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The robust almost periodic dynamical behavior is investigated for interval neural networks with mixed time-varying delays
and discontinuous activation functions. Firstly, based on the definition of the solution in the sense of Filippov for differential
equations with discontinuous right-hand sides and the differential inclusions theory, the existence and asymptotically almost
periodicity of the solution of interval network system are proved. Secondly, by constructing appropriate generalized Lyapunov
functional and employing linear matrix inequality (LMI) techniques, a delay-dependent criterion is achieved to guarantee the
existence, uniqueness, and global robust exponential stability of almost periodic solution in terms of LMIs. Moreover, as special
cases, the obtained results can be used to check the global robust exponential stability of a unique periodic solution/equilibrium
for discontinuous interval neural networks with mixed time-varying delays and periodic/constant external inputs. Finally, an
illustrative example is given to demonstrate the validity of the theoretical results.

1. Introduction

In the past few decades, there was an increasing interest in
different classes of neural networks such as Hopfield, cellular,
Cohen-Grossberg, and bidirectional associative neural net-
works due to their potential applications in many areas such
as classification, signal and image processing, parallel com-
puting, associate memories, optimization, and cryptography.
In the design of practical neural networks, the qualitative
analysis of neural network dynamics plays an important
role; for example, to solve problems of optimization, neural
control, and signal processing, neural networks have to be
designed in such a way that, for a given external input, they
exhibit only one globally asymptotically/exponentially stable
equilibrium point. Hence, exploring the global stability of
neural networks is of primary importance.

In recent years, the global stability of neural networks
with discontinuous activations has received extensive atten-
tion from a lot of scholars under the Filippov framework, see,
for example, [1–29] and references therein. In [1], Forti and

Nistri firstly dealt with the global asymptotic stability (GAS)
and global convergence in finite time of a unique equilibrium
point for neural networksmodeled by a differential equations
with discontinuous right-hand sides, and by using Lyapunov
diagonally stable (LDS) matrix and constructing suitable
Lyapunov function, several stability conditions were derived.
In [2, 3], by applying generalized Lyapunov approach and
𝑀-matrix, Forti et al. discussed the global exponential sta-
bility (GES) of neural networks with discontinuous or non-
Lipschitz activation functions. Arguing as in [1], in [4], Lu and
Chen dealt with GES and GAS of Cohen-Grossberg neural
networks with discontinuous activation functions. In [5–
11], by using differential inclusion and Lyapunov functional
approach, a series of results has been obtained for the global
stability of the unique equilibrium point of neural networks
with a single constant time-delay and discontinuous activa-
tions. In [12], under the framework of Filippov solutions,
by using matrix measure approach, Liu et al. investigated
the global dissipativity and quasi synchronization for the
time-varying delayed neural networks with discontinuous
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activations and parameter mismatches. In [13], similar to
the method employed in [12], Liu et al. discussed the quasi-
synchronization control issue of switched complex networks.

It is well known that equilibrium point can be regarded as
a special case of periodic solution for a neuron system with
arbitrary period or zero amplitude. Hence, through the study
on periodic solution, more general results can be obtained
than those of the study on equilibrium point for a neuron
system. Recently, at the same time to study the global stability
of the equilibrium point of neural networks with discontinu-
ous activation functions,much attention has been paid to deal
with the stability of periodic solution for various neural net-
work systems with discontinuous activations (see [15–29]).
Under the influence of Forti and Nistri, in [15], Chen et al.
considered the global convergence in finite time toward
a unique periodic solution for Hopfield neural networks with
discontinuous activations. In [16, 17], the authors explored the
periodic dynamical behavior of neural networks with time-
varying delays and discontinuous activation functions; some
conditions were proposed to ensure the existence and GES of
the unique periodic solution. In [17–23], under the Filippov
inclusion framework, by using Leray-Schauder alternative
theoremandLyapunov approach, the authors presented some
conditions on the existence and GES or GAS of the unique
periodic solution for Hopfield neural networks or BAM
neural networks with discontinuous activation functions. In
[24], take discontinuous activations as an example, Cheng
et al. presented the existence of anti-periodic solutions of
discontinuous neural networks. In [25, 26], Wu et al. dis-
cussed the existence and GES of the unique periodic solution
for neural networks with discontinuous activation functions
under impulsive control. In [28, 29], under the framework
of Filippov solutions, by using Lyapunov approach and 𝐻-
matrix, the authors presented the stability results of periodic
solution for delayed Cohen-Grossberg neural networks with
a single constant time-delay and discontinuous activation
functions.

