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We study Kirchhoff plates equations with viscoelastic boundary conditions in a noncylindrical domain. This work is devoted to
proving the global existence, uniqueness of solutions, and decay of the energy of solutions for Kirchhoff plates equations in a non-

cylindrical domain.

1. Introduction

Let O be an open bounded domain of R* containing the
origin and having C* boundary. Let y : [0,00[ — R be a
continuously differentiable function. Consider the family of
subdomains {Q,}o,<., of R” given by

Q=TQ), T:yeQ—x=y({)y, @

whose boundaries are denoted by T,, and let Q be the
noncylindrical domain of R? given by

Q= |J axin )
0<t<oo
with boundary
3= Ul“tx{t}. (3)
0<t<oo

In this paper, we consider the following Kirchhoff plates
equations with viscoelastic boundary conditions:

W +Au=0 in Q, x (0,00), (4)
15}
u= 8_1: =0 on I, x(0,00), (5)

t
ut [ 9= 9B ds =0 on T, x 0.0, (6)
0

t
E;—u+J’gz(t—s)e%’ﬂ,t(s)cls:0 on T}, x(0,00), (7)
v 0

u(0,x) = uy (x), u' (0,x) =u, (x) in Qy (8

where v = (v,,7,) is the unit normal at (0,t) € T directed
towards the exterior of Q. We divide the boundary into two
parts:

I,=T,,ul;, withTy, NI, =0, I,,#0. )

We are denoting by %, and %, the following differential
operators:

Buu=tu+(1-@) B, Byu= oy (1- ) B
ov oy
(10)

where B, and B, are given by

2
XyXy Vz”xlxl >

N uxlxl) >

and the constant y, 0 < u < 1/2, represents Poisson’s
ratio. From the physics point of view, system (4) describes
the small transversal vibrations of a thin plate with a moving
boundary device. The integral equations (6) and (7) describe
the memory effects which can be caused, for example, by the
interaction with another viscoelastic element. The relaxation
functions g,, g, € C'(0, co) are positive and nondecreasing.

B 2
Byu =2vvu, . —viu
By = (12 — 2

QU =V =) U x, TV1Y2 Uy,

(1)



The uniform stabilization of plates equations with linear
or nonlinear boundary feedback in cylindrical domain was
investigated by several authors; see for example [1-3] among
others. The uniform decay for viscoelastic plates with mem-
ory was studied by [4, 5] and the references therein. Santos
et al. [6] studied the asymptotic behavior of the solutions of
a nonlinear wave equation of Kirchhoff type with boundary
condition of memory type. Santos and Junior [7] investigated
the stability of solutions for Kirchhoff plate equations with
boundary memory condition. Park and Kang [8] studied
the exponential decay for the Kirchhoff plate equations with
nonlinear dissipation and boundary memory condition. They
proved that the energy decays uniformly exponentially or
algebraically with the same rate of decay as the relaxation
functions. But the existence of solutions and decay of energy
for the Kirchhoff plate equations with viscoelastic boundary
conditions in noncylindrical domain are not studied yet. In a
moving domain, the transverse deflection u(x, t) of the thin
plate which changes its configuration at each instant of time
increases its deformation and hence increases its tension.
Moreover, the horizontal movement of the boundary yields
nonlinear terms involving derivatives in the space variables.
To control these nonlinearities, we add in the boundary a
memory type. This term will play an important role in the
dissipative nature of the problem.

In [9-17], the authors considered the global existence and
the uniform decay of solution in noncylindrical domains. Dal
Passo and Ughi [15] investigated a certain class of parabolic
equations in noncylindrical domains. Benabidallah and Fer-
reira [9] proved the existence of solutions for the nonlinear
beam equation in noncylindrical domains. Santos et al. [17]
studied the global solvability and asymptotic behavior for the
nonlinear coupled system of viscoelastic waves with memory
in noncylindrical domains. Park and Kang [14] investigated
the global existence and stability for von Karman equations
with memory in noncylindrical domains. Motivated by these
results, we prove the exponential decay of the energy to
the Kirchhoft plate equations with viscoelastic boundary
conditions in noncylindrical domains.

This paper is organized as follows. In Section 2, we
recall notations and hypotheses. In Section 3, we prove the
existence and uniqueness of solutions by employing Faedo-
Galerkin’s method. In Section 4, we establish the exponential
decay rate of the solution.

2. Notations and Hypotheses

We begin this section introducing notations and some
hypotheses. Throughout this paper we use standard func-
tional spaces and denote that || - || » |1l pt A€ LP(Q) norm

and Lf(€2,) norm. We define the inner product

(u,v) = L u(x)v(x)dx, (u,v), = L u(x)v(x)dx.

t (12)
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Also, let us assume that there exists x, € R* such that

L ={xeT,:v(x) (x-xp) <0},
(13)
I, ={xel:v(x) (x—xp)>0}.

