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This paper studies the construction of the exact solution for parabolic coupled systems of the type 𝑢
𝑡
= 𝐴𝑢
𝑥𝑥
,𝐴
1
𝑢(0, 𝑡)+𝐵

1
𝑢
𝑥
(0, 𝑡) =

0, 𝐴
2
𝑢(𝑙, 𝑡) + 𝐵

2
𝑢
𝑥
(𝑙, 𝑡) = 0, 0 < 𝑥 < 1, 𝑡 > 0, and 𝑢(𝑥, 0) = 𝑓(𝑥), where 𝐴

1
, 𝐴
2
, 𝐵
1
, and 𝐵

2
are arbitrary matrices for which the

block matrix ( 𝐴1 𝐵1
𝐴2 𝐵2

) is nonsingular, and 𝐴 is a positive stable matrix.

1. Introduction

Coupled partial differential systems with coupled boundary-
value conditions are frequent in quantum mechanical scat-
tering problems [1–3], chemical physics [4–6], thermoelasto-
plastic modelling [7], coupled diffusion problems [8–10], and
other fields. In this paper, we consider systems of the type

𝑢
𝑡
(𝑥, 𝑡) − 𝐴𝑢

𝑥𝑥
(𝑥, 𝑡) = 0, 0 < 𝑥 < 1, 𝑡 > 0, (1)

𝐴
1
𝑢 (0, 𝑡) + 𝐵

1
𝑢
𝑥
(0, 𝑡) = 0, 𝑡 > 0, (2)

𝐴
2
𝑢 (1, 𝑡) + 𝐵

2
𝑢
𝑥
(1, 𝑡) = 0, 𝑡 > 0, (3)

𝑢 (𝑥, 0) = 𝑓 (𝑥) , 0 ≤ 𝑥 ≤ 1, (4)

where the unknown 𝑢 = (𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑚
)
𝑇 and the initial

condition 𝑓 = (𝑓
1
, 𝑓
2
, . . . , 𝑓

𝑚
)
𝑇 are 𝑚-dimensional vectors,

𝐴
𝑖
,𝐵
𝑖
, 𝑖 = 1, 2, are𝑚×𝑚 complexmatrices, elements ofC𝑚×𝑚,

and 𝐴 is a matrix which satisfies the condition

Re (𝑧) > 0 for all eigenvalues 𝑧 of 𝐴, (5)

and we say that 𝐴 is a positive stable matrix (where Re(𝑧)
denotes the real part of 𝑧 ∈ C). We assume that the block
matrix

(

𝐴
1
𝐵
1

𝐴
2
𝐵
2

) is regular (6)

and also that

the matrix pencil 𝐴
1
+ 𝜌𝐵
1
is regular. (7)

Condition (7) is well known from the literature of singular
systems of differential equations, and it involves the existence
of some 𝜌

0
∈ C such that matrix 𝐴

1
+ 𝜌
0
𝐵
1
is invertible [11].

Problem (1)–(4) with the less restrictive condition that (7)
was solved in [12], but not with all of its blocks 𝐴

1
, 𝐴
2
, 𝐵
1
,

𝐵
2
, is singular (in particular 𝐴

1
= 𝐼). Mixed problems of the

previously mentioned type, but with the Dirichlet conditions
𝑢(0, 𝑡) = 0, 𝑢(1, 𝑡) = 0 instead of (2) and (3), have been
treated in [13, 14].

Throughout this paper, and as usual, matrix 𝐼 denotes the
identity matrix. The set of all the eigenvalues of a matrix 𝐶 in
C𝑚×𝑚 is denoted by 𝜎(𝐶), and its 2-norm ‖𝐶‖ is defined by
[15, page 56]

‖𝐶‖ = sup
𝑥 ̸= 0

‖𝐶𝑥‖

‖𝑥‖

, (8)
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where for vector 𝑦 ∈ C𝑚, the Euclidean norm of 𝑦 is ‖𝑦‖. By
[15, page 556], it follows that






𝑒
𝐴𝑡



≤ 𝑒
𝑡𝛼(𝐴)

𝑚−1

∑

𝑘=0





√𝑚𝐴






𝑘

𝑡
𝑘

𝑘!

, 𝑡 ≥ 0, (9)

where 𝛼(𝐴) = max{Re(𝑤); 𝑤 ∈ 𝜎(𝐴)}. We say that a subspace
𝐸 of C𝑚 is invariant by the matrix 𝐴 ∈ C𝑚×𝑚, if 𝐴(𝐸) ⊂

𝐸. If 𝐵 is a matrix in C𝑛×𝑚, we denote by 𝐵† its Moore-
Penrose pseudoinverse. A collection of examples, properties,
and applications of this concept may be found in [11, 16],
and 𝐵† can be efficiently computed with the MATLAB and
Mathematica computer algebra systems.

2. Preliminaries and Notation

In [17], eigenfunctions of problem (1)–(3) were constructed
assuming other additional conditions besides (6) and (7). We
recall in this section the notation and results needed. Let 𝐴

1

and 𝐵
1
be matrices defined by

𝐴
1
= (𝐴
1
+ 𝜌
0
𝐵
1
)
−1

𝐴
1
, 𝐵

1
= (𝐴
1
+ 𝜌
0
𝐵
1
)
−1

𝐵
1
, (10)

fulfilling the relation: 𝐴
1
+ 𝜌
0
𝐵
1
= 𝐼. Under hypothesis (6),

matrix 𝐵
2
− (𝐴
2
+ 𝜌
0
𝐵
2
)𝐵
1
is regular; see [17, page 431], and

let 𝐴
2
and 𝐵

2
be the matrices defined by

𝐴
2
= [𝐵
2
− (𝐴
2
+ 𝜌
0
𝐵
2
) 𝐵
1
]

−1

𝐴
2
,

𝐵
2
= [𝐵
2
− (𝐴
2
+ 𝜌
0
𝐵
2
) 𝐵
1
]

−1

𝐵
2
,

(11)

so that they satisfy the relationships

𝐵
2
− (𝐴
2
+ 𝜌
0
𝐵
2
) 𝐵
1
= 𝐼, 𝐵

2
𝐴
1
− 𝐴
2
𝐵
1
= 𝐼. (12)

Assuming that the following condition

exists 𝑏
1
∈ 𝜎 (𝐵

1
) − {0} , 𝑏

2
∈ 𝜎 (𝐵

2
) ,

V ∈ C
𝑚
− {0} ,

such that (𝐵
1
− 𝑏
1
𝐼) V = (𝐵

2
− 𝑏
2
𝐼) V = 0,

(13)

and that values 𝑏
1
, 𝑏
2
of condition (13) satisfy

𝑏
1
𝑏
2
∈ R, where 𝑏

1
∈ R or 2𝑏

1
𝑏
2
(Re (𝑏−1

1
) − 𝜌
0
) = 1

if 𝑏
1
∉ R,

(14)

we can define the function

𝛼 (𝜌
0
, 𝑏
1
, 𝑏
2
, 𝜆) =

(1 − 𝑏
2
+ 𝜌
0
𝑏
1
𝑏
2
) (1 − 𝜌

0
𝑏
1
)

𝑏
1

− 𝑏
1
𝑏
2
𝜆
2
,

𝜆 > 0.

