,
𝑦
2

1

4
) , (0,

𝑦
2

2

4
))

=



𝑦
2

1

4
−
𝑦
2

2

4



= (

𝑦1 + 𝑦
2



4
)
𝑦1 − 𝑦

2



≤ (

𝑦1
 +

𝑦2


4
)
𝑦1 − 𝑦

2



≤ (

𝑦1
 + 1

4
)
𝑦1 − 𝑦

2



= K ((0, 𝑦
1
)) 𝑑 ((0, 𝑦

1
) , (0, 𝑦

2
)) .

(34)

This implies that the non-self-mapping 𝑇 is a generalized
proximal contraction of the first kind with respect toK. It is
easy to see thatK(𝑥) ≤ K(𝑦)whenever 𝑑(𝑔𝑥, 𝑇𝑦) = 𝑑(𝐴, 𝐵).
Moreover, since 𝑇 is continuous and 𝑔 is an isometry, all the
conditions ofTheorem 16 are satisfied, and so 𝑇 has a unique
element (0, 0) ∈ 𝐴 such that

𝑑 (𝑔 ((0, 0)) , 𝑇 ((0, 0))) = 𝑑 (𝐴, 𝐵) . (35)

Corollary 18 (see [21,Theorem 3.3]). Let (𝑋, 𝑑) be a complete
metric space and 𝐴, 𝐵 nonempty closed subsets of 𝑋 such that
𝐴
0
and 𝐵

0
are nonempty. Suppose that 𝑇 : 𝐴 → 𝐵 and 𝑔 :

𝐴 → 𝐴 are mappings satisfying the following conditions:

(a) 𝑇 is a continuous proximal contraction of the first kind;
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(b) 𝑇(𝐴
0
) ⊆ 𝐵
0
and 𝐴

0
⊆ 𝑔(𝐴

0
);

(c) 𝑔 is an isometry.

Then there exists a unique element𝑥 ∈ 𝐴 such that𝑑(𝑔𝑥, 𝑇𝑥) =
𝑑(𝐴, 𝐵).

Proof. Since a proximal contraction of the first kind is a spe-
cial case of a generalized proximal contraction of the first
kind, we can prove this result by applying Theorem 16.

In Theorem 16, if 𝑔 is the identity mapping, then it yields
the following best proximity point theorem.

Corollary 19. Let (𝑋, 𝑑) a complete metric space and 𝐴, 𝐵 be
nonempty closed subsets of 𝑋 such that 𝐴

0
and 𝐵

0
are non-

empty. Suppose that 𝑇 : 𝐴 → 𝐵 and K : 𝐴 → [0, 1) are
mappings satisfying the following conditions:

(a) 𝑇 is a continuous generalized proximal contraction of
first kind with respect toK;

(b) 𝑇(𝐴
0
) ⊆ 𝐵
0
;

(c) K(𝑥) ≤ K(𝑦), whenever 𝑑(𝑥, 𝑇𝑦) = 𝑑(𝐴, 𝐵).

Then 𝑇 has a unique best proximity point in 𝐴.

Corollary 20 (see [21, Corollary 3.4]). Let (𝑋, 𝑑) be a com-
plete metric space and 𝐴, 𝐵 nonempty closed subsets of𝑋 such
that 𝐴

0
and 𝐵

0
are nonempty. Let 𝑇 : 𝐴 → 𝐵 be a mapping

satisfying the following conditions:

(a) 𝑇 is a continuous proximal contraction of the first kind;
(b) 𝑇(𝐴

0
) ⊆ 𝐵
0
.

Then 𝑇 has a unique best proximity point in 𝐴.

Proof. Since a proximal contraction of the first kind is a spe-
cial case of a generalized proximal contraction of the first kind
with respect to K, we can prove this result by applying
Corollary 19.

Next, we prove the second main result for generalized
proximal contraction of the second kind with respect to K
mapping.

