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We mainly study growth of linear difference equations 𝑃
𝑛
(𝑧)𝑓(𝑧 + 𝑛) + ⋅ ⋅ ⋅ + 𝑃

1
(𝑧)𝑓(𝑧 + 1) + 𝑃

0
(𝑧)𝑓(𝑧) = 0 and 𝑃

𝑛
(𝑧)𝑓(𝑧 + 𝑛) +

⋅ ⋅ ⋅ + 𝑃
1
(𝑧)𝑓(𝑧 + 1) + 𝑃

0
(𝑧)𝑓(𝑧) = 𝐹(𝑧), where 𝐹(𝑧), 𝑃

0
(𝑧), . . . , 𝑃

𝑛
(𝑧) are polynomials such that 𝐹(𝑧)𝑃

0
(𝑧)𝑃
𝑛
(𝑧) ̸≡ 0 and give the

most weak condition to guarantee that orders of all transcendental meromorphic solutions of the above equations are greater than
or equal to 1.

1. Introduction and Results

Consider growth of meromorphic solutions of the following
linear difference equations:

𝑃
𝑛
(𝑧) 𝑓 (𝑧 + 𝑛) + ⋅ ⋅ ⋅ + 𝑃

1
(𝑧) 𝑓 (𝑧 + 1) + 𝑃

0
(𝑧) 𝑓 (𝑧) = 0,

(1)

𝑃
𝑛
(𝑧) 𝑓 (𝑧 + 𝑛) + ⋅ ⋅ ⋅ + 𝑃

1
(𝑧) 𝑓 (𝑧 + 1) + 𝑃

0
(𝑧) 𝑓 (𝑧) = 𝐹 (𝑧) ,

(2)

where 𝐹(𝑧), 𝑃
0
(𝑧), . . . , 𝑃

𝑛
(𝑧) are polynomials such that 𝐹(𝑧)

𝑃
0
(𝑧)𝑃
𝑛
(𝑧) ̸≡ 0.

Recently, several papers (including [1–8]) have been
published regarding growth of the solutions of (1) and (2).We
recall the following results. Ishizaki and Yanagihara proved
the following theorem.

Theorem A (see [5]). Let 𝑓(𝑧) be a transcendental entire
solution of

𝑄
𝑛
(𝑧) Δ
𝑛

𝑓 (𝑧) + ⋅ ⋅ ⋅ + 𝑄
1
(𝑧) Δ𝑓 (𝑧) + 𝑄

0
(𝑧) 𝑓 (𝑧) = 0, (3)

where 𝑄
𝑛
, . . . , 𝑄

0
are polynomials, Δ𝑓(𝑧) = 𝑓(𝑧 + 1) − 𝑓(𝑧),

Δ
𝑛

𝑓(𝑧) = Δ(Δ
𝑛−1

𝑓(𝑧)), and of order 𝜒 < 1/2. Then one has

log𝑀(𝑟, 𝑓) = 𝐿𝑟
𝜒

(1 + 𝑜 (1)) , (4)

where a rational number 𝜒 is a slope of the Newton polygon for
(3) and 𝐿 > 0 is a constant. In particular, one has 𝜒 > 0.

Remark 1. In [5], Ishizaki and Yanagihara give an example.
The difference equation

(6𝑧
2

+ 19𝑧 + 15) Δ
3

𝑓 (𝑧) + (𝑧 + 3) Δ
2

𝑓 (𝑧)

− Δ𝑓 (𝑧) − 𝑓 (𝑧) = 0,

(5)

that is,

(6𝑧
2

+ 19𝑧 + 15) 𝑓 (𝑧 + 3) − (18𝑧
2

+ 56𝑧 + 42) 𝑓 (𝑧 + 2)

+ (18𝑧
2

+ 55𝑧 + 38) 𝑓 (𝑧 + 1) − (6𝑧
2

+ 18𝑧 + 12) 𝑓 (𝑧)

= 0,

(5)
󸀠

admits an entire solution of order 1/3.