The method used to prove the result of existence and
uniqueness is based on the transformation of our problem
into another initial boundary value problem defined over a
cylindrical domain whose sections are not time dependent.
This is done using a suitable change of variable. Then we
show the existence and uniqueness for this new problem.
Our existence result on noncylindrical domains will follow
by using the inverse transformation. That is, by using the
diffeomorphism

= x
1:0—0Q (uh)eQ x{t} — (nt =<_,t>
o= 0=
(14)
and 7' : Q — Q defined by
T (1) = (1) = (Y () pt). (15)
For each function u we denote by v the function
vy t)=uet ' (yt) = u(x,t), (16)
the initial boundary value problem (4)-(8) becomes
Vi y Ny A v+ b(nt) - Vv c(pt) - VY =0

in Q x (0,00),
(17)
ov

v=—=0

3 on [, x (0,00), (18)

on I x(0,00),

(19)

vt r g (t=5)y 7 (s) B, (s)ds =0
0

t
?+J g2(t_s)y_2(s)@1v(s)ds:0 on I x(0,00),
v Jo

(20)
v(3.0)=v(y), vV (30)=v(y) nQ Q1
where
2
Amv=Y2,(a9,v),
ij=1
a; = (YIY_I)Zyi)’j (i,j=12), (22)

() =y 2 (y'y+(¥)) 3

c(y:t)=-2y"y 'y

The above method was introduced by Dal Passo and Ughi
[15] for studying a certain class of parabolic equations in non-
cylindrical domains. This idea was used in [11, 13, 14, 16, 17].
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We will use (19) and (20) to estimate the values 98, and
%, onI;. Denoting by

(g*v)(®) = JO gt—s)v(s)ds (23)

the convolution product operator and differentiating (19) and
(20) we arrive at the following Volterra equations:

B v 1, By |
=+ g *—5 = %
Y 90 Y 50
Bv R By 1 o
RO OIS
Applying Volterra’s inverse operator, we get
By 1
VAV
Biv 1 {av' o' }

7__92(0) EJF 2*5

>

(24)

{v' + ky * v'},
(25)

where the resolvent kernels of —g;/g;(0) satisfy
1y ;
-——gl, Vi=1,2. (26
9:(0) g (26)
Denoting by 7; = 1/g,(0) and 7, = 1/g,(0), we obtain
B,v
V2

1,
kit ——gl k=
gi(o)g

=1, |V +k Q) v =Ky () vy + K} % v}, (27)

!
93;1/ =0 {a_v +k, (0) E
y v ov
(28)

ov

Therefore, we use (27) and (28) instead of the boundary
conditions (19) and (20).
Let us define the bilinear form a(, -) as follows:

ov, ov
—kz(t)a—;’ + k) —}.

a(w,v) = Wy x Vix, + W, Voo x,

tu (wxlxl szxz + wxzxz Vxlxl) (29)
+2 (1 - /’l) Wy x, Vi, x,

Since [, # 0 we know that _[Q a(v, v)dy is equivalent to the
H?*(Q) norm, that is,

IV < L a(vdy < Colvlipay  (30)

where ¢, and C, are generic positive constants.
Let us denote that

t
(gov) (@) = j gt =) (v (D)~ () ds,

f @)
(gov) (¢) == L gt —5)Iv(D) - v(s)Pds.

The following lemma states an important property of the
convolution operator.

3
Lemma 1. For g,v € CY([0,00) : R) one has
’ 1 2 1
(g*v)v = - zg(t) lv ()| + 59 ov
1d t (2
2
YT gov (Jog(s)ds> [v] ]

The proof of this lemma follows by differentiating the
term gOv.

We state the following lemma which will be useful in what
follows.

Lemma 2 (see [7]). Let w and v be functions in H*(Q) n
Hg(Q). Then one has

JQ (Azw) vdy = L a(w,v)dy
v L {(%zw) v - (Bw) %} dr.

Lemma 3 (see [18]). Suppose that f € L*(Q), g € H'*(I),
and h € H**(T); then, any solution of

J- a(v,w)dy=J fwdy+J gwdrl
Q Q I}

(34)
+ J ha—wdr, Vw € H; (Q)
I, 87/
satisfies v € H*(Q) and also
Nv=f, v=@=0 on I,
Bv=h, HB,wy=g onlI.

To show the existence of solution, we will use the
following hypotheses:

y'sO, y € L (0,00), Ogigfooy(t):yo>0, (36)

Yy € W (0,00) n W' (0,00), (37)

1
> 38
\ 266, ' Md (38)

where d = diam(Q), M = meas(Q), and ¢, is a positive
imbedding constant such that [Vv]* < q [AV|?, for all v €
H}(Q).

0 < max |y (1) y (1) <

3. Existence and Regularity

In this section we will study the existence and regularity of
solutions for system (4)-(8).

The well posedness of system (17)-(21) is given by the
following theorem.