(15)
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Figure 1: Graphical representation of 𝑦 = 𝜆 cot(𝜆) and determina-
tion of the eigenvalues 𝜆

𝑛
.

Note that under hypothesis (14) we have guaranteed the
existence of the solutions for

𝜆 cot (𝜆) =
(1 − 𝑏

2
+ 𝜌
0
𝑏
1
𝑏
2
) (1 − 𝜌

0
𝑏
1
)

𝑏
1

− 𝑏
1
𝑏
2
𝜆
2
. (16)

Equation (16) has a unique solution 𝜆
𝑘
in each interval

(𝑘𝜋, (𝑘 + 1)𝜋) for 𝑘 ≥ 1, as seen in Figure 1. Also, it is
straightforward to prove the following lemma.

Lemma 1. Under hypothesis (14), the roots 𝜆
𝑘
of (16) satisfy

lim
𝑛→∞

𝜆
𝑛
= +∞. Also, if 𝑏

1
𝑏
2
̸= 0, then

lim
𝑛→∞

sin (𝜆
𝑛
) = 0, lim

𝑛→∞





cos (𝜆

𝑛
)




= 1. (17)

Otherwise, if 𝑏
1
𝑏
2
= 0, then

lim
𝑛→∞





sin (𝜆

𝑛
)




= 1, lim

𝑛→∞
cos (𝜆

𝑛
) = 0. (18)

However, in all cases it is

lim
𝑛→∞

(𝜆
𝑛+1

− 𝜆
𝑛
) = 𝜋. (19)

Proof. Function 𝑓(𝜆) = 𝜆 cot(𝜆) has vertical asymptotes at
the points 𝜆 = 𝑘𝜋, 𝑘 ∈ N, and 𝑓(𝜆) has zeros at the points
𝜆 = (𝜋/2) + 𝑘𝜋, 𝑘 ∈ N. Thus, as we have stated, the real
coefficient function ((1 − 𝑏

2
+ 𝜌
0
𝑏
1
𝑏
2
)(1 − 𝜌

0
𝑏
1
)/𝑏
1
) − 𝑏
1
𝑏
2
𝜆
2

intersects the graph of the function 𝑓(𝜆) in each interval
(𝑘𝜋, (𝑘 + 1)𝜋), where 𝜆

𝑘
∈ (𝑘𝜋, (𝑘 + 1)𝜋) is the point

of intersection. Thus, the sequence {𝜆
𝑘
}
𝑘≥1

is monotonicaly
increasing with lim

𝑘→∞
𝜆
𝑘
= ∞. We have to consider two

possibilities.

(i) 𝑏
1
𝑏
2
> 0. Function ((1 − 𝑏

2
+ 𝜌
0
𝑏
1
𝑏
2
)(1 − 𝜌

0
𝑏
1
)/𝑏
1
) −

𝑏
1
𝑏
2
𝜆
2 is therefore decreasing, and as seen in Figure 1,

for large enough 𝑘, then 𝜆
𝑘
∈ ((𝜋/2) + 𝑘𝜋, (𝑘 + 1)𝜋).

(ii) 𝑏
1
𝑏
2
< 0. Function ((1 − 𝑏

2
+ 𝜌
0
𝑏
1
𝑏
2
)(1 − 𝜌

0
𝑏
1
)/𝑏
1
) −

𝑏
1
𝑏
2
𝜆
2 is therefore increasing, and as seen in Figure 1,

for large enough 𝑘, then 𝜆
𝑘
∈ (𝑘𝜋, (𝜋/2) + 𝑘𝜋).

Thus, observe that if 𝑏
1
𝑏
2
̸= 0, then (𝜋/2) < 𝜆

𝑘+1
− 𝜆
𝑘
<

(3𝜋/2) for large sufficiently 𝑘. For𝜆
𝑘
, reemploying in (16), one

gets

𝜆
𝑘
cot (𝜆

𝑘
) =

(1 − 𝑏
2
+ 𝜌
0
𝑏
1
𝑏
2
) (1 − 𝜌

0
𝑏
1
)

𝑏
1

− 𝑏
1
𝑏
2
𝜆
2

𝑘
, (20)
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dividing by 𝜆2
𝑘
and taking limits where 𝑘 → ∞:

lim
𝑘→∞

cot (𝜆
𝑘
)

𝜆
𝑘

= − 𝑏
1
𝑏
2
̸= 0. (21)

This demonstrates that sequences {𝜆
𝑘
}
𝑘≥1

and {cot(𝜆
𝑘
)}
𝑘≥1

are
infinite equivalents and

lim
𝑘→∞

cot (𝜆
𝑘
) = ∞, (22)

where lim
𝑘→∞

tan(𝜆
𝑘
) = 0. Moreover, as {cos(𝜆

𝑘
)}
𝑘≥1

is bounded, one gets that lim
𝑘→∞

sin(𝜆
𝑘
) = 0 and

lim
𝑘→∞

| cos(𝜆
𝑘
)| = 1. Taking into account that

tan (𝜆
𝑘+1

− 𝜆
𝑘
) =

tan (𝜆
𝑘+1
) − tan (𝜆

𝑘
)

1 + tan (𝜆
𝑘+1
) tan (𝜆

𝑘
)

, (23)

considering limits where 𝑘 → ∞, one gets
lim
𝑘→∞

tan(𝜆
𝑘+1

− 𝜆
𝑘
) = 0, and with (𝜋/2) < 𝜆

𝑘+1
− 𝜆
𝑘
<

(3𝜋/2), then lim
𝑘→∞

(𝜆
𝑘+1

− 𝜆
𝑘
) = 𝜋.

If 𝑏
1
𝑏
2
= 0, then one obtains two possibilities.

(i) If ((1 − 𝑏
2
+ 𝜌
0
𝑏
1
𝑏
2
)(1 − 𝜌

0
𝑏
1
)/𝑏
1
) > 0, as one can see

in Figure 1, for large enough 𝑘, 𝜆
𝑘
∈ (𝑘𝜋, (𝜋/2) + 𝑘𝜋).

(ii) If ((1− 𝑏
2
+𝜌
0
𝑏
1
𝑏
2
)(1−𝜌

0
𝑏
1
)/𝑏
1
) < 0, as one can see in

Figure 1, for large enough 𝑘,𝜆
𝑘
∈ ((𝜋/2)+𝑘𝜋, (𝑘+1)𝜋).