It should be pointed out that the results reported in [1–
29] are concerned with the stability analysis of equilibrium
point or periodic solution and neglect the effect of almost
periodicity for neural networkswith discontinuous activation
functions. However, the almost periodicity is one of the
basic properties for dynamical neural systems and appears
to retrace their paths through phase space, but not exactly.
Meantime, almost periodic functions, with a superior spatial
structure, can be regarded as a generalization of periodic
functions. In practice, as shown in [30, 31], almost periodic
phenomenon is more common than periodic phenomenon,
and almost periodic oscillatory behavior is more accordant
with reality. Hence, exploring the global stability of almost
periodic solution of dynamical neural systems is of primary
importance. Very recently, under the framework of the theory
of Filippov differential inclusions, Allegretto et al. proved
the common asymptotic behavior of almost periodic solution
for discontinuous, delayed and impulsive neural networks
in [30]. In [31, 32], Lu and Chen, Qin et al. discussed the
existence and uniqueness of almost periodic solution (as
well as its global exponential stability) of delayed neural

networkswith almost periodic coefficients and discontinuous
activations. In [33], Wang and Huang studied the almost
periodicity for a class of delayed Cohen-Grossberg neural
networks with discontinuous activations. It should be noted
that the network model explored in [30–33] is a class of
discontinuous neural networks with a single constant time-
delay, and the stability conditions were achieved by using
Lyapunov diagonally stable matrix or 𝑀-matrix. Compared
with the stability conditions expressed in terms of LMIs,
it is obvious that the results obtained in [30–33] are very
conservative.

In hardware implementation of the neural networks,
due to unavoidable factors, such as modeling error, external
perturbation, and parameter fluctuation, the neural networks
model certainly involves uncertainties such as perturbations
and component variations, which will change the stability
of neural networks. Therefore, it is of great importance to
study the global robust stability of neural networks with time-
varying delay. Generally speaking, two kinds of parameter
uncertainty, the interval uncertainty and the norm-bounded
uncertainty, are considered frequently at present. In [34, 35],
based on Lyapunov stability theory and matrix inequality
analysis techniques, the global robust stability of a unique
equilibrium point for neural networks with norm-bounded
uncertainties and discontinuous neuron activations has been
discussed. In [36], Guo andHuang analyzed the global robust
stability for interval neural networks with discontinuous
activations. In [37], Liu and Cao discussed the robust state
estimation issue for time-varying delayed neural networks
with discontinuous activation functions via differential inclu-
sions, and some criteria have been established to guarantee
the existence of robust state estimator.

It should be noted that, in the above literatures [34–36],
almost all results treated of the robust stability of equilibrium
point for neural networks with parameter uncertainty and
discontinuous neuron activations. Moreover, most of the
above-mentioned results deal with only discrete time delays.
Forti et al. pointed out that it would be interesting to inves-
tigate discontinuous neural networks with more general
delays, such as time-varying or distributed ones. For example,
in electronic implementation of analog neural networks,
the delays between neurons are usually time varying and
sometimes vary violently with time due to the finite switching
speed of amplifiers and faults in the electrical circuit. This
motivates us to consider more general types of delays, such
as discrete time-varying and distributed ones, which are in
general more complex and, therefore, more difficult to be
dealt with. To the best of our knowledge, up to now, only a
few researchers dealt with the global robust stability issue for
almost periodic solution of discontinuous neural networks
with mixed time-varying delays, which motivates the work
of this paper.

In this paper, our aim is to study the delay-dependent
robust exponential stability problem for almost periodic
solution of interval neural networks withmixed time-varying
delays and discontinuous activation functions. Under the
framework of Filippov differential inclusions, by applying
the nonsmooth Lyapunov stability theory and employing
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the highly efficient LMI approach, a new delay-dependent
criterion is presented to ensure the existence and global
robust exponentially stability of almost periodic solution in
terms of LMIs. Moreover, the obtained conclusion is applied
to prove the existence and robust stability of periodic solution
(or equilibrium point) for neural networks with mixed time-
varying delays and discontinuous activations.

For convenience, some notation, are introduced as fol-
lows. R denotes the set of real numbers, R𝑛 denotes the 𝑛-
dimensional Euclidean space, andR𝑚×𝑛 denotes the set of all
𝑚 × 𝑛 real matrices. For any matrix 𝐴, 𝐴 > 0 (𝐴 < 0) means
that 𝐴 is positive definite (negative definite). 𝐴−1 denotes the
inverse of 𝐴. 𝐴𝑇 denotes the transpose of 𝐴. 𝜆max(𝐴) and
𝜆min(𝐴) denote the maximum and minimum eigenvalue of
𝐴, respectively.𝐸 denotes the identitymatrix with compatible
dimensions.The ellipsis “⋆” denotes the transposed elements
in symmetric positions. Given the vectors 𝑥 = (𝑥

1
, . . . , 𝑥

𝑛
)
𝑇,

𝑦 = (𝑦
1
, . . . , 𝑦

𝑛
)
𝑇

∈ R𝑛, ‖𝑥‖ = (∑
𝑛

𝑖=1
𝑥
2

𝑖
)
1/2, 𝑥𝑇𝑦 = ∑

𝑛

𝑖=1
𝑥
𝑖
𝑦
𝑖
.