Theorem 4. Let k; € C*(R") be such that
ki, ki, k' > 0. (39)
The function vy satisfies that

'y' (t)' )fl (t) < min {1 —ﬁ} (40)

If(vg, vy) € (HY(Q)NHZ(Q))x HE(Q) satisfy the compatibility
condition

ov

B B 20) =

) Vo + 1y (0) Ny

-1,7° (0) v, =0, on T,

(41)

then there exists only one solution for system (17)-(21) satisfy-
ing
veL®(0,T:H (Q) nH (),
(42)
v e L% (0, T Hy (), v e L% (0,T; L2 ().
Proof. The main idea is to use the Galerkin method. To do
this let us denote by B the operator

Bw = A*w, D(B)=H, (Q)nH*(Q). (43)

It is well known that B is a positive self-adjoint operator
in the Hilbert space L*(Q) for which there exist sequences
{w,},en and {4}, oy of eigenfunctions and eigenvalues of B
such that the set of linear combinations of {w,}, . is dense
inDB)and A, <A, <+ <A, - coasn — oco.Letus
define

NgE

Yom =

m
1(vo,wj) w;, Vi = Z;(vl’wj)wj' (44)
=

-
Il

Note that for any (v,, v;) € D(B) x H; (Q), we have v,,, — v,
strong in D(B) and v;,, — v, strong in Hg(Q).
Let us denote by V,, the space generated by w,,w,,
.., w,,. Standard results on ordinary differential equations
guarantee that there exists only one local solution

Vo (8) = Y Gjm (O w), (45)
=1
of the approximate system
J v:r'le dy +y* J a (vm
Q Q

+ J c(yt)- Vv, w;dy + J b(y.t) Vv,w;dy
o o

wj) dy + L A() vyw;dy

— Jr [V 4Ky (0) vy = ey (6) Vg + K, 7, } w0, T

1% ov
— 4k, (0) =2 -k, (¢
+2()av 10))

' an w; .
ML _2dr =12,..., ,
+ky * 5 } avd (] m)

(46)
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Vo (%,0) = Vg V) (5,0) = vy, (47)

By standard methods for differential equations, we prove the
existence of solutions to the approximate equation (46) on
some interval [0, t,,). Then, this solution can be extended to
the whole interval [0, T'], for all T' > 0, by using the following
first estimate.

The First Estimate. Multiplying (46) by g;m(t), summing
up the product result j = 1,2,...,m, and making some
calculations using Lemma 1, we get

1d

12 -4
5& JQ 'le dy+y JQa(Vm’Vm)dy

+ le—z L (k1 (t) |vm|2 - k;Dvm) dar

1

+Tz)’72 L <k2 (

+2y7%y L @ (V> V) dy

ov,, |* v,

- ko a—’")dr]

+ le_3y' L (k1 ) |vm|2 - k;Dvm) dar

+sz_3y' L ( - k; My )dr

ov
=- JQ AV Vv,

m

a

(48)
dy - J c(y:t)- Vv, v, dy
Q
- J b(y,1) - Vv, dy
Q

_ 1
-7y L ('V:n'z — Ky (£) VoV, — Ek; (t) |Vm|2

+%ki'|:wm>dr
. | avm v,
—szzjr <|W 2() ; ov
ov
—k" dr.
o2 )

Now we will estimate terms of the right-hand side of (48).
From the hypotheses on y and Green’s formula, we get

- J A(t) vmvln dy
Q

J Za (aljayvm)v:ndy

l]_

2

= J;) Z (a,]ayv )8 vm dy

i,j=1
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2

- J-Q Z (ylyil)zyiyja;"jvmayivin dy

ij=1

d )
=% | 3019 o
- [y =0 I s
J c(y,t)-Vv:nv:ndy
Q
=- L 9y ly -V, v, dy
[ty -2
Lw y- Vv dy =2y v

Lo VYY), dy

L
< ik 'VV '>(||y.wml|§+||%“z)

<, (ol + I E):

'—.

)y Vv, v, dy

(49)
Young’s inequality yields
ki (t
J k, (t)vOmv;ndrglJ lv,,["dr+ 1”[ von|” T,
I 2 ), 2
a !
[ o avOm Pm g
I, o0v
ov, kS (t 2
slj Vm dF ()j Yo" yr.
2 o 2 ov
(50)

Replacing the above calculations in (48) and using our
assumptions k;, —k;, kl(' > 0 and (30), we have

d B _
LT oy |t (6 Vv, o

+ le-z L (k1 ) |vm|2 - k'll]vm) dar

- v, [0 v,
+T,y L( ) 3 - k,0 . dar

<G, |i||"2;|'§ + L a(v,,v,,)dy

; J (ky ) |y - K\Ow,,) dT
T,

+L( , Ko aav )dl"]

-2 -2
20 [ a2k o |
2 N 2

2
0V,

dr.
ov

1

From our choice of v,,,, and v,,,, and integrating (51) over
(0,t) with t € (0,t,,), we obtain

[l v [ oG dy= (97 19051

1 | (k@ v ki, ) dr

+1y L ( ) - ko i, )dl‘

o0v
<C3J ["v (5)“ J Vi (8), vy, (5)) dy

# | (s, ©F - (Kov,) @) dr

+f (k() - (ko )()) ]

(52)

v, (s)?