Thus, observe that if 𝑏
1
𝑏
2
= 0, then also (𝜋/2) < 𝜆

𝑘+1
−

𝜆
𝑘
< (3𝜋/2) for 𝑘 sufficiently large. For 𝜆

𝑘
, reemploying in

(16), one gets

𝜆
𝑘
cot (𝜆

𝑘
) =

(1 − 𝑏
2
+ 𝜌
0
𝑏
1
𝑏
2
) (1 − 𝜌

0
𝑏
1
)

𝑏
1

, (24)

dividing by 𝜆
𝑘
and taking limits where 𝑘 → ∞, one gets

that lim
𝑘→∞

cot(𝜆
𝑘
) = 0, and as the sequence {sin(𝜆

𝑘
)}
𝑘≥1

is bounded, one gets that lim
𝑘→∞

cos(𝜆
𝑘
) = 0 and

lim
𝑘→∞

| sin(𝜆
𝑘
)| = 1. Moreover, one gets that

cot (𝜆
𝑘+1

− 𝜆
𝑘
) =

cot (𝜆
𝑘+1
) cot (𝜆

𝑘
) + 1

cot (𝜆
𝑘
) − cot (𝜆

𝑘+1
)

, (25)

considering limits where 𝑘 → ∞, one gets

lim
𝑘→∞

cot (𝜆
𝑘+1

− 𝜆
𝑘
) = ∞, (26)

as the sequence {cos(𝜆
𝑘+1

− 𝜆
𝑘
)}
𝑘≥1

is bounded, we have that
lim
𝑘→∞

sin(𝜆
𝑘+1

− 𝜆
𝑘
) = 0, and with (𝜋/2) < 𝜆

𝑘+1
− 𝜆
𝑘
<

(3𝜋/2), one gets that lim
𝑘→∞

(𝜆
𝑘+1

− 𝜆
𝑘
) = 𝜋.

If 𝑏
1
𝑏
2
= 0 and ((1 − 𝑏

2
+ 𝜌
0
𝑏
1
𝑏
2
)(1 − 𝜌

0
𝑏
1
)/𝑏
1
) = 0, (16)

reduces to 𝜆 cot(𝜆) = 0, whose roots are 𝜆
𝑘
= (𝜋/2) + 𝑘𝜋,

𝑘 ∈ N, and trivially 𝜆
𝑘+1

−𝜆
𝑘
= 𝜋.Then lim

𝑘→∞
(𝜆
𝑘+1

−𝜆
𝑘
) =

𝜋.

Under hypothesis 𝛼(𝜌
0
, 𝑏
1
, 𝑏
2
, 𝜆
0
) < 1 there is a root 𝜆

0
∈

(0, 𝜋), and we can define the set of eigenvalues of the problem
(1)–(3) as

F = {𝜆
𝑘
∈ (𝑘𝜋, (𝑘 + 1) 𝜋) ;

𝜆
𝑘
cot (𝜆

𝑘
) = 𝛼 (𝜌

0
, 𝑏
1
, 𝑏
2
, 𝜆
𝑘
) , 𝑘 ≥ 1} ∪F

0
,

(27)

where

F
0
= {

0, if 𝛼 (𝜌
0
, 𝑏
1
, 𝑏
2
, 𝜆
0
) ≥ 1

𝜆
0
∈ (0, 𝜋) , if 𝛼 (𝜌

0
, 𝑏
1
, 𝑏
2
, 𝜆
0
) < 1.

(28)

Thus, by [17, page 433] a set of solutions of problem (1) is given
by

𝑢 (𝑥, 𝑡, 𝜆
𝑘
)

= 𝑒
−𝜆
𝑘
𝐴𝑡
{sin (𝜆

𝑘
𝑥)𝐴
1
− 𝜆
𝑘
cos (𝜆

𝑘
𝑥) 𝐵
1
} 𝐶 (𝜆

𝑘
) ,

𝜆
𝑘
∈ F,

(29)

where 𝐶(𝜆
𝑘
) satisfies

𝐺 (𝜌
0
, 𝑏
1
, 𝑏
2
, 𝜆
𝑘
) 𝐶 (𝜆

𝑘
) = 0. (30)

Observe that if 𝑝 is the degree of minimal polynomial of 𝐴,
the matrix 𝐺(𝜌

0
, 𝑏
1
, 𝑏
2
, 𝜆
𝑘
) is defined by

𝐺 (𝜌
0
, 𝑏
1
, 𝑏
2
, 𝜆
𝑘
)

=

(

(

(

(

(

(

(

(

𝐵
1
𝐴 − 𝐴𝐵

1

...
𝐵
1
𝐴
𝑝−1

− 𝐴
𝑝−1

𝐵
1

(𝐴
2
𝐴
1
+ 𝜆
2

𝑘
𝐵
2
𝐵
1
) + 𝛼 (𝜌

0
, 𝑏
1
, 𝑏
2
, 𝜆
𝑘
) 𝐼

{(𝐴
2
𝐴
1
+ 𝜆
2

𝑘
𝐵
2
𝐵
1
) + 𝛼 (𝜌

0
, 𝑏
1
, 𝑏
2
, 𝜆
𝑘
) 𝐼}𝐴

...
{(𝐴
2
𝐴
1
+ 𝜆
2

𝑘
𝐵
2
𝐵
1
) + 𝛼 (𝜌

0
, 𝑏
1
, 𝑏
2
, 𝜆
𝑘
) 𝐼}𝐴

𝑝−1

)

)

)

)

)

)

)

)

.

(31)

In order to ensure that 𝐶(𝜆
𝑘
) ̸= 0 satisfies (30) we have

rank𝐺 (𝜌
0
, 𝑏
1
, 𝑏
2
, 𝜆
𝑘
) < 𝑚, (32)

and under condition (32), the solution of (30) is given by

𝐶 (𝜆
𝑘
) = (𝐼 − 𝐺(𝜌

0
, 𝑏
1
, 𝑏
2
, 𝜆
𝑘
)
†

𝐺 (𝜌
0
, 𝑏
1
, 𝑏
2
, 𝜆
𝑘
)) 𝑆, 𝑆 ∈ C

𝑚
.

(33)

The eigenfunctions associated to the problem (1) are then
given by

𝑢 (𝑥, 𝑡, 𝜆
𝑘
)

= 𝑒
−𝜆
𝑘
𝐴𝑡
{sin (𝜆

𝑘
𝑥)𝐴
1
− 𝜆
𝑘
cos (𝜆

𝑘
𝑥) 𝐵
1
} 𝐶 (𝜆

𝑘
) ,

𝜆
𝑘
∈ F.