Theorem 21. Let (𝑋, 𝑑) a complete metric space and 𝐴, 𝐵 be
nonempty closed subsets of 𝑋 such that 𝐴 is approximatively
compact with respect to 𝐵. Suppose that 𝐴

0
and 𝐵

0
are non-

empty and 𝑇 : 𝐴 → 𝐵, 𝑔 : 𝐴 → 𝐴, andK : 𝐴 → [0, 1) are
mappings satisfying the following conditions:

(a) 𝑇 is a continuous generalized proximal contraction of
the second kind with respect toK;

(b) 𝑇(𝐴
0
) ⊆ 𝐵
0
and 𝐴

0
⊆ 𝑔(𝐴

0
);

(c) 𝑔 is an isometry;
(d) 𝑇 preserves isometric distance with respect to 𝑔;
(e) K(𝑥) ≤ K(𝑦), whenever 𝑑(𝑔𝑥, 𝑇𝑦) = 𝑑(𝐴, 𝐵).

Then there exists a point 𝑥 ∈ 𝐴 such that 𝑑(𝑔𝑥, 𝑇𝑥) = 𝑑(𝐴, 𝐵).
Moreover, if 𝑥∗ is another point in 𝐴 for which 𝑑(𝑔𝑥∗, 𝑇𝑥∗) =
𝑑(𝐴, 𝐵), then 𝑇𝑥 = 𝑇𝑥

∗.

Proof. As in the proof of Theorem 16, for fixed 𝑥
0
∈ 𝐴
0
, we

can define a sequence {𝑥
𝑛
} in 𝐴

0
such that

𝑑 (𝑔𝑥
𝑛
, 𝑇𝑥
𝑛−1

) = 𝑑 (𝐴, 𝐵) (36)

for all 𝑛 ∈ N. Since 𝑇 is a generalized proximal contraction of
the second kind with respect toK, it follows that

𝑑 (𝑇𝑔𝑥
𝑛+1

, 𝑇𝑔𝑥
𝑛
) ≤ K (𝑥

𝑛
) 𝑑 (𝑇𝑥

𝑛
, 𝑇𝑥
𝑛−1

) . (37)

Since 𝑇 preserves isometric distance with respect to 𝑔, we
have

𝑑 (𝑇𝑥
𝑛+1

, 𝑇𝑥
𝑛
) ≤ K (𝑥

𝑛
) 𝑑 (𝑇𝑥

𝑛
, 𝑇𝑥
𝑛−1

) (38)

for all 𝑛 ∈ N. By using (36) and (e), we have

𝑑 (𝑇𝑥
𝑛+1

, 𝑇𝑥
𝑛
) ≤ K (𝑥

𝑛
) 𝑑 (𝑇𝑥

𝑛
, 𝑇𝑥
𝑛−1

)

≤ K (𝑥
𝑛−1

) 𝑑 (𝑇𝑥
𝑛
, 𝑇𝑥
𝑛−1

)

≤ K (𝑥
𝑛−2

) 𝑑 (𝑇𝑥
𝑛
, 𝑇𝑥
𝑛−1

)

...

≤ K (𝑥
0
) 𝑑 (𝑇𝑥

𝑛
, 𝑇𝑥
𝑛−1

)

(39)

for all 𝑛 ∈ N. By repeating (39), we get

𝑑 (𝑇𝑥
𝑛+1

, 𝑇𝑥
𝑛
) ≤ (K(𝑥

0
))
𝑛
𝑑 (𝑇𝑥
1
, 𝑇𝑥
0
) (40)

for all 𝑛 ∈ N. Now, we let 𝑘 := K(𝑥
0
) ∈ [0, 1). For positive

integers𝑚 and 𝑛 with 𝑛 > 𝑚, it follows from (40) that

𝑑 (𝑇𝑥
𝑛
, 𝑇𝑥
𝑚
) ≤ 𝑑 (𝑇𝑥

𝑛
, 𝑇𝑥
𝑛−1

)

+ 𝑑 (𝑇𝑥
𝑛−1

, 𝑇𝑥
𝑛−2

) + ⋅ ⋅ ⋅ + 𝑑 (𝑇𝑥
𝑚+1

, 𝑇𝑥
𝑚
)

≤ 𝑘
𝑛−1

𝑑 (𝑇𝑥
1
, 𝑇𝑥
0
) + 𝑘
𝑛−2

𝑑 (𝑇𝑥
1
, 𝑇𝑥
0
)

+ ⋅ ⋅ ⋅ + 𝑘
𝑚
𝑑 (𝑇𝑥
1
, 𝑇𝑥
0
)

≤ (
𝑘
𝑚

1 − 𝑘
)𝑑 (𝑇𝑥

1
, 𝑇𝑥
0
) .