+Cy.

We observe that, from (30) and (38),
N2
'y Iyl < (vy

< (¥ ag' Md? J a(Vyp V) dy
Q

) M|,

<o | aCm)dy
2 Jo
(53)

for all t > 0. Hence, by Gronwall’s lemma we get

Il + L a (v V) dy + L (ki ) vl” = Kiw,,.) dT

o (=

where C; is a positive constant which is independent of m
and t.

ov,,
- k;DE) drl < CS’
(54)

The Second Estimate. First of all, we are going to estimate
v::l(O) in L*(Q)-norm. Letting ¢ — 0" in (46), multiplying



the result by g}in(O), and using the compatibility condition
(41), we have

v @l < c. (55)
Now, differentiating (46) with respect to ¢, we obtain
v’"w dy + J a(v ,w:.)d
L yay | a(ew)dy
—4y7% JQ a (vm,wj) dy
d d
= —Jﬂ$[A(t)vm]wjdy J dt[ c(y.t)-V ]wjdy
—J d [b(y,t) Vv, |w.dy
Q dt ma

_ le’Z J {v;'1 +k; (0) v:n + k; * v;n} w; dar
I,

2 Pk, (0) g D] gy
— + *
2V ) o R P
+ 271)’_3)” J {V;q +ky (0) v, — ky (£) Vo,

!
+k * vm} w; dr

av(,m

_ ov!
F oy Yy L {a_m (0) —ky (1) =2

! an } wJ
+k, * 5 avdl".
(56)

Multiplying (56) by g}'m(t), summing up the product result in
j, and using Lemma 1, we have

] L e RICAL
-8y L @ (Vs V) dy
+ry L (ki @ | - ki), ) dr
_— L (k2 ) aa_; T Ko aa—:” ) dr]
v 6y | a(vhr),)dy
=s(y)) [ a (v dy

+1y7y Jr (k1 ) 'v:n|2 - k;Dv:n> dr

ray (Y'Y

Abstract and Applied Analysis

o
- k.o=" |dr
2H ov )

;12

_ ov,,
+ 5y L <k2 Ol

d 1 d ! Ui
=—JQ dt[ ®) v, ]vmdy—J'QE[c(y,t)-va]vmdy
d Ui
AR

- K @[ )ar

-7y J ( | + = k”EI

2

o ) a
_ oy ( av lk"DaL——k 1) | Zm >dr
vV
f oy yj Vo 4k (0) vy — Ky (6) Vo
rl
+ki * vm} v::l dar
av0m

—k, ()

-3 aV:n
+2T2)/ }/J a—+k (0)

ke D V"“'“dr
X — ¢ — .
27 9y | ov
(57)

Now we will estimate terms of the right-hand side of (57).
From the hypotheses on y and Green’s formula, we get

d i
- J;) o [A(t)v,,] v, dy

d 2 ~
=_JQE[Zayi((Y’Y )yly]a v, ):|v;:ldy

=1

o)) 292,
(Y wyso,v )]V' dy

=- L [ i o, (27 (v - ("))

ij=1

xyly]a v ):lv dy

2

- L S (Y vy, Vid, i dy

ij=1
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j=1

+ij Ly
dt QZV

_I)Z.Vv:n -y|2dy

-y YY) v ol
—L [c(y,t) - Vv, ] vy, dy

di [2v'y 'y -V, v dy

d &'Q_‘

=}

(v -0y v,

+2y'y_1y . Vv::l] v;'q dy
"N -1
=j [2(y"y
Q
;-1 "2
+Lw Y- Vvl dy

<(y 1) (b 9l + Il

~(y) )y v, dy

[(y”y L (V) )y ] iy
= Ldi[y"y L () ]y Vo dy
+L (v + (7)) y - v dy
<G (||y-VVm||§ v i+ ”"iﬂ“i)
We know that
(k] % 7,,) (0 = L K (¢ = 5) (1 (9) = v, (1) ds

+ki () v, (t) =k, (0)v,, (t).