(34)

Also 𝜆 = 0 is an eigenvalue of problem (1), if

1 ∈ 𝜎 (−𝐴
2
𝐴
1
) . (35)

Under hypothesis (35), if 𝐺(𝜌
0
, 0) = 𝐴

2
𝐴
1
+ 𝐼, then, if we

denote by

𝐶 (0) = (𝐼 − 𝐺(𝜌
0
, 0)
†

𝐺 (𝜌
0
, 0)) 𝑆, 𝑆 ∈ C

𝑚
, (36)



4 Abstract and Applied Analysis

one gets that function

𝑢 (𝑥, 0) = (𝑥𝐴
1
− 𝐵
1
) 𝐶 (0) (37)

is an eigenfunction of problem (1) associated to eigenvalue
𝜆 = 0.

All these results are summarized in Theorem 2.1 of [17,
page 434].Our goal is to find the exact solution of the problem
(1)–(4). We provide conditions for the function 𝑓(𝑥) and
the matrix coefficients in order to ensure the existence of
a series solution of the problem. The paper is organized as
follows. In Section 3 a series solution for the problem is
presented. In Section 4weproceedwith an algorithmand give
an illustrative example.

3. A Series Solution

By the superposition principle, a possible candidate to the
series solution of problem (1)–(4) is given by

𝑢 (𝑥, 𝑡) =

{
{
{

{
{
{

{

𝑢 (𝑥, 0) + ∑

𝜆
𝑛
∈F

𝑢 (𝑥, 𝑡, 𝜆
𝑘
) , 0 ∈ F,

∑

𝜆
𝑛
∈F

𝑢 (𝑥, 𝑡, 𝜆
𝑘
) , 0 ∉ F,

(38)

where 𝑢(𝑥, 𝑡, 𝜆
𝑘
) and 𝑢(𝑥, 0) are defined by (34) and (37),

respectively, for suitable vectors 𝐶(𝜆
𝑛
) and 𝐶(0).

Assuming that series (38) and the corresponding deriva-
tives 𝑢

𝑥
(𝑥, 𝑡), 𝑢

𝑥𝑥
(𝑥, 𝑡), and 𝑢

𝑡
(𝑥, 𝑡) are convergent (we will

demonstrate this later), (38) will be a solution of (1)–(3). Now,
we need to determine vectors 𝐶(𝜆) and 𝐶(0) so that (38)
satisfies (4).

Note that, taking V to satisfy (13), from (12) one gets

𝐴
2
V = (

𝑏
2
− 𝜌
0
𝑏
1
𝑏
2

𝑏
1

) V, 𝐴
1
V = (1 − 𝜌

0
𝑏
1
) V. (39)

Under condition (39), we will consider the scalar Sturm-
Liouville problem:

𝑋

(𝑥) + 𝜆

2
𝑋(𝑥) = 0,

(1 − 𝜌
0
𝑏
1
)𝑋 (0) + 𝑏

1
𝑋

(0) = 0,

− (

1 − 𝑏
2
+ 𝜌
0
𝑏
1
𝑏
2

𝑏
1

)𝑋 (1) + 𝑏
2
𝑋

(1) = 0,

(40)

which provides a family of eigenvaluesF given in (27).Then,
the associated eigenfunctions are

𝑋
𝜆
𝑛
(𝑥) = (1 − 𝜌

0
𝑏
1
) sin (𝜆

𝑛
𝑥) − 𝑏

1
𝜆
𝑛
cos (𝜆

𝑛
𝑥) , 𝜆

𝑛
> 0,

𝑋
0
(𝑥) = (1 − 𝜌

0
𝑏
1
) 𝑥 − 𝑏

1
, if 𝜆

0
= 0.

(41)

By the theorem of convergence of the Sturm-Liouville for
functional series [18, chapter 11], with the initial condition

𝑓(𝑥) = (𝑓
1
(𝑥), . . . , 𝑓

𝑚
(𝑥))
𝑡 given in (4) satisfying the

following properties:

𝑓 ∈ C
2
([0, 1]) ,

(1 − 𝜌
0
𝑏
1
) 𝑓 (0) + 𝑏

1
𝑓

(0) = 0,

− (

1 − 𝑏
2
+ 𝜌
0
𝑏
1
𝑏
2

𝑏
1

)𝑓 (1) + 𝑏
2
𝑓

(1) = 0,

(42)

each component 𝑓
𝑖
of 𝑓, for 1 ≤ 𝑖 ≤ 𝑚, has a series expansion

which converges absolutely and uniformly on the interval
[0, 1]; namely,

𝑓
𝑖
(𝑥) = 𝛼 ((1 − 𝜌

0
𝑏
1
) 𝑥 − 𝑏

1
) 𝑒
0𝑖

+ ∑

𝜆
𝑛
∈F

((1 − 𝜌
0
𝑏
1
) sin (𝜆

𝑛
𝑥) − 𝑏

1
𝜆
𝑛
cos (𝜆

𝑛
𝑥)) 𝑒
𝜆
𝑛
𝑖
,

(43)

where

𝛼 =

{
{
{
{

{
{
{
{

{

1 if
(1 − 𝑏

2
+ 𝜌
0
𝑏
1
𝑏
2
) (1 − 𝜌

0
𝑏
1
)

𝑏
1

= 1

0 if
(1 − 𝑏

2
+ 𝜌
0
𝑏
1
𝑏
2
) (1 − 𝜌

0
𝑏
1
)

𝑏
1

̸= 1,

𝑒
0𝑖
= 𝑏
1

∫

1

0
((1 − 𝜌

0
𝑏
1
) 𝑥 − 𝑏

1
) 𝑓
𝑖
(𝑥) 𝑑𝑥

∫

1

0
((1 − 𝜌

0
𝑏
1
) 𝑥 − 𝑏

1
)
2

𝑑𝑥

if 𝜆
0
= 0,

𝑒
𝜆
𝑛
𝑖

= 𝑏
1
𝜆
𝑛

∫

1

0
((1 − 𝜌

0
𝑏
1
) sin (𝜆

𝑛
𝑥) − 𝑏

1
𝜆
𝑛
cos (𝜆

𝑛
𝑥)) 𝑓
𝑖
(𝑥) 𝑑𝑥

∫

1

0
((1 − 𝜌

0
𝑏
1
) sin (𝜆

𝑛
𝑥) − 𝑏

1
𝜆
𝑛
cos (𝜆

𝑛
𝑥))
2

𝑑𝑥

if 𝜆
𝑛
> 0.