(41)

Since 𝑘 ∈ [0, 1), we have (𝑘𝑚/(1 − 𝑘))𝑑(𝑇𝑥
1
, 𝑇𝑥
0
) → 0 as

𝑚 → ∞, which implies that {𝑇𝑥
𝑛
} is a Cauchy sequence in𝐵.

By completeness of𝐵 ⊆ 𝑋, there exists a point𝑦 ∈ 𝐵 such that
𝑇𝑥
𝑛
→ 𝑦 as 𝑛 → ∞. By (36) and the triangle inequality, we

have

𝑑 (𝑦, 𝐴) ≤ 𝑑 (𝑦, 𝑔𝑥
𝑛
)

≤ 𝑑 (𝑦, 𝑇𝑥
𝑛−1

) + 𝑑 (𝑇𝑥
𝑛−1

, 𝑔𝑥
𝑛
)

= 𝑑 (𝑦, 𝑇𝑥
𝑛−1

) + 𝑑 (𝐴, 𝐵)

≤ 𝑑 (𝑦, 𝑇𝑥
𝑛−1

) + 𝑑 (𝑦, 𝐴) .

(42)

Letting 𝑛 → ∞ in (42), we get 𝑑(𝑦, 𝑔𝑥
𝑛
) → 𝑑(𝑦, 𝐴). Since

𝐴 is approximatively compact with respect to𝐵, it follows that



6 Abstract and Applied Analysis

{𝑔𝑥
𝑛
}has a convergence subsequence {𝑔𝑥

𝑛𝑘
}; say𝑔𝑥

𝑛𝑘
→ 𝑧 ∈

𝐴 as 𝑘 → ∞. Thus we have

𝑑 (𝑧, 𝑦) = lim
𝑘→∞

𝑑 (𝑔𝑥
𝑛𝑘
, 𝑇𝑥
𝑛𝑘−1

) = 𝑑 (𝐴, 𝐵) , (43)

which implies that 𝑧 ∈ 𝐴
0
. Since𝐴

0
⊆ 𝑔(𝐴

0
), we have 𝑧 = 𝑔𝑥

for some 𝑥 ∈ 𝐴
0
. Therefore, 𝑔𝑥

𝑛𝑘
→ 𝑔𝑥 as 𝑘 → ∞. Since 𝑔

is an isometry, we get 𝑥
𝑛𝑘

→ 𝑥 as 𝑘 → ∞. By the continuity
of 𝑇, we have 𝑇𝑥

𝑛𝑘
→ 𝑇𝑥 as 𝑘 → ∞ and then 𝑦 = 𝑇𝑥. From

(43), we can conclude that

𝑑 (𝑔𝑥, 𝑇𝑥) = 𝑑 (𝐴, 𝐵) . (44)

Next, we suppose that 𝑥∗ is another point in𝑋 such that

𝑑 (𝑔𝑥
∗
, 𝑇𝑥
∗
) = 𝑑 (𝐴, 𝐵) . (45)

Since 𝑇 is a generalized proximal contraction of the second
kind with respect toK, by the virtue of (44) and (45), we get

𝑑 (𝑇𝑔𝑥, 𝑇𝑔𝑥
∗
) ≤ K (𝑥) 𝑑 (𝑇𝑥, 𝑇𝑥

∗
) . (46)

Since 𝑇 preserves isometric distance with respect to 𝑔, it fol-
lows that

𝑑 (𝑇𝑥, 𝑇𝑥
∗
) ≤ K (𝑥) 𝑑 (𝑇𝑥, 𝑇𝑥

∗
) , (47)

which implies that 𝑇𝑥 = 𝑇𝑥
∗. This completes the proof.