By using Holder’s inequality and our assumption k| < 0, we

note that

2

Jt K, (t—s)(v(t) - v(s))ds
0

I

J [Za @ Y =0 )iy, )

t t
] ' dy < <L K (s) ds) L L K. (=) (v () - v (s))dsdT
sj K, ) |k, ovdr
L,
(62)
and, hence, by applying Young’s inequality, we obtain
(58)
21’1)/_3)/' J {v:n +k, (0) v, — Ky (t) vo, + ki * vm} V::; dr
I8
<ny” | L [ ar+my |
xj (Vo + 12 @) [rou” + &, k1]
+Hel (0 [y, [*) dT
By the same argument of (63), we can obtain the similar
estimate
v ov,
21,y ’J — 4k, (0) =2
oy rl{av ' 2()61/
—k, (t)avﬂ kK« % ﬁdl“
2 oy | ov
<oy |y| J a—'” e oy Y] (64)
12 2
v ov
_m K2 (1) | =om
Xjrl<av +2()‘a
(60) 2
ov,, ov,,
Applying (58)-(64) to (57) and using the first estimate
(54) and our assumptions k;,—k,k;' > 0 and |y'ly”" <
min{1, —(k;/2)}, we have
-4 o -1\2|l,/ 2
L W [ o G- (Voo
(61)

-8y JQ a (Vm, v:n) dy

+1y° Jr (k1 ) |v:n|2 - k;EIv:n) dr

Q
SRS
=
[ 8]
|
Pan
S~
O
Q
Q
€|§<~
~—
QU
—
—




"v;'l”z + L a (v:n, v:n) dy + L a (vm, v ) dy
. L (ke @, - ko), ) dr
!

j k, (8) o[ o ) ar
! L\~ 0 27 ow

+ le_3 |y" L kf () |v0m|2d1"

+sz3|y' kz(t)‘ dI‘+C9

(65)

From (55) and our choice of v,,, and v,,,, and integrating (65)
over (0,t) with t € (0,¢,,), we obtain

[nli+ 97| a (i) dy=(77)

-8y’ JQ a (v v,,)dy

2 1 2
[, -5

+ le_z L (k1 (t) |v;n|2 - kil:lvin) dr

2 a !
fry? L (k ®) e m)dr

o
SZCSJ |:“v” (s)“ J v (s), v ())dy

+ L a (vm (s), v:n (s)) dy

N L (k@) vty @) - (K, ) () )

a !
v

ov! v/
J <k (s) | ©f (kzgﬁ) (5)> dl"] ds

T, ov ov

+ Cyp-

(66)

Using the same arguments as for (53), we get

-4

(y'yil)znvvin y"j < VT j-Q a(v,,v,)dy,  (67)

for all t > 0. Therefore, by Gronwall’s lemma, we obtain
ol + |

o V) A + L (ki @), - Ko, ) r

!

al
k > >d1"<C11,

(68)
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where C,, is a positive constant which is independent of m
and t.
According to (54) and (68), we get

{v,} is bounded in L (0, T; H; (2)), (69)
{v:n} is bounded in L® (O,T; H; (Q)) , (70)
{v::,} is bounded in L™ (O,T; I* (Q)). (71)

From (69) to (71), there exists a subsequence of {v,,},
which we still denote by {v,,}, such that

v,, — v weak star in L™ (0, T; Hy (Q)) , (72)
! ! . %) 2

v,, — v weak star in L (0, T; H, (Q)) »  (73)

vl — " weak star in L (O, T; L (Q)). (74)

Letting m — oo in (46) and using (72)-(74), we obtain
J a(v,w)dy
Q
=—y4j v"wdy—y4j A(t)yvwdy
Q Q
—y4j c(yt) - VWwdy
Q
4
- b(y,t) Vvwd
y JQ (y,t) - Vvwdy (75)

-9 L {v' +h (0) v =k () vy + K| * v}wdl“

oV ov oV,
_szz Ll {5 +ky (0) = =k, (¥) a_o

ov

, ov] ow
+k; * 3 } aydl“

for any w € Hg(Q). From Lemma 3 we obtain that v €

L0, T; H*(Q))). The uniqueness of solutions follows by
using standard arguments. O

Theorem 5. Under the hypotheses of Theorem 4, let u, €
Hg(QO) n H4(QO), u, € Hg(Qo). Then there exists a unique
solution u of the problem (4)-(8) satisfying

uel®™ (0, o0; H, (Q,) nH* (Qt)) ,
u' € L% (0,00 Hy (), (76)
" e L (0,00, L7 ().
Proof. This idea was used in [11, 13, 14, 16, 17]. To show

the existence in noncylindrical domains, we return to our
original problem in the noncylindrical domains by using the

change variable given in (14) by (y,t) = 7(x,t), (x,t) € Q.
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Let v be the solution obtained from Theorem 4 and u defined
by (16); then u belongs to the class

uel®™ (0, 00; Hé (Qt) nH' (Qt)) >
u eL® (0, 0o Hy (Qt)), (77)
u' e L® (0, 00; L’ (Qt))
Denoting by

u(x,t)=v(y,t) = (vor)(x,1), (78)

then from (15) it is easy to see that u satisfies (4)—(8) in the
sense of L™ (0, co; LZ(Qt)). If u,, u, are two solutions obtained
through the diffeomorphism 7 given by (14), then v; = v,, so
u; = u,. Thus the proof of Theorem 5 is completed. O

4. Exponential Decay

In this section, we show that the solution of system (4)-
(8) decays exponentially. First of all, we introduce the useful
lemma for a noncylindrical domain.