(44)

Thus,

𝑓 (𝑥) = 𝛼 ((1 − 𝜌
0
𝑏
1
) 𝑥 − 𝑏

1
) 𝐸 (0)

+ ∑

𝜆
𝑛
∈F

((1 − 𝜌
0
𝑏
1
) sin (𝜆

𝑛
𝑥)

− 𝑏
1
𝜆
𝑛
cos (𝜆

𝑛
𝑥)) 𝐸 (𝜆

𝑛
) ,

(45)

where 𝐸(0) = (

𝑒
01

...
𝑒
0𝑚

) and 𝐸(𝜆
𝑛
) = (

𝑒
𝜆𝑛1

...
𝑒
𝜆𝑛𝑚

). On the other

hand, from (38) and taking into account (34) and (37), one
gets

𝑓 (𝑥) = 𝑢 (𝑥, 0) = 𝛼 (𝑥𝐴
1
− 𝐵
1
) 𝐶 (0)

+ ∑

𝜆
𝑛
∈F

(sin (𝜆
𝑛
𝑥)𝐴
1
− 𝜆
𝑛
cos (𝜆

𝑛
𝑥) 𝐵
1
) 𝐶 (𝜆

𝑛
) .

(46)
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We can equate the two expressions; if 𝐶(0) and 𝐶(𝜆
𝑛
),

apart from conditions (33) and (36), satisfy {𝐶(0), 𝐶(𝜆)} ⊂
Ker(𝐵

1
− 𝑏
1
𝐼). Then, we have

𝐶 (𝜆
𝑛
)

= 𝐸 (𝜆
𝑛
)

=

∫

1

0
((1 − 𝜌

0
𝑏
1
) sin (𝜆

𝑛
𝑥) − 𝑏

1
𝜆
𝑛
cos (𝜆

𝑛
𝑥)) 𝑓 (𝑥) 𝑑𝑥

∫

1

0
((1 − 𝜌

0
𝑏
1
) sin (𝜆

𝑛
𝑥) − 𝑏

1
𝜆
𝑛
cos (𝜆

𝑛
𝑥))
2

𝑑𝑥

,

if 𝜆
𝑛
> 0,

𝐶 (0) = 𝐸 (0)

=

∫

1

0
((1 − 𝜌

0
𝑏
1
) 𝑥 − 𝑏

1
) 𝑓 (𝑥) 𝑑𝑥

∫

1

0
((1 − 𝜌

0
𝑏
1
) 𝑥 − 𝑏

1
)
2

𝑑𝑥

if 𝜆
0
= 0.

(47)

Note that 𝐶(0) and 𝐶(𝜆) ∈ Ker(𝐵
1
− 𝑏
1
𝐼), if

𝑓 (𝑥) ∈ Ker (𝐵
1
− 𝑏
1
𝐼) . (48)

Then 𝑢(𝑥, 𝑡) defined by

𝑢 (𝑥, 𝑡) = 𝛼 ((1 − 𝜌
0
𝑏
1
) 𝑥 − 𝑏

1
) 𝐶 (0)

+ ∑

𝜆
𝑛
∈F

𝑒
−𝜆
2

𝑛
𝐴𝑡
((1 − 𝜌

0
𝑏
1
) sin (𝜆

𝑛
𝑥)

− 𝑏
1
𝜆
𝑛
cos (𝜆

𝑛
𝑥)) 𝐶 (𝜆

𝑛
) ,

(49)

where 𝛼 and 𝐶(𝜆
𝑛
) are defined by (44) and (47), satisfies the

initial condition (4). Note that conditions (30)–(32) hold if

𝐺 (𝜌
0
, 𝑏
1
, 𝑏
2
, 𝜆
𝑘
) 𝑓 (𝑥) = 0, (50)

and then

(𝐵
1
− 𝑏
1
𝐼)𝐴
𝑗
𝑓 (𝑥) = 0, 0 ≤ 𝑗 < 𝑝,

(𝐴
2
𝐴
1
+ 𝜆
2

𝑛
𝐵
2
𝐵
1
+ 𝛼 (𝜌

0
, 𝑏
1
, 𝑏
2
, 𝜆) 𝐼)𝐴

𝑗
𝑓 (𝑥) = 0,

0 ≤ 𝑗 < 𝑝.

(51)

It is easy to check that conditions (48), (51) are equivalent to
the condition

𝐴
𝑗
𝑓 (𝑥) ∈ Ker (𝐵

1
− 𝑏
1
𝐼) ∩ Ker (𝐵

2
− 𝑏
2
𝐼) , 0 ≤ 𝑗 < 𝑝.

(52)

Condition (52) holds if

𝑓 (𝑥) ∈ Ker (𝐵
1
− 𝑏
1
𝐼) ∩ Ker (𝐵

2
− 𝑏
2
𝐼) , 0 ≤ 𝑥 ≤ 1,

Ker (𝐵
1
− 𝑏
1
𝐼) ∩ Ker (𝐵

2
− 𝑏
2
𝐼) ,

is an invariant subspace with respect to matrix 𝐴.

(53)

Now we study the convergence of the solution given by (49)
with 𝛼 defined by (44) and 𝐶(𝜆

𝑛
) by (47). Using Parseval’s

identity for scalar Sturm-Liouville problems [19], there exists
a positive constant 𝑀

1
> 0 so that ‖𝐶(𝜆

𝑛
)‖ ≤ 𝑀

1
. Taking

formal derivatives in (49), one gets

𝑢
𝑡
(𝑥, 𝑡) = ∑

𝜆
𝑛
∈F

(−𝜆
2

𝑛
) 𝑒
−𝜆
2

𝑛
𝐴𝑡
𝐴 (sin (𝜆

𝑛
𝑥) (1 − 𝜌

0
𝑏
1
)

− 𝜆
𝑛
cos (𝜆

𝑛
𝑥) 𝑏
1
) 𝐶 (𝜆

𝑛
) ,

𝑢
𝑥
(𝑥, 𝑡) = ∑

𝜆
𝑛
∈F

𝜆
𝑛
𝑒
−𝜆
2

𝑛
𝐴𝑡
(cos (𝜆

𝑛
𝑥) (1 − 𝜌

0
𝑏
1
)

+ 𝜆
𝑛
sin (𝜆

𝑛
𝑥) 𝑏
1
) 𝐶 (𝜆

𝑛
)

+ 𝛼 (1 − 𝜌
0
𝑏
1
) 𝐶 (0) ,

𝑢
𝑥𝑥
(𝑥, 𝑡) = ∑

𝜆
𝑛
∈F

𝜆
2

𝑛
𝑒
−𝜆
2

𝑛
𝐴𝑡
(− sin (𝜆

𝑛
𝑥) (1 − 𝜌

0
𝑏
1
)

+ 𝜆
𝑛
cos (𝜆

𝑛
𝑥) 𝑏
1
) 𝐶 (𝜆

𝑛
) .