Corollary 22 (see [21,Theorem 3.1]). Let (𝑋, 𝑑) be a complete
metric space and𝐴,𝐵 nonempty closed subsets of𝑋 such that𝐴
is approximatively compact with respect to 𝐵. Suppose that 𝐴

0

and 𝐵
0
are nonempty and 𝑇 : 𝐴 → 𝐵 and 𝑔 : 𝐴 → 𝐴 are

mappings satisfying the following conditions:

(a) 𝑇 is a continuous proximal contraction of the second
kind;

(b) 𝑇(𝐴
0
) ⊆ 𝐵
0
and 𝐴

0
⊆ 𝑔(𝐴

0
);

(c) 𝑔 is an isometry;
(d) 𝑇 preserves isometric distance with respect to 𝑔.

Then there exists a point 𝑥 ∈ 𝐴 such that 𝑑(𝑔𝑥, 𝑇𝑥) = 𝑑(𝐴, 𝐵).
Moreover, if 𝑥∗ is another point in 𝐴 for which 𝑑(𝑔𝑥∗, 𝑇𝑥∗) =
𝑑(𝐴, 𝐵), then 𝑇𝑥 = 𝑇𝑥

∗.

Proof. Since a proximal contraction of the second kind is a
special case of a generalized proximal contraction of the sec-
ond kindwith respect toK, we can prove this result by apply-
ingTheorem 21.

Corollary 23. Let (𝑋, 𝑑) be a complete metric space and 𝐴, 𝐵
nonempty closed subsets of 𝑋 such that 𝐴 is approximatively
compact with respect to 𝐵. Suppose that 𝐴

0
and 𝐵

0
are non-

empty and 𝑇 : 𝐴 → 𝐵 and K : 𝐴 → [0, 1) are mappings
satisfying the following conditions:

(a) 𝑇 is a continuous generalized proximal contraction of
the second kind with respect toK;

(b) 𝑇(𝐴
0
) ⊆ 𝐵
0
;

(c) K(𝑥) ≤ K(𝑦), whenever 𝑑(𝑥, 𝑇𝑦) = 𝑑(𝐴, 𝐵).

Then 𝑇 has a best proximity point. Moreover, if 𝑥∗ is another
best proximity point of 𝑇, then 𝑇𝑥 = 𝑇𝑥

∗.

Proof. We can prove this result by applying Theorem 21 with
𝑔 = 𝐼
𝐴
, where 𝐼

𝐴
is an identity mapping on 𝐴.

Corollary 24 (see [21, Corollary 3.2]). Let (𝑋, 𝑑) be a com-
plete metric space and 𝐴, 𝐵 nonempty closed subsets of𝑋 such
that 𝐴 is approximatively compact with respect to 𝐵. Suppose
that𝐴

0
and𝐵

0
are nonempty and𝑇 : 𝐴 → 𝐵 ismapping satis-

fying the following conditions:

(a) 𝑇 is a continuous generalized proximal contraction of
the second kind;

(b) 𝑇(𝐴
0
) ⊆ 𝐵
0
.

Then 𝑇 has a best proximity point. Moreover, if 𝑥∗ is another
best proximity point of 𝑇, then 𝑇𝑥 = 𝑇𝑥

∗.

Proof. Since a proximal contraction of the second kind is a
special case of a generalized proximal contraction of the sec-
ond kind, we can prove this result by applying Corollary 23.

Here, we give the last result in this work.

Theorem 25. Let (𝑋, 𝑑) be a complete metric space, 𝐴 and 𝐵

nonempty closed subsets of 𝑋, andK : 𝐴 ∪ 𝐵 → [0, 1). Sup-
pose that 𝑆 : 𝐴 → 𝐵 is a mapping satisfying

𝑑 (𝑆𝑥, 𝑆𝑦) ≤ K (𝑥) 𝑑 (𝑥, 𝑦) (48)

for all 𝑥, 𝑦 ∈ 𝐴. Then the following holds.