Lemma 6 (see [11, 12]). Let G(,-) be the smooth function
defined in Q, x [0, 00[. Then

d d
EJ' tG(x,t)dx— JQ, aG(x,t)dx

(79)
iy L G (1) (x - 7) L,

where v is the x-component of the unit normal exterior v.

By the same argument of (27) and (28), it can be written
as

Bou =1, {u' +k (O u—k (t)ug+kyxu},  (80)

ou' ou ou ou
Bu = -, {§+k2(0)$—k2(t)a—;+k; * 5}.

(81)
We use (80) and (81) instead of the boundary conditions (6)
and (7).
We will use the following lemma.

Lemma 7 (see [4]). Foreveryu € HY(Q) and forevery yu € R,
one has

J (m - Vu) A*udx
Qt

=J- a(u,u)dx+lj (m-v)a(u,u)drl (82)
Q 2 g,

)
+ L [(%u) (m-Vu) - (Bu) = (m - Vu) | dT.

9
Now, we define the energy of problem (4)-(8) by
E(t) = % ["u'"jt + J a(u,u)dx
t g,
+ 1, J (k1 () |ul* - k;Du) dar (83)

oul’ ou
1, L (k2 05| - k;D5>dr] .

We observe that E(t) is a positive function. Using Lemmas 6
and 1, we have

I -1

E' (1) < Y )2} Lu ['u’|2 +a(u,u)] (x-v)dl’

Tl 112 Tl 2 2
_h r+ r
; L [ + 224 0 L luo|?d

Ty 41 2 T "
+ 2K () L jupdr - 2 L Kloudr (g4

TZJ'
2 Jr

Ty,
+ Ekz (t) J

Ly

2

!
Ou dr

ov

ou,

2
T2
r+-—= t
d +2k2()J o

Lt Lt

ou

0y

2
ar- 2 L k;'Dg—l:dr.

Let us consider the following functional:

v(t) = j (m - Vu) u'dx. (85)

t

The following lemma plays an important role for the
construction of the Lyapunov functional.

Lemma 8. Let one suppose that the initial data (uy,u,) €
(H4(QO) n Hg(QO)) X Hg(QO) and satisfies the compatibility
condition (41). Then the solution of system (4)-(8) satisfies

1//' () < 1 J (m-v) |u’|2d1" - J 'u'|2dx
2 rl,t Qt

—j a(u,u)dx—%J (m-v)a(u,u)drl

t Ty

- (B,u) (m-Vu) — (B,u) 9 (m-Vu)|dT
ov

1-‘l ot

+ y'y_l L (m-Vu)u' (x-9)dI.

(86)
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Proof. Differentiating v and using (4) and Lemmas 6 and 7,
we get

1//' () = J (m . Vu') u'dx + J (m-vVu)u' dx

t Qt

+ y'y_l J (m-Vu)u' (x-7)dl

I-‘l,t

1
2| o= [ s

I,

- (Byu) (m-Vu) — (Bu) 9 (m-Vu)|dT
L, dv

a(u,u)dx - %J (m-v)a(u,u)dr

t r!

+ y'y_l J (m-Vu)u' (x-9)dr.
I,
(87)

Let us next examine the integrals over I, in (87). Since u =
ou/ov = 0 on I, we have

Bju=Bu=Vu=0 on [,
ou ou (88)
Uy, = 5915 Uy, = 572
and hence
Jm (%B,u) % (m-Vu)drl = J'rm Au(m - v) g%ldl"
’ ’ (89)

= J (m - v) |Aul*dT,

0.t

J (m-v)a(u,u)dl = J (m - v) |Aul*dT. (90)
Lot

Lo

Therefore, from (87)-(90) we have

w' (t) = 1 J (m-v) |u'|2dF - J 'u"zdx - J a(u,u)dx
2 Jr, Q, Q

+ % L (m - ) |Au|*dT
1
-3 LU (m-v)a(u,u)dl - LM (B,u) (m - Vu) dT

d
+ J’ru (%B,u) > (m - Vu)dl

+ y’yfl J; (m-Vu)u' (x-9)dr.

(o1

Noting that m - » < 0 on [, follows from (91), we have the
conclusion of the lemma. O

Abstract and Applied Analysis

Let us introduce the Lyapunov functional
Z(t) = NE(t) +y (1), (92)

with N > 0. Using Young’s inequality and choosing N > 0
sufficiently large, we see that

QE®) < Z () <qE (1) (93)

for q, and g, are positive constants. We will show later that the
functional Z satisfies the inequality of the following result.

Lemma 9 (see [7]). Let f be a real positive function of class
C'. If there exist positive constants py, p,, and p, such that

1) <—pof (£) + pre P (94)
then there exist positive constants p and c such that
F@<(fO)+c)e”. (95)

Finally, we will show the main result of this section.