In [5], Ishizaki and Yanagihara do not give a concrete
solution of order 1/3. In fact, we assert that (5) has no
entire solution of order 1/3. Contrary to the assertion, we
assume that 𝑓(𝑧) is an entire solution of order 1/3 of (5)󸀠. Set
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𝑔(𝑧) = 𝑓(𝑧) − 1. Then 𝑔(𝑧) is an entire function of order 1/3.
Substituting 𝑓(𝑧) = 𝑔(𝑧) + 1 in to (5)󸀠, we obtain

(6𝑧
2

+ 19𝑧 + 15) 𝑔 (𝑧 + 3) − (18𝑧
2

+ 56𝑧 + 42) 𝑔 (𝑧 + 2)

+ (18𝑧
2

+ 55𝑧 + 38) 𝑔 (𝑧 + 1)

− (6𝑧
2

+ 18𝑧 + 12) 𝑔 (𝑧) = 1.

(6)

Using the same method as in the proof of Case 1, in proof of
Theorem 4, we obtain the order of 𝑔 which is greater than or
equal to 1. It is a contradiction.

Thus, we determine that whether (1) ((2) or (3)) has a
transcendental meromorphic solution of order <1, it becomes
a significant problem for mathematicians.

Chiang and Feng proved the following theorem.

TheoremB (see [3]). Let𝑃
0
(𝑧), . . . , 𝑃

𝑛
(𝑧) be polynomials such

that there exists an integer 𝑙, 0 ≤ 𝑙 ≤ 𝑛 so that

deg (𝑃
𝑙
) > max
0≤𝑗≤𝑛,𝑗 ̸= 𝑙

{deg (𝑃
𝑗
)} , (7)

holds. Suppose that 𝑓(𝑧) is a meromorphic solution of (1).
Then, one has 𝜎(𝑓) ≥ 1.

In this paper, we use the basic notions of Nevanlinna’s
theory (see [9, 10]). In addition, we use the notations 𝜎(𝑓) to
denote the order of growth of a meromorphic function 𝑓(𝑧)
and 𝜆(𝑓) to denote the exponent of convergence of zeros of
𝑓(𝑧).

Remark 2. Comparing Theorem A with Theorem B, we see
that since (3) can be rewritten as (1), Theorem A shows
that, under general case, (1) may have transcendental mero-
morphic solution 𝑓(𝑧) with 𝜎(𝑓) < 1. In Theorem B, the
condition (7) guarantees that all meromorphic solutions of
(1) satisfy 𝜎(𝑓) ≥ 1.

The author who weakened the condition (7) of Theorem
B proved the following results.

TheoremC (see [2]). Let𝑃
𝑛
(𝑧), . . . , 𝑃

0
(𝑧) be polynomials such

that 𝑃
𝑛
𝑃
0

̸≡ 0 and

deg (𝑃
𝑛
+ ⋅ ⋅ ⋅ + 𝑃

0
) = max {deg𝑃

𝑗
: 𝑗 = 0, . . . , 𝑛} ≥ 1. (8)

Then every finite-ordermeromorphic solution𝑓(𝑧)( ̸≡ 0) of (1)
satisfies 𝜎(𝑓) ≥ 1, 𝑓(𝑧) assumes every nonzero value 𝑎 ∈ C

infinitely often, and 𝜆(𝑓 − 𝑎) = 𝜎(𝑓).

Theorem D (see [2]). Let 𝐹(𝑧), 𝑃
𝑛
(𝑧), . . . , 𝑃

0
(𝑧) be polyno-

mials such that 𝐹𝑃
𝑛
𝑃
0

̸≡ 0 and (8). Then every finite-
order transcendentalmeromorphic solution𝑓(𝑧) of (2) satisfies
𝜎(𝑓) ≥ 1 and 𝜆(𝑓) = 𝜎(𝑓).

Theorem E (see [2]). Let 𝐹(𝑧), 𝑃
𝑛
(𝑧), . . . , 𝑃

0
(𝑧) be polynomi-

als such that 𝐹𝑃
𝑛
𝑃
0

̸≡ 0. Suppose that 𝑓(𝑧) is a meromorphic
solution with infinitely many poles of (1) (or (2)). Then 𝜎(𝑓) ≥
1.