‖𝐴‖ denotes the 2-norm of 𝐴; that is, ‖𝐴‖ = √𝜆(𝐴𝑇𝐴),
where 𝜆(𝐴

𝑇

𝐴) denotes the spectral radius of 𝐴𝑇

𝐴. For 𝑟 > 0,
𝐶([−𝑟, 0];R𝑛

) denotes the family of continuous function 𝜑

from [−𝑟, 0] to R𝑛 with the norm ‖𝜑‖ = sup
−𝑟≤𝑠≤0

|𝜑(𝑠)|. �̇�(𝑡)
denotes the derivative of 𝑥(𝑡).

Given a set 𝐶 ⊂ R𝑛, 𝐾[𝐶] denotes the closure of the
convex hull of 𝐶; 𝑃

𝑘𝑐
(𝐶) denotes the collection of all non-

empty, closed, and convex subsets of 𝐶.
Let 𝑉 : R𝑛

→ R be a locally Lipschitz continuous fun-
ction. Clarke’s generalized gradient [38] of 𝑉 at 𝑥 is defined
by

𝜕𝑉 (𝑥)

= 𝐾[{ lim
𝑖→∞

∇𝑉 (𝑥
𝑖
) : lim

𝑖→∞

𝑥
𝑖
= 𝑥, 𝑥

𝑖
∈ R

𝑛

\ Ω
𝑉

∪ M}] ,

(1)

whereΩ
𝑉

⊂ R𝑛 is the set of Lebesguemeasure zero where∇𝑉

does not exist and M ⊂ R𝑛 is an arbitrary set with measure
zero.

Let N ⊂ 𝑅
𝑛. A set-valued map 𝐹 : N → 𝑃

𝑘𝑐
(R𝑛

) is
said to be measurable, if, for all 𝑦 ∈ R𝑛, R+-valued function
𝑥 → 𝑑(𝑦, 𝐹(𝑥)) = inf{‖𝑦−𝜐‖, 𝜐 ∈ 𝐹(𝑥)} is measurable.This
definition of measurability is equivalent to saying that

Graph (𝐹)

= {(𝑥, 𝜐) ∈ N × R
𝑛

, 𝜐 ∈ 𝐹 (𝑥)} ∈ L (N) × B (R
𝑛

)

(2)

(graph measurability), where L(N) is the Lebesgue 𝜎-field
ofN andB(R𝑛

) is the Borel 𝜎-field of R𝑛.
Let 𝑌, 𝑍 be Hausdorff topological spaces and 𝐺(⋅) : 𝑌 →

2
𝑍

\ {0}. We say that the set-valued map 𝐺(⋅) is upper
semicontinuous, if, for all nonempty closed subset 𝐶 of 𝑍,
𝐺
−1

(𝐶) = {𝑦 ∈ 𝑌 : 𝐺(𝑦)⋂𝐶 ̸= 0} is closed in 𝑌.
The set-valued map 𝐺(⋅) is said to have a closed (convex,

compact) image if, for each 𝑥 ∈ 𝐸, 𝐺(𝑥) is closed (convex,
compact).

The rest of this paper is organized as follows. In Section 2,
the model formulation and some preliminaries are given. In
Section 3, the existence and asymptotically almost periodic
behavior of Filippov solutions are analyzed. Moreover, the
proof of the existence of almost periodic solution is given.
The global robust exponential stability is discussed, and a
delay-dependent criterion is established in terms of LMIs. In
Section 4, a numerical example is presented to demonstrate
the validity of the proposed results. Some conclusions are
drawn in Section 5.

2. Model Description and Preliminaries

Consider the following interval neural network model with
discrete and distributed time delays:

�̇� (𝑡) = −𝐷𝑥 (𝑡) + 𝐴𝑔 (𝑥 (𝑡)) + 𝐵𝑔 (𝑥 (𝑡 − 𝜏 (𝑡)))

+ 𝐶∫

𝑡

𝑡−𝜎(𝑡)

𝑔 (𝑥 (𝑠)) 𝑑𝑠 + 𝐼 (𝑡) ,

𝐷 ∈ D, 𝐴 ∈ A, 𝐵 ∈ B, 𝐶 ∈ C,

(3)

where 𝑥(𝑡) = (𝑥
1
(𝑡), 𝑥

2
(𝑡), . . . , 𝑥

𝑛
(𝑡))

𝑇 is the vector of neuron
states at time 𝑡, 𝐷 = diag(𝑑

1
, 𝑑

2
, . . . , 