(54)

These series are all bounded in their respective norms:

‖𝑢 (𝑥, 𝑡)‖

≤ ∑

𝜆
𝑛
∈F

[








𝑒
−𝜆
2

𝑛
𝐴𝑡











1 − 𝜌
0
𝑏
1





𝑀
1
+








𝜆
𝑛
𝑒
−𝜆
2

𝑛
𝐴𝑡











𝑏
1





𝑀
1
]

+ 𝛼 (




1 − 𝜌
0
𝑏
1





𝑥 +





𝑏
1





) ‖𝐶 (0)‖ ,





𝑢
𝑡
(𝑥, 𝑡)






≤ ∑

𝜆
𝑛
∈F

[








𝜆
2

𝑛
𝑒
−𝜆
2

𝑛
𝐴𝑡
𝐴












1 − 𝜌
0
𝑏
1





𝑀
1
+








𝜆
2

𝑛
𝑒
−𝜆
2

𝑛
𝐴𝑡











𝑏
1





𝑀
1
] ,





𝑢
𝑥
(𝑥, 𝑡)






≤ ∑

𝜆
𝑛
∈F

[








𝜆
2

𝑛
𝑒
−𝜆
2

𝑛
𝐴𝑡











1 − 𝜌
0
𝑏
1





𝑀
1
+








𝜆
2

𝑛
𝑒
−𝜆
2

𝑛
𝐴𝑡











𝑏
1





𝑀
1
]

+ 𝛼




1 − 𝜌
0
𝑏
1





‖𝐶 (0)‖ ,





𝑢
𝑥𝑥
(𝑥, 𝑡)






≤ ∑

𝜆
𝑛
∈F

[








𝜆
2

𝑛
𝑒
−𝜆
2

𝑛
𝐴𝑡











1 − 𝜌
0
𝑏
1





𝑀
1
+








𝜆
3

𝑛
𝑒
−𝜆
2

𝑛
𝐴𝑡











𝑏
1





𝑀
1
] .

(55)

To check that the series is uniformly convergent in each
domain [0, 1] × [𝑐, 𝑑], it is sufficient to verify that the series

∑

𝜆
𝑛
∈F

𝜆
3

𝑛
𝑒
−𝜆
2

𝑛
𝐴𝑡

(56)

is uniformly convergent in this domain. This is trivial
because, using (9), one gets








𝜆
3

𝑛
𝑒
−𝜆
2

𝑛
𝐴𝑡







≤ 𝑒
−𝜆
2

𝑛
𝛼(𝐴)𝑡

𝑚−1

∑

𝑘=0

(√𝑚 ‖𝐴‖ 𝑡)
𝑘

𝜆
2𝑘+3

𝑛

𝑘!

, (57)
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and from the d’Alembert test series applied to each summand,
taking into account (5) and the relation (19), lim

𝑛→∞
(𝜆
𝑛+1

−

𝜆
𝑛
) = 𝜋, given in Lemma 1, one gets for 3 ≤ 𝑟 ≤ 2 (𝑚− 1) + 3

that

lim
𝑛→∞

𝑒
(𝜆
2

𝑛
−𝜆
2

𝑛+1
)𝛼(𝐴)𝑡

(

𝜆
𝑛+1

𝜆
𝑛

)

𝑟

≤ lim
𝑛→∞

𝑒
(𝜆
2

𝑛
−𝜆
2

𝑛+1
)𝛼(𝐴)𝑡

(

𝑛 + 2

𝑛

)

𝑟

= 𝑒
−𝛼(𝐴)𝑡𝜋lim

𝑛→∞
(𝜆
𝑛
+𝜆
𝑛+1
)
= 0 < 1.

(58)

Thus, the series (56) is convergent.
Independence of the series solution (49) with respect to

the chosen 𝜌
0
∈ R can be demonstrated using the same

technique as given in [20].
We can summarize the results in the following theorem.

Theorem 2. Consider the homogeneous problem with homo-
geneous conditions (1)–(4) under hypotheses (5), (6), and (7)
verifying conditions (13) and (14). Let 𝑓(𝑥) be a vectorial
function satisfying (42). Let F be the set defined by (27), and
let 𝐺(𝜌

0
, 𝑏
1
, 𝑏
2
, 𝜆
𝑘
) be the matrix defined by (31), taking as

eigenvalues of problems 𝜆 ∈ F satisfying

rank (𝐺 (𝜌
0
, 𝑏
1
, 𝑏
2
, 𝜆
𝑘
)) < 𝑚, (59)

including the eigenvalue 𝜆 = 0 if 1 ∈ 𝜎(−𝐴
2
𝐴
1
), and taking

as eigenfunctions 𝑢(𝑥, 𝑡, 𝜆
𝑘
) defined by (34). Let 𝛼 be given by

(44) and vectors𝐶(𝜆
𝑛
) defined by (47).Then,𝑢(𝑥, 𝑡), as defined

in (49), is a series solution of problem (1)–(4).

4. Algorithm and Example

We can summarize the process to calculate the solution of the
homogeneous problemwith homogeneous conditions (1)–(4)
in Algorithm 1.

Example 1. We will consider the homogeneous parabolic
problem with homogeneous conditions (1)–(4), where the
matrix 𝐴 ∈ C4×4 is chosen as

𝐴 = (

2 0 0 −1

1 2 1 −2

−1 0 2 1

0 0 0 1

) , (60)

and the 4 × 4matrices 𝐴
𝑖
, 𝐵
𝑖
, 𝑖 ∈ {1, 2}, are

𝐴
1
= (

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1

) , 𝐴
2
= (

0 1 0 0

1 0 0 0

0 0 0 1

0 0 0 0

) ,

𝐵
1
= (

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

) , 𝐵
2
= (

1 0 0 0

1 0 0 0

0 0 1 0

0 0 0 1

) .

(61)

Also, the vectorial valued function 𝑓(𝑥) will be defined as

𝑓 (𝑥) = (

0

𝑥
2
− 1

0

0

) . (62)

Observe that the method proposed in [12] cannot be applied
to solve this problem.

We will follow Algorithm 1 step to step.

(1) Matrix 𝐴 satisfies the condition (5), because 𝜎(𝐴) =
{1, 2}. That is, 𝐴 is positive stable.

(2) Each of the matrices 𝐴
𝑖
, 𝐵
𝑖
, 𝑖 ∈ {1, 2}, is singular, and

the block matrix

(

𝐴
1
𝐵
1

𝐴
2
𝐵
2

) =

(

(

(

(

(

(

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 1 0 0 1 0 0 0

1 0 0 0 1 0 0 0

0 0 0 1 0 0 1 0

0 0 0 0 0 0 0 1

)

)

)

)

)

)

(63)

is regular.
(3) Note that although 𝐴

1
is singular, taking 𝜌

0
= 1 ∈ R,

the matrix pencil

𝐴
1
+ 𝜌
0
𝐵
1
= 𝐼
4×4

(64)

is regular. Therefore, we take 𝜌
0
= 1.