From (5)
󸀠 we see that the sumof coefficients of (5)󸀠, which

is equal to −1, does not satisfy the condition (8), but all
transcendental entire solutions of (5)󸀠 have order 𝜎(𝑓) ≥ 1.

Thus, a natural question to ask is whether the condition
(8) can be weakened.

In this note, we consider this question, again weaken the
condition (8) and prove the following results.

Theorem 3. Let 𝑃
𝑛
(𝑧), . . . , 𝑃

0
(𝑧) be polynomials such that

𝑃
𝑛
𝑃
0

̸≡ 0 and satisfy

𝑃
𝑛
(𝑧) + ⋅ ⋅ ⋅ + 𝑃

0
(𝑧) ̸≡ 0. (9)

Then every-finite order transcendental meromorphic solution
𝑓(𝑧)( ̸≡ 0) of (1) satisfies 𝜎(𝑓) ≥ 1, 𝑓(𝑧) assumes every
nonzero value 𝑎 ∈ C infinitely often, and 𝜆(𝑓 − 𝑎) = 𝜎(𝑓).

Theorem 4. Let 𝐹(𝑧), 𝑃
𝑛
(𝑧), . . . , 𝑃

0
(𝑧) be polynomials such

that 𝐹𝑃
𝑛
𝑃
0

̸≡ 0. Then every finite-order transcendental
meromorphic solution 𝑓(𝑧) of (2) satisfies 𝜆(𝑓) = 𝜎(𝑓) ≥ 1.

Remark 5. For the homogeneous equation (1) byTheorems B,
C and 3, we see that the condition (9) is weaker than (7) and
(8). For the nonhomogeneous equation (2) by Theorem 4,
we see that the condition (9) is omitted. But, under the
condition (8), (1) has no nonzero rational solution, and under
the condition (9), (1) may have nonzero rational solution. For
example,

(𝑧 + 1) 𝑓 (𝑧 + 1) − 𝑧𝑓 (𝑧) = 0, (10)

has a rational solution 𝑓(𝑧) = 1/𝑧. This shows that Theorem
C can not be replaced byTheorem 3 completely.

Example 6. The equation

(
1

2
𝑧 − 1)𝑓 (𝑧 + 2) − 2 (𝑧 − 2) 𝑓 (𝑧) = 0, (11)

has a solution 𝑓(𝑧) = 2
𝑧; here 𝑓(𝑧) satisfies 𝜆(𝑓 − 𝑎) =

𝜎(𝑓) = 1 for any nonzero finite value 𝑎, and 𝑓(𝑧) has no zero.
This shows that in Theorem 3, the condition 𝑎 ̸= 0 cannot be
omitted.

Example 7. The equation

𝑓 (𝑧 + 2) + 𝑓 (𝑧 + 1) − (𝑧
2

+ 2𝑧)𝑓 (𝑧) = −𝑧
2

− 2𝑧 + 2, (12)

has a solution 𝑓(𝑧) = Γ(𝑧) + 1 which satisfies 𝜆(𝑓 − 1) = 0.
This shows that inTheorem 4 a solution of (2) does not satisfy
𝜆(𝑓 − 𝑎) = 𝜎(𝑓) for a nonzero constant 𝑎.

By Theorem 3, we can obtain the following corollary.

Corollary 8. Let 𝑃
𝑛
(𝑧), . . . , 𝑃

0
(𝑧) be polynomials such that

𝑃
𝑛
𝑃
0

̸≡ 0. If (1) has a transcendental meromorphic solution
𝑓 with 𝜎(𝑓) < 1, then

𝑃
𝑛
(𝑧) + ⋅ ⋅ ⋅ + 𝑃

0
(𝑧) ≡ 0. (13)

Consider the growth of the second order linear difference
equation

Δ
2

𝑦 (𝑧) + 𝐴 (𝑧) 𝑦 (𝑧) = 0, (14)
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with 𝐴(𝑧) is a meromorphic function. Since (14) is closely
related with the difference Riccati equation

Δ𝑓 (𝑧) +
𝑓(𝑧)
2

+ 𝐴 (𝑧)

𝑓 (𝑧) − 1
= 0, (15)

we see that (14) is an important linear difference equation (see
[4]).