(A) There exists a nonexpansive mapping 𝑇 : 𝐵 → 𝐴 such
that (𝑆, 𝑇) satisfies the min-max condition whenever 𝑆
has a best proximity point.

(B) If there exists a nonexpansive mapping 𝑇 : 𝐵 → 𝐴

such that (𝑆, 𝑇) satisfies the min-max condition and
K(𝑆𝑥) ≤ K(𝑥) and K(𝑇𝑥) ≤ K(𝑥) for all 𝑥 ∈ 𝐴,
then 𝑆 has a best proximity point.

(C) For two any best proximity points 𝑧 and 𝑧
∗ of 𝑆, we

have

𝑑 (𝑧, 𝑧
∗
) ≤ (

2

1 −K (𝑧)
) 𝑑 (𝐴, 𝐵) . (49)

Proof. (A) Let 𝑆 has a best proximity point 𝑎 ∈ 𝐴. We define
a mapping 𝑇 : 𝐵 → 𝐴 by 𝑇𝑦 = 𝑎 for all 𝑦 ∈ 𝐵. Clearly, 𝑇 is
a nonexpansive mapping. It follows from the definition of 𝑇
that

𝑑 (𝑇𝑦, 𝑆𝑇𝑦) = 𝑑 (𝑎, 𝑆𝑎) = 𝑑 (𝐴, 𝐵) (50)

for all 𝑦 ∈ 𝐵. Thus we can conclude that min(𝑆𝑥, 𝑇𝑦) =

𝑑(𝐴, 𝐵) for all 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵.
Next, we show that (𝑆, 𝑇) satisfies themin-max condition.

Suppose that 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵 such that 𝑑(𝐴, 𝐵) < 𝑑(𝑥, 𝑦).
Then we have

min (𝑆𝑥, 𝑇𝑦) = 𝑑 (𝐴, 𝐵) < 𝑑 (𝑥, 𝑦) ≤ max (𝑆𝑥, 𝑇𝑦) , (51)
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which implies that the pair (𝑆, 𝑇) satisfies themin-max condi-
tion.Therefore, we canfind anonexpansivemapping𝑇 : 𝐵 →

𝐴 such that (𝑆, 𝑇) satisfies the min-max condition.
(B) Fix 𝑥

0
∈ 𝐴 and define a sequence {𝑥

𝑛
} in 𝐴 ∪ 𝐵 by

𝑥
2𝑛−1

= 𝑆𝑥
2𝑛−2

, 𝑥
2𝑛

= 𝑇𝑥
2𝑛−1 (52)

for all 𝑛 ∈ N. Since 𝑇 is nonexpansive, it follows from (48)
that

𝑑 (𝑥
2𝑛−2

, 𝑥
2𝑛
) = 𝑑 (𝑇𝑥

2𝑛−3
, 𝑇𝑥
2𝑛−1

)

≤ 𝑑 (𝑥
2𝑛−3

, 𝑥
2𝑛−1

)

= 𝑑 (𝑆𝑥
2𝑛−4

, 𝑆𝑥
2𝑛−2

)

≤ K (𝑥
2𝑛−4

) 𝑑 (𝑥
2𝑛−4

, 𝑥
2𝑛−2

)

= K (𝑇𝑥
2𝑛−5

) 𝑑 (𝑥
2𝑛−4

, 𝑥
2𝑛−2

)

≤ K (𝑥
2𝑛−5

) 𝑑 (𝑥
2𝑛−4

, 𝑥
2𝑛−2

)

= K (𝑆𝑥
2𝑛−6

) 𝑑 (𝑥
2𝑛−4

, 𝑥
2𝑛−2

)

≤ K (𝑥
2𝑛−6

) 𝑑 (𝑥
2𝑛−4

, 𝑥
2𝑛−2

)

...