(4) By (10) we have

𝐴
1
= (𝐴
1
+ 𝜌
0
𝐵
1
)
−1

𝐴
1
= 𝐴
1
,

𝐵
1
= (𝐴
1
+ 𝜌
0
𝐵
1
)
−1

𝐵
1
= 𝐵
1
.

(65)

(5) By (11) we have

𝐴
2
= (𝐵
2
− (𝐴
2
+ 𝜌
0
𝐵
2
) 𝐵
1
)

−1

𝐴
2
= (

−1 0 0 0

0 −1 0 0

0 0 0 1

0 0 0 0

) ,

𝐵
2
= (𝐵
2
− (𝐴
2
+ 𝜌
0
𝐵
2
) 𝐵
1
)

−1

𝐵
2
= (

−1 0 0 0

−1 0 0 0

0 0 1 0

0 0 0 1

) .

(66)

(6) We have 𝜎(𝐵
1
) = {0, 1} and 𝜎(𝐵

2
) = {0, 1, −1}. Note

that in this case the condition (13) holds because with
𝑏
1
= 1 and 𝑏

2
= 0 ∈ 𝜎(𝐵

2
) there exists a common

eigenvector V ∈ C4, V = (0, 1, 0, 0)𝑡, and thusKer(𝐵
1
−

𝐼) ∩ Ker(𝐵
2
) ̸= (0, 0, 0, 0)

𝑡. We are therefore in Case 1
of Algorithm 1.
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Input data: 𝐴,𝐴
1
, 𝐴
2
, 𝐵
1
, 𝐵
2
∈ C𝑚×𝑚, 𝑓(𝑥) ∈ C𝑚.

Result: 𝑢(𝑥, 𝑡).
(1) Check that matrix 𝐴 satisfies (5).
(2) Check that matrices 𝐴

𝑖
, 𝐵
𝑖
∈ C𝑚×𝑚, 𝑖 ∈ {1, 2} are singular, and check that the block matrix

(

𝐴
1
𝐵
1

𝐴
2
𝐵
2

) is regular.

(3) Determine a number 𝜌
0
∈ R so that the matrix pencil 𝐴

1
+ 𝜌
0
𝐵
1
is regular.

(4) Determine matrices 𝐴
1
and 𝐵

1
defined by (10).

(5) Determine matrices 𝐴
2
and 𝐵

2
defined by (11).

(6) Consider the following cases:
(i) Case 1. Condition (13) holds, that is, matrices 𝐵

1
and 𝐵

2
have a common eigenvector V ̸= 0 associated

with eigenvalues 𝑏
1
∈ 𝜎 (𝐵

1
) − {0} and 𝑏

2
∈ 𝜎 (𝐵

2
). In this case continue with step (7).

(ii) Case 2. Condition (13) does not hold. In this case the algorithm stops because it is not possible to
find the solution of (1)–(4) for the given data.

(7) Determine 𝑏
1
∈ 𝜎 (𝐵

1
), 𝑏
1
̸= 0, 𝑏
2
∈ 𝜎 (𝐵

2
) and vector V ̸= 0 verifying

V ∈ Ker (𝐵
1
− 𝑏
1
𝐼) ∩ Ker (𝐵

2
− 𝑏
2
𝐼) such that:

(i) Conditions (53) hold, that is:
1.1: Ker (𝐵

1
− 𝑏
1
𝐼) ∩ Ker (𝐵

2
− 𝑏
2
𝐼) is an invariant subspace respect matrix 𝐴.

1.2: 𝑓(𝑥) ∈ Ker (𝐵
1
− 𝑏
1
𝐼) ∩ Ker (𝐵

2
− 𝑏
2
𝐼), ∀𝑥 ∈ [0, 1].

(ii) Conditions (14) hold, that is:

1.3:
(1 − 𝑏

2
+ 𝜌
0
𝑏
1
𝑏
2
) (1 − 𝜌

0
𝑏
1
)

𝑏
1

∈ R, 𝑏
1
𝑏
2
∈ R.

(iii) The vectorial function 𝑓(𝑥) satisfies (42), that is:
1.4: 𝑓 ∈ C2 ([0, 1]).
1.5: (1 − 𝜌

0
𝑏
1
) 𝑓(0) + 𝑏

1
𝑓

(0) = 0.

1.6: −(
1 − 𝑏
2
+ 𝜌
0
𝑏
1
𝑏
2

𝑏
1

)𝑓(1) + 𝑏
2
𝑓

(1) = 0.

If these conditions are not satisfied, return to step (6) of Algorithm 1 discarding the values
taken for 𝑏

1
and 𝑏
2
.

(8) Determine the positive solutions of (16) and determineF defined by (27).
(9) Determine degree 𝑝 of minimal polynomial of matrix 𝐴.
(10) Building block matrix 𝐺 (𝜌

0
, 𝑏
1
, 𝑏
2
, 𝜆
𝑘
) defined by (31).

(11) Determine 𝜆 ∈ F so that rank 𝐺 (𝜌
0
, 𝑏
1
, 𝑏
2
, 𝜆
𝑘
) < 𝑚.

(12) Include the eigenvalue 𝜆 = 0 if 1 ∈ 𝜎 (−𝐴
2
𝐴
1
).

(13) Determine 𝛼 given by (44).
(14) Determine vectors 𝐶(𝜆

𝑛
) defined by (47).

(15) Determine functions 𝑢(𝑥, 𝑡, 𝜆
𝑛
) defined by (34).

(16) Determine the series solution 𝑢(𝑥, 𝑡) of problem (1)–(4) defined by (49).

Algorithm 1: Solution of the homogeneous problem with homogeneous conditions (1)–(4).

(7) We take the values 𝑏
1
= 1 and 𝑏

2
= 0 and will check

the conditions given in step 7 of the algorithm.

(1.1) One gets that

Ker (𝐵
1
− 𝐼) ∩ Ker (𝐵

2
) =⟨(

0

1

0

0

)⟩. (67)

Let 𝑥 ∈ Ker(𝐵
1
− 𝐼) ∩ Ker(𝐵

2
). Then 𝑥 = (

0

𝜆

0

0

),

𝜆 ∈ C. In this case one gets

𝐴𝑥 = (

0

2𝜆

0

0

) ∈ Ker (𝐵
1
− 𝐼) ∩ Ker (𝐵

2
) , (68)

and then the subspace Ker(𝐵
1
− 𝐼) ∩ Ker(𝐵

2
) is

invariant by matrix 𝐴.
(1.2) It is trivial to check that

𝑓 (𝑥) ∈ Ker (𝐵
1
− 𝐼) ∩ Ker (𝐵

2
) , ∀𝑥 ∈ [0, 1] . (69)

(1.3) With these values 𝜌
0
, 𝑏
1
, and 𝑏

2
, one gets that

(1 − 𝑏
2
+ 𝜌
0
𝑏
1
𝑏
2
) (1 − 𝜌

0
𝑏
1
)

𝑏
1

= 0 ∈ R. (70)

With these values 𝑏
1
and 𝑏
2
, one gets

𝑏
1
𝑏
2
= 0 ∈ R. (71)

(1.4) It is trivial to check that 𝑓(𝑥) ∈ C2([0, 1]).
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(1.5) It is trivial to check that (1−𝜌
0
𝑏
1
)𝑓(0)+𝑏

1
𝑓

(0) =

(0, 0, 0, 0)
𝑡.