Ishizaki [4] proved the following result.

Theorem F (see [4]). Suppose that 𝐴(𝑧) is a rational function
in (14) and has no transcendental meromorphic solutions of
order less than 1/2. Further, one assumes that (14) possesses
a rational solution. Then, every transcendental meromorphic
solution of (14) has order of at least 1.

In this note, we improve this result, omit the condition of
Theorem F “(14) possesses a rational solution”, and prove the
same result.

Theorem 9. Let 𝐴(𝑧) be a rational function. Then every
transcendental meromorphic solution of (14) has order of at
least 1.

Further, If 𝐴(𝑧) = 𝑃(𝑧)/𝑄(𝑧), where 𝑃 and 𝑄 are non-
constant polynomials such that deg𝑃 ≥ deg𝑄, then (14) has
no nonzero rational solution.

For the linear difference equation with transcendental
coefficients, one has

𝐴
𝑛
(𝑧) 𝑓 (𝑧 + 𝑛) + ⋅ ⋅ ⋅ + 𝐴

1
(𝑧) 𝑓 (𝑧 + 1) + 𝐴

0
(𝑧) 𝑓 (𝑧) = 0.

(16)

Chiang and Feng proved the following result.

TheoremG (see [3]). Let𝐴
0
(𝑧), . . . , 𝐴

𝑛
(𝑧) be entire functions

such that there exists an integer 𝑙, 0 ≤ 𝑙 ≤ 𝑛, such that

𝜎 (𝐴
𝑙
) > max {𝜎 (𝐴

𝑗
) : 0 ≤ 𝑗 ≤ 𝑛, 𝑗 ̸= 𝑙} . (17)

If 𝑓(𝑧)( ̸≡ 0) is a meromorphic solution of (16), then one has
𝜎(𝑓) ≥ 𝜎(𝐴

𝑙
) + 1.

Laine and Yang [6] prove that if 𝐴
0
(𝑧), . . . , 𝐴

𝑛
(𝑧) are

entire functions of finite order so that among those having
the maximal order 𝜎 := max{𝜎(𝐴

𝑘
) : 0 ≤ 𝑘 ≤ 𝑛}, exactly

one has its type strictly greater than the others, then every
meromorphic solution of (16) satisfies 𝜎(𝑓) ≥ 𝜎 + 1.

Remark 10. If 𝐴
𝑗
(𝑗 = 0, . . . , 𝑛) are meromorphic functions

satisfying (17), thenTheorem G does not hold. For example,

𝑦 (𝑧 + 1) − (𝑒
𝑖

+
𝑒
𝑖

− 1

𝑒𝑖𝑧 − 1
)𝑦 (𝑧) = 0, (18)

has a solution 𝑦(𝑧) = 𝑒
𝑖𝑧

− 1, in which 𝜎(𝑦) = 1 < 𝜎(𝐴
0
) + 1.

This example shows that for the linear difference equation
with meromorphic coefficients, the condition (17) can not
guarantee that every transcendental meromorphic solution
𝑓(𝑧) of (16) satisfies 𝜎(𝑓) ≥ 𝜎(𝐴

𝑙
) + 1.

Thus, a natural question to ask is what conditions will
guarantee that every transcendental meromorphic solution
𝑓(𝑧) of (16) satisfies 𝜎(𝑓) ≥ 𝜎(𝐴

𝑙
) + 1.

We answer this question and prove the following result.

Theorem 11. Let 𝐴
0
(𝑧), . . . , 𝐴

𝑛
(𝑧) be meromorphic functions

such that there exists an integer 𝑙, 0 ≤ 𝑙 ≤ 𝑛, such that

𝜎 (𝐴
𝑙
) > max {𝜎 (𝐴

𝑗
) : 0 ≤ 𝑗 ≤ 𝑛, 𝑗 ̸= 𝑙} , 𝛿 (∞,𝐴

𝑙
) > 0.