≤ K (𝑥
0
) 𝑑 (𝑥
2𝑛−4

, 𝑥
2𝑛−2

)

(53)

for all 𝑛 ∈ N. By repeating the above argument, we have

𝑑 (𝑥
2𝑛−2

, 𝑥
2𝑛
) ≤ (K(𝑥

0
))
𝑛−1

𝑑 (𝑥
0
, 𝑥
2
) (54)

for all 𝑛 ∈ N, which implies that the sequence {𝑥
2𝑛
} is a

Cauchy sequence in 𝑋. A similar argument asserts that the
sequence {𝑥

2𝑛−1
} is a Cauchy sequence in𝑋. By the complete-

ness of 𝑋, we conclude that {𝑥
2𝑛
} converges to a point 𝑎 ∈ 𝐴

and {𝑥
2𝑛−1

} converges to a point 𝑏 ∈ 𝐵. Since 𝑆 is continuous,
{𝑆𝑥
2𝑛
} converges to 𝑆𝑎, which implies that {𝑥

2𝑛−1
} converges

to 𝑆𝑎. Thus 𝑆𝑎 = 𝑏.
Similarly, it is easy to check that 𝑇𝑏 = 𝑎. Therefore, we

have

𝑇𝑆𝑎 = 𝑇𝑏 = 𝑎, 𝑆𝑇𝑏 = 𝑆𝑎 = 𝑏. (55)

Now, we can conclude that

min (𝑆𝑎, 𝑇𝑏) = 𝑑 (𝑎, 𝑏) = max (𝑆𝑎, 𝑇𝑏) . (56)

By the virtue of the min-max condition of (𝑆, 𝑇), we get
𝑑(𝑎, 𝑏) ≤ 𝑑(𝐴, 𝐵). Since 𝑑(𝐴, 𝐵) ≤ 𝑑(𝑎, 𝑏), we have 𝑑(𝑎, 𝑏) =
𝑑(𝐴, 𝐵). Therefore, we have

𝑑 (𝑎, 𝑆𝑎) = 𝑑 (𝑎, 𝑏) = 𝑑 (𝐴, 𝐵) , (57)

which implies that 𝑆 has a best proximity point in 𝐴.
(C) Let 𝑧 and 𝑧

∗ be best proximity points of 𝑆. Then
𝑑(𝑧, 𝑆𝑧) = 𝑑(𝐴, 𝐵) and 𝑑(𝑧

∗
, 𝑆𝑧
∗
) = 𝑑(𝐴, 𝐵). Using the trian-

gle inequality and (48), we have

𝑑 (𝑧, 𝑧
∗
) ≤ 𝑑 (𝑧, 𝑆𝑧) + 𝑑 (𝑆𝑧, 𝑆𝑧

∗
) + 𝑑 (𝑆𝑧

∗
, 𝑧
∗
)

≤ K (𝑧) 𝑑 (𝑧, 𝑧
∗
) + 2𝑑 (𝐴, 𝐵) .

(58)

This implies that 𝑑(𝑧, 𝑧∗) ≤ (2/(1−K(𝑧)))𝑑(𝐴, 𝐵).This com-
pletes the proof.

Corollary 26 (see [21,Theorem 3.6]). Let (𝑋, 𝑑) be a complete
metric space and 𝐴 and 𝐵 nonempty closed subsets of 𝑋.
Suppose that 𝑆 : 𝐴 → 𝐵 is a contractionmapping.Then 𝑆 has a
best proximity point if and only if there exists a nonexpansive
mapping 𝑇 : 𝐵 → 𝐴 such that (𝑆, 𝑇) satisfies the min-max
condition.

Moreover, 𝑑(𝑧, 𝑧∗) ≤ (2/(1−𝛼))𝑑(𝐴, 𝐵) for some 𝛼 ∈ [0, 1)

and any two best proximity points 𝑧 and 𝑧∗ of 𝑆.

Proof. Since 𝑆 is a contraction mapping, we have 𝑑(𝑆𝑥, 𝑆𝑦) ≤
𝛼𝑑(𝑥, 𝑦) for some 𝛼 ∈ [0, 1) and all 𝑥, 𝑦 ∈ 𝐴. Now, we can
prove this result by applyingTheorem 25 with a functionK :

𝐴 ∪ 𝐵 → [0, 1) defined byK(𝑥) = 𝛼 for all 𝑥 ∈ 𝐴 ∪ 𝐵.
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