Theorem 10. Assume that there exist positive constants 3, and
B, such that

ki (0)>0, ki (t)<-Pik; (1),
k' (t) = -B,k; (t),

If (uy,uy) € HS(QO) X LZ(QO) then there exist constants w, C >
0 such that

(96)
i=1,2.

E(t) <CE(0)e™™, Vt>O0. (97)

Proof. From (84) and Lemma 8 we have

11
I < # J'ru ['u"z +a(u,u)] (x-v)dr

N
_ TIT J /[ dr + %k? (t) J |uto | dT
Iy T,

N
+ 1N j updr - 1Y I K'cudr
2 I, 2 I,
2
N IR
2 T, ov
,N , Ouy |*
+ 2020 | |22 ar
2 I,
2 2N J uf” o
2 2 Iy ov

TZN J " ou
- = k, 0—drl
Iy, 2 . ov

+3 ], oneolfar
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_ J |u'|2dx - J a(u,u)dx
Q, Q,

1
-3 L (m-v)a(u,u)dl

1t

_J [(%u)(m.w) (B, u) ~ (- Vu)]

1Lt

+ y')fl J (m-Vu)u' (x-9)dr.

(98)

Since the boundary conditions (80) and (81) can be written as

PBru =1 {”, +ky (0 u =Ky (8 ug — Ky °u}’
u Jou
=1 | 2 by 3yt S0 i 2]
(99)

by using Young’s inequality we obtain

< L[ fufar
2e Jr,

T
+ 2L ) J lufdr

I‘l,t

I— J (B,u) (m - Vu) dT
T

T
+ 2L 1) Jr lug|2dT
+1J K, (0) |k} oudr
2€ I, ! 1

+ € J |m - Vul*dT,
2 Jr

Lt

(100)
j (B,u) 2 (m-Vuydr| < 2 J ou' 2dr
I ov Iy aV
T2 2 au 2
k5 (t — | dr
N 2¢ 2 ® Jru
22 Jug |*
k5 (t — | dr
" 2 2 )L,r ov

+2J k ) [K, |u—dr
r

2€

ej
+_
2 L,

2

2 (m - Vu)| dr,

0y

(101)

1

where € is a positive constant. Since the bilinear form a(u, u) is
strictly coercive, using the trace theory and the factm-v > §,
onT},, we get

2
J |m - Vu|*dT + J 2 (m-Vu)| dT'
Ty r, [0V
(102)
< /\OJ a(u,u)dx + b J (m-v)a(u,u)dl,
Q 80 Ly

where A, is a constant depending on Q) and . Substituting
inequalities (100)-(102) into (98) we have

y'y"lN 2
7)< —J [|u" +a(u,u)] (x-7)dl
2 rl,t
_oN J ' dr + N2 g J || dT
2 I‘l,t 2 rl,t

Tlﬁl nhN (t)J |u|2dr+TlﬁTzNj K udr

Lt I‘l,t

TZNJ ou'
- —| dr
2 I, oV
ﬂ]g (t) J % Zdr
2 ? 1oy
AN J ou ?
5 k, (t) NE dr

T T 2
+ 2L (t)J juldr + 2L (t)J lug|2dT

Lt I‘l,t

ou' g

dr
ov

+%L k ) |K, ||:|ud1"+—J

T, 8u02
—=I(t —| dr’
+2€ 2().[

Iy

u2 T
9u\ ar —Zkth
+2€2()

I

T, ;1 ou
v 22 L K 0) 5| o5

+ y’y_l L (m-Vu)u' (x-7)dr.
’ (103)
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First, choose € > 0 sufficiently small such that

l—d—°>0, l—%>0. (104)

2 2 29,

Then, choosing N large enough, we have
Z'(t) < —E (t) + K> (1) E(0), (105)

where ¢,, ¢; > 0and K(t) = k(t) + k,(t). From (93), (96), and
(105), we obtain

71 < —iff(t) +¢GE(0) e 2P for some ¢ > 0.
4
(106)

By Lemma 9, there exist positive constants ¢; and ¢ such that

Z(t) < (L) +cE(0)e ™, Vvt=0. (107)

Using (93), we conclude that
E(t)<CE(0)e™™, Vt>0 (108)
for some positive constants C and w. O

Acknowledgment

This research was supported by the Basic Science Research
Program through the National Research Foundation of Korea
(NRF) funded by the Ministry of Education, Science and
Technology (2012R1A1A3011630).

References

[1] V. Komornik, “On the nonlinear boundary stabilization of
Kirchhoft plates,” Nonlinear Differential Equations and Applica-
tions, vol. 1, no. 4, pp- 323-337,1994.

[2] J. E. Lagnese, Boundary Stabilization of Thin Plates, vol. 10, Soci-
ety for Industrial and Applied Mathematics (SIAM), Philadel-
phia, Pa, USA, 1989.

[3] 1. Lasiecka, “Exponential decay rates for the solutions of Euler-
Bernoulli equations with boundary dissipation occurring in the

moments only;” Journal of Differential Equations, vol. 95, no. 1,
pp. 169-182, 1992.