(19)

If 𝑓(𝑧)( ̸≡ 0) is a meromorphic solution of (16), then one has
𝜎(𝑓) ≥ 𝜎(𝐴

𝑙
) + 1.

2. Proofs of Theorems

We need following lemmas and remark to proveTheorems 3,
4, 9, and 11.

Remark 12. Following Hayman [11, p. 75-76], we define an 𝜀-
set to be a countable union of open discs not containing the
origin and subtending angles at the originwhose sum is finite.
If 𝐸 is an 𝜀-set, then the set of 𝑟 ≥ 1 for which the circle 𝑆(0, 𝑟)
meets𝐸 has finite logarithmicmeasure, and for almost all real
𝜃 the intersection of 𝐸 with the ray arg 𝑧 = 𝜃 is bounded.

Lemma 13 (see [12]). Let 𝑔 be a function transcendental and
meromorphic in the plane of order less than 1. Let ℎ > 0. Then
there exists an 𝜀-set 𝐸 such that

𝑔
󸀠

(𝑧 + 𝑐)

𝑔 (𝑧 + 𝑐)
󳨀→ 0,

𝑔 (𝑧 + 𝑐)

𝑔 (𝑧)
󳨀→ 1 𝑎𝑠 𝑧 󳨀→ ∞ 𝑖𝑛 C \ 𝐸,

(20)

uniformly in 𝑐 for |𝑐| ≤ ℎ. Further, 𝐸may be chosen so that for
large 𝑧not in𝐸 the function𝑔 has no zeros or poles in |𝜁−𝑧| ≤ ℎ.

Lemma 14 (see [6, 13]). Let𝑤(𝑧) be a nonconstant finite-order
meromorphic solution of

𝑃 (𝑧, 𝑤) = 0, (21)

where𝑃(𝑧, 𝑤) is a difference polynomial in𝑤(𝑧). If𝑃(𝑧, 𝑎) ̸≡ 0

for a meromorphic function 𝑎(𝑧) satisfying 𝑇(𝑟, 𝑎) = 𝑆(𝑟, 𝑤),
then

𝑚(𝑟,
1

𝑤 − 𝑎
) = 𝑆 (𝑟, 𝑤) . (22)

Lemma 15 (see [3, 13]). Given two distinct complex constants
𝜂
1
, 𝜂
2
, let 𝑓 be a meromorphic function of finite order 𝜎. Then,

for each 𝜀 > 0, one has

𝑚(𝑟,
𝑓 (𝑧 + 𝜂

1
)

𝑓 (𝑧 + 𝜂
2
)
) = 𝑂 (𝑟

𝜎−1+𝜀

) . (23)
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Proof of Theorem 4. Suppose that 𝑓(𝑧) is a transcendental
meromorphic solution of (2) with 𝜎(𝑓) < ∞. We divide this
proof into the following two cases.

Case 1. Suppose that 𝑓(𝑧) has only finitely many poles. Now
we suppose that 𝜎(𝑓) < 1. By Lemma 13, there exists an 𝜀-set
𝐸 such that

𝑓 (𝑧 + 𝑗) = 𝑓 (𝑧) (1 + 𝑜
𝑗
(1))

𝑗 = 1, . . . , 𝑛 as 𝑧 󳨀→ ∞ inC \ 𝐸,

(24)

where 𝑜
𝑗
(1) (𝑗 = 1, . . . , 𝑛) satisfy

𝑜
𝑗
(1) 󳨀→ 0 as 𝑧 󳨀→ ∞ in C \ 𝐸. (25)

Set𝐻 = {|𝑧| = 𝑟 : 𝑧 ∈ 𝐸, |𝑧| > 1}. By Remark 12,𝐻 is of finite
logarithmic measure. Substituting (24) into (2), we obtain, as
𝑧 → ∞ in C \ 𝐸,