(1.6) It is trivial to check that −((1 − 𝑏
2
+

𝜌
0
𝑏
1
𝑏
2
)/𝑏
1
)𝑓(1) + 𝑏

2
𝑓

(1) = (0, 0, 0, 0)

𝑡.

(8) Equation (16) is of the form

𝜆 cot (𝜆) = 0 (72)

We can solve (72) exactly, 𝜆
𝑘
= (𝜋/2) + 𝑘𝜋, with an

additional solution 𝜆
0
∈]0, 𝜋[, because

(1 − 𝑏
2
+ 𝜌
0
𝑏
1
𝑏
2
) (1 − 𝜌

0
𝑏
1
)

𝑏
1

= 0 < 1, (73)

and then 𝜆
0
= (𝜋/2). Thus, we have a numerable

family of solutions of (72) which we denote by F,
given by.

F = {𝜆
𝑘
=

𝜋

2

+ 𝑘𝜋; 𝜆
𝑘
∈ (𝑘𝜋, (𝑘 + 1) 𝜋) , 𝑘 ≥ 1} ∪F

0
,

F
0
= {𝜆
0
=

𝜋

2

} .

(74)

(9) The minimal polynomial of matrix 𝐴 is given by
𝑝(𝑥) = (𝑥 − 2)

3
(𝑥 − 1). Then 𝑝 = 4.

(10) If 𝜆
𝑘

is a positive solution of (72), the matrix
𝐺(𝜌
0
, 𝑏
1
, 𝑏
2
, 𝜆
𝑘
) given by (31) takes the form

𝐺 (1, 1, 0, 𝜆
𝑘
) =

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

(

0 0 0 −1

0 0 1 −2

1 0 0 0

0 0 0 0

0 0 0 −3

0 0 4 −6

4 0 0 0

0 0 0 0

0 0 0 −7

0 0 12 −13

12 0 0 0

0 0 0 0

−𝜆
2

𝑘
0 0 0

−𝜆
2

𝑘
0 0 0

0 0 0 1

0 0 0 0

−2𝜆
2

𝑘
0 0 𝜆

2

𝑘

−2𝜆
2

𝑘
0 0 𝜆

2

𝑘

0 0 0 1

0 0 0 0

−4𝜆
2

𝑘
0 0 3𝜆

2

𝑘

−4𝜆
2

𝑘
0 0 3𝜆

2

𝑘

0 0 0 1

0 0 0 0

−8𝜆
2

𝑘
0 0 7𝜆

2

𝑘

−8𝜆
2

𝑘
0 0 7𝜆

2

𝑘

0 0 0 1

0 0 0 0

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

)

. (75)

(11) Since the second column𝐺(1, 1, 0, 𝜆
𝑘
) is zero, we have

that rank(𝐺(1, 1, 0, 𝜆
𝑘
)) < 4. Thus, each one of the

positive solutions given by (74) is an eigenvalue.
(12) It is trivial to check that 1 ∉ 𝜎(−𝐴

2
𝐴
1
), because

−𝐴
2
𝐴
1
= (

0 0 0 0

0 0 0 0

0 0 0 −1

0 0 0 0

) , 𝜎 (−𝐴
2
𝐴
1
) = {0} . (76)

Then we do not include 0 as an eigenvalue.
(13) Taking into account that ((1 − 𝑏

2
+ 𝜌
0
𝑏
1
𝑏
2
)(1 −

𝜌
0
𝑏
1
)/𝑏
1
) = 0 < 1, one gets 𝛼 = 0.

(14) Vectors 𝐶(𝜆
𝑛
) defined by (47) take the values

𝐶 (𝜆
𝑛
) =

64(−1)
𝑛

𝜋
4
(2𝑛 + 1)

4
(

0

1

0

0

) . (77)

(15) Using the minimal theorem [21, page 571], one gets
that

𝑒
𝐴𝑢
=(

𝑒
2𝑢

0 0 −𝑒
𝑢
(𝑒
𝑢
− 1)

−
1

2
𝑒
2𝑢
(𝑢 − 2) 𝑢 𝑒

2𝑢
𝑒
2𝑢
𝑢
1

2
𝑒
𝑢
(2 + 𝑒
𝑢
(−2 + (−2 + 𝑢) 𝑢))

−𝑒
2𝑢
𝑢 0 𝑒

2𝑢
𝑒
2𝑢
𝑢

0 0 0 𝑒
𝑢

).

(78)

Next, by considering (78) with 𝑢 = −((𝜋/2) + 𝑛𝜋)
2
𝑡

and simplifying, we obtain the value of 𝑒−((𝜋/2)+𝑛𝜋)
2
𝐴𝑡.

Taking into account that all eigenvalues 𝜆
𝑛
are posi-

tive, the associated eigenfunctions are

𝑢 (𝑥, 𝑡, 𝜆
𝑛
)

= 𝑒
−𝜆
2

𝑛
𝐴𝑡
((1 − 𝜌

0
𝑏
1
) sin (𝜆

𝑛
𝑥) − 𝑏

1
𝜆
𝑛
cos (𝜆

𝑛
𝑥)) 𝐶 (𝜆

𝑛
) .

(79)

(16) We replace the values of 𝐶(𝜆
𝑛
) given by (77) in

(79) and take into account the value of the matrix
𝑒
−((𝜋/2)+𝑛𝜋)

2
𝐴𝑡. After simplification, we finally obtain

the solution of (1)–(4) given by
𝑢 (𝑥, 𝑡)

= (∑

𝑛≥0

−

32(−1)
𝑛
𝑒
−(1/2)(𝜋+2𝑛𝜋)

2
𝑡 cos ((1/2) (𝜋 + 2𝑛𝜋) 𝑥)

𝜋
3
(2𝑛 + 1)

3
)

×(

0

1

0

0

) .

(80)
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[13] L. Jódar and E. Ponsoda, “Continuous numerical solutions and
error bounds for time dependent systems of partial differential
equations: mixed problems,” Computers & Mathematics with
Applications, vol. 29, no. 8, pp. 63–71, 1995.

[14] E. Navarro, E. Ponsoda, and L. Jódar, “A matrix approach to
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