[4] J. E. Lagnese, “Asymptotic energy estimates for Kirchhoff plates
subject to weak viscoelastic damping,” in Control and Estima-
tion of Distributed Parameter Systems, vol. 91 of International
Series of Numerical Mathematics, pp. 211-236, Birkhauser, Basel,
Switzerland, 1989.

[5] J. E. Mufioz Rivera, E. C. Lapa, and R. Barreto, “Decay rates for
viscoelastic plates with memory;” Journal of Elasticity, vol. 44,
no. 1, pp. 61-87, 1996.

[6] M.L.Santos, J. Ferreira, D. C. Pereira, and C. A. Raposo, “Global
existence and stability for wave equation of Kirchhoff type with
memory condition at the boundary,” Nonlinear Analysis. Theory,
Methods & Applications, vol. 54, no. 5, pp. 959-976, 2003.

[7] M. L. Santos and F. Junior, “A boundary condition with memory
for Kirchhoff plates equations,” Applied Mathematics and Com-
putation, vol. 148, no. 2, pp- 475-496, 2004.

Abstract and Applied Analysis

[8] J. Y. Park and J. R. Kang, “A boundary condition with memory
for the Kirchhoff plate equations with non-linear dissipation,”
Mathematical Methods in the Applied Sciences, vol. 29, no. 3, pp.
267-280, 2006.

[9] R. Benabidallah and J. Ferreira, “Asymptotic behaviour for the

nonlinear beam equation in noncylindrical domains,” Commu-
nications in Applied Analysis, vol. 6, no. 2, pp. 219-234, 2002.

[10] M. M. Cavalcanti, V. N. Domingos Cavalcanti, J. Ferreira, and R.
Benabidallah, “On global solvability and asymptotic behaviour
of a mixed problem for a nonlinear degenerate Kirchhoff
model in moving domains,” Bulletin of the Belgian Mathematical
Society, vol. 10, no. 2, pp- 179-196, 2003.

[11] J. Ferreira, M. L. Santos, and M. P. Matos, “Stability for the beam
equation with memory in non-cylindrical domains,” Mathemat-
ical Methods in the Applied Sciences, vol. 27, no. 13, pp. 1493-
1506, 2004.

[12] J. Ferreira, M. L. Santos, M. P. Matos, and W. D. Bastos, “Expo-
nential decay for Kirchhoff wave equation with nonlocal condi-
tion in a noncylindrical domain,” Mathematical and Computer
Modelling, vol. 39, no. 11-12, pp. 1285-1295, 2004.

[13] T. G. HaandJ. Y. Park, “Global existence and uniform decay of
a damped Klein-Gordon equation in a noncylindrical domain,”
Nonlinear Analysis. Theory, Methods & Applications, vol. 74, no.
2, pp. 577-584, 2011.

[14] J.Y. ParkandJ. R. Kang, “Global existence and stability for a von
Karman equations with memory in noncylindrical domains,”
Journal of Mathematical Physics, vol. 50, no. 11, Article ID 112701,
13 pages, 2009.

[15] R. Dal Passo and M. Ughi, “Probléme de Dirichlet pour une
classe d’équations paraboliques non linéaires dégénérées dans
des ouverts non cylindriques,” Comptes Rendus des Séances de
IAcadémie des Sciences, vol. 308, no. 19, pp. 555-558, 1989.

[16] M. L. Santos, J. Ferreira, and C. A. Raposo, “Existence and uni-
form decay for a nonlinear beam equation with nonlinearity of
Kirchhoft type in domains with moving boundary,” Abstract and
Applied Analysis, no. 8, pp. 901-919, 2005.

[17] M. L. Santos, M. P. C. Rocha, and P. L. O. Braga, “Global solv-
ability and asymptotic behavior for a nonlinear coupled system
of viscoelastic waves with memory in a noncylindrical domain,”
Journal of Mathematical Analysis and Applications, vol. 325, no.
2, pp- 1077-1094, 2007.

[18] J. L. Lions and E. Magenes, Non-Homogeneous Boundary Value
Problems and Applications. Vol. I, Springer, New York, NY, USA,
1972.



Advances in Advances in Journal of Journal of
Operations Research lied Mathematics ability and Statistics

il
PR
S Rt
£ 2 §

\ ‘

The Scientific
\{\(orld Journal

International Journal of
Differential Equations

Hindawi

Submit your manuscripts at
http://www.hindawi.com

International Journal of

Combinatorics

Advances in

Mathematical Physics

%

Journal of : Mathematical Problems Abstract and Discrete Dynamics in
Mathematics in Engineering Applied Analysis Nature and Society

Journal of

Complex Analysis

International
Journal of
Mathematics and
Mathematical
Sciences

Journal of
'

al of Journal of

Function Spaces Stochastic Analysis Optimization

Journal of International Jo