𝑃
𝑛
(𝑧) 𝑓 (𝑧) (1 + 𝑜

𝑛
(1)) + ⋅ ⋅ ⋅ + 𝑃

1
(𝑧) 𝑓 (𝑧) (1 + 𝑜

1
(1))

+ 𝑃
0
(𝑧) 𝑓 (𝑧) = 𝐹 (𝑧) ,

(26)

that is,

𝑓 (𝑧) =
𝐹 (𝑧)

𝑃
𝑛
(𝑧) (1 + 𝑜

𝑛
(1)) + ⋅ ⋅ ⋅ + 𝑃

1
(𝑧) (1 + 𝑜

1
(1)) + 𝑃

0
(𝑧)

.

(27)

Thus, since 𝑓(𝑧) has only finitely many poles, we deduce that
when |𝑧| = 𝑟 ∉ 𝐻,

𝑇 (𝑟, 𝑓)

= 𝑚 (𝑟, 𝑓) + 𝑁 (𝑟, 𝑓) = 𝑚 (𝑟, 𝑓) + 𝑂 (log 𝑟)

= 𝑚(𝑟,
𝐹 (𝑧)

𝑃
𝑛
(𝑧) (1 + 𝑜

𝑛
(1)) + ⋅ ⋅ ⋅ + 𝑃

0
(𝑧)

)

+ 𝑂 (log 𝑟)

≤ 𝑇(𝑟,
𝐹 (𝑧)

𝑃
𝑛
(𝑧) (1 + 𝑜

𝑛
(1)) + ⋅ ⋅ ⋅ + 𝑃

0
(𝑧)

)

+ 𝑂 (log 𝑟)

≤ 𝑇 (𝑟, 𝐹) +

𝑛

∑

𝑗=0

𝑇 (𝑟, 𝑃
𝑗
) +

𝑛

∑

𝑗=1

𝑇 (𝑟, 1 + 𝑜
𝑗
(1)) + 𝑂 (log 𝑟)

= 𝑂 (log 𝑟) .
(28)

This contradicts with the fact that 𝑓 is transcendental. Hence
𝜎(𝑓) ≥ 1.

Case 2. Suppose that 𝑓(𝑧) has infinitely many poles. Thus, by
Theorem D, we see that 𝜎(𝑓) ≥ 1.

Finally, we prove that 𝜆(𝑓) = 𝜎(𝑓). By (2), and we set

𝐸 (𝑧, 𝑓) := 𝑃
𝑛
(𝑧) 𝑓 (𝑧 + 𝑛) + ⋅ ⋅ ⋅ + 𝑃

0
(𝑧) 𝑓 (𝑧) − 𝐹 (𝑧) .

(29)

Thus,

𝐸 (𝑧, 0) = 𝐹 (𝑧) ̸≡ 0. (30)

By Lemma 14, we have

𝑚(𝑟,
1

𝑓
) = 𝑆 (𝑟, 𝑓) , (31)

so that

𝑁(𝑟,
1

𝑓
) = 𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) . (32)

Hence 𝜆(𝑓) = 𝜎(𝑓).
Thus, Theorem 4 is proved.

Proof of Theorem 3. Suppose that𝑓 is a transcendental mero-
morphic solution of (1) with 𝜎(𝑓) < ∞ and that 𝑑 ̸= 0 is a
constant. Set 𝑔(𝑧) = 𝑓(𝑧) − 𝑑. Then, 𝜎(𝑔) = 𝜎(𝑓).

Substituting 𝑓(𝑧) = 𝑔(𝑧) + 𝑑 into (1), we obtain

𝑃
𝑛
(𝑧) 𝑔 (𝑧 + 𝑛) + ⋅ ⋅ ⋅ + 𝑃

1
(𝑧) 𝑔 (𝑧 + 1) + 𝑃

0
(𝑧) 𝑔 (𝑧)

= −𝑑 (𝑃
𝑛
(𝑧) + ⋅ ⋅ ⋅ + 𝑃

1
(𝑧) + 𝑃

0
(𝑧)) .

(33)

Since 𝑃
𝑛
(𝑧) + ⋅ ⋅ ⋅ + 𝑃

1
(𝑧) +𝑃

0
(𝑧) ̸≡ 0, we see that (33) satisfies

the conditions of Theorem 4. Thus, we deduce that 𝜎(𝑔) =

𝜎(𝑓) ≥ 1.
Finally, we prove that 𝑓(𝑧) assumes every nonzero value

𝑎 ∈ C infinitely often and that 𝜆(𝑓 − 𝑎) = 𝜎(𝑓). Set

𝐸 (𝑧, 𝑓) := 𝑃
𝑛
(𝑧) 𝑓 (𝑧 + 𝑛) + ⋅ ⋅ ⋅ + 𝑃

0
(𝑧) 𝑓 (𝑧) . (34)

Thus, since 𝑎 ̸= 0 and (9), we have

𝐸 (𝑧, 𝑎) = 𝑎 (𝑃
𝑛
(𝑧) + ⋅ ⋅ ⋅ + 𝑃

0
(𝑧)) ̸≡ 0. (35)

By Lemma 14 and (35), we have

𝑚(𝑟,
1

𝑓 − 𝑎
) = 𝑆 (𝑟, 𝑓) , (36)

so that

𝑁(𝑟,
1

𝑓 − 𝑎
) = 𝑇 (𝑟, 𝑓) + 𝑆 (𝑟, 𝑓) . (37)

Hence 𝜆(𝑓 − 𝑎) = 𝜎(𝑓). Theorem 3 is thus proved.

Proof of Theorem 9. Suppose that 𝑦(𝑧) is a transcendental
meromorphic solution of (14). We rewrite (14) as

𝑦 (𝑧 + 2) − 2𝑦 (𝑧 + 1) + (𝐴 + 1) 𝑦 (𝑧) = 0. (38)

If 𝐴(𝑧) = −1, then by (38), we obtain

𝑦 (𝑧 + 2) − 2𝑦 (𝑧 + 1) = 0. (39)

We affirm that 𝜎(𝑦) ≥ 1. In fact, if 𝜎(𝑦) < 1, then 𝑦(𝑧) has
infinitely many zeros, or infinitely many poles. If 𝑦(𝑧) has
infinitely many zeros, then by (39), we see that if 𝑧

0
is a zero

of 𝑦(𝑧), then 𝑧
0
+ 𝑛, 𝑛 = 1, . . ., are also zeros of 𝑦(𝑧). Thus,
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𝜎(𝑦) ≥ 1. If 𝑦(𝑧) has infinitely many poles, then by using the
same method, we can obtain 𝜎(𝑦) ≥ 1.

Now we suppose that 𝐴(𝑧) ̸= − 1. Set 𝐴(𝑧) = 𝑃(𝑧)/𝑄(𝑧),
where 𝑃(𝑧) and 𝑄(𝑧) are nonzero polynomials. By (38), we
have

𝑄 (𝑧) 𝑦 (𝑧 + 2) − 2𝑄 (𝑧) 𝑦 (𝑧 + 1) + (𝑃 (𝑧) + 𝑄 (𝑧)) 𝑦 (𝑧) = 0.

(40)

Since

𝑄 (𝑧) + (−2𝑄 (𝑧)) + (𝑃 (𝑧) + 𝑄 (𝑧)) = 𝑃 (𝑧) ̸≡ 0, (41)

byTheorem 3, we see that 𝜎(𝑦) ≥ 1.
Further, if𝑃 and𝑄 are nonconstant polynomials such that

deg𝑃 ≥ deg𝑄, then (41) satisfies the condition of Theorem
C. Thus, we see that (14) has no rational solution. Thus,
Theorem 9 is proved.

Proof of Theorem 11. Clearly, (16) has no nonzero rational
solution.

Now suppose that 𝑓(𝑧) is a transcendental meromorphic
solution of (16) with 𝜎(𝑓) < ∞. By (16), we obtain

−𝐴
𝑙
= 𝐴
𝑛

𝑓 (𝑧 + 𝑛)

𝑓 (𝑧 + 𝑙)
+ ⋅ ⋅ ⋅ + 𝐴

𝑙+1

𝑓 (𝑧 + 𝑙 + 1)

𝑓 (𝑧 + 𝑙)

+ 𝐴
𝑙−1

𝑓 (𝑧 + 𝑙 − 1)

𝑓 (𝑧 + 𝑙)
+ ⋅ ⋅ ⋅ + 𝐴

0

𝑓 (𝑧)

𝑓 (𝑧 + 𝑙)
.

(42)

Set

max {𝜎 (𝐴
𝑗
) : 0 ≤ 𝑗 ≤ 𝑛, 𝑗 ̸= 𝑙} = 𝑠 < 𝜎 (𝐴

𝑙
) = 𝜎 (43)

𝛿 (∞,𝐴
𝑙
) = 𝛿 > 0. (44)

Thus, we have

𝑚(𝑟, 𝐴
𝑙
) >

1

2
𝛿𝑇 (𝑟, 𝐴

𝑙
) . (45)

By Lemma 15, we see that for given 𝜀 (0 < 3𝜀 < 𝜎 − 𝑠),

𝑚(𝑟,
𝑓 (𝑧 + 𝑗)

𝑓 (𝑧 + 𝑙)
) = 𝑂 (𝑟

𝜎(𝑓)−1+𝜀

) , (0 ≤ 𝑗, 𝑙 ≤ 𝑛, 𝑗 ̸= 𝑙) .

(46)

Thus, by (42), (45), and (46), we have

1

2
𝛿𝑇 (𝑟, 𝐴

𝑙
)

≤ 𝑚 (𝑟, 𝐴
𝑙
)

≤ ∑

0≤𝑗≤𝑛,𝑗 ̸= 𝑙

𝑚(𝑟, 𝐴
𝑗
) + ∑

0≤𝑗≤𝑛,𝑗 ̸= 𝑙

𝑚(𝑟,
𝑓 (𝑧 + 𝑗)

𝑓 (𝑧 + 𝑙)
)

≤ ∑

0≤𝑗≤𝑛,𝑗 ̸= 𝑙

𝑇 (𝑟, 𝐴
𝑗
) + ∑

0≤𝑗≤𝑛,𝑗 ̸= 𝑙

𝑂(𝑟
𝜎(𝑓)−1+𝜀

)

≤ ∑

0≤𝑗≤𝑛,𝑗 ̸= 𝑙

𝑇 (𝑟, 𝐴
𝑗
) + 𝑂 (𝑟

𝜎(𝑓)−1+𝜀

) .

(47)

By (43), we see that for given 𝜀 above,

𝑇 (𝑟, 𝐴
𝑗
) < 𝑟
𝑠+𝜀

, (0 ≤ 𝑗 ≤ 𝑛, 𝑗 ̸= 𝑙) . (48)

Since 𝜎(𝐴
𝑙
) = 𝜎, we see that there is a sequence 𝑟

𝑗
(1 < 𝑟

1
<

𝑟
2
< ⋅ ⋅ ⋅ , 𝑟

𝑗
→ ∞) satisfying

𝑇 (𝑟
𝑗
, 𝐴
𝑙
) > 𝑟
𝜎−𝜀

𝑗
. (49)

Thus, by (47)–(49), we obtain

1

2
𝛿𝑟
𝜎−𝜀

𝑗
≤ (𝑛 − 1) 𝑟

𝑠+𝜀

𝑗
+𝑀𝑟
𝜎(𝑓)−1+𝜀

𝑗
. (50)

If we combine this with 3𝜀 < 𝜎 − 𝑠, it follows that
1

2
𝛿𝑟
𝜎−𝜀

𝑗
(1 + 𝑜 (1)) ≤ 𝑀𝑟

𝜎(𝑓)−1+𝜀

𝑗
. (51)

So that, it follows that 𝜎(𝑓) ≥ 𝜎 + 1. Thus, Theorem 11 is
proved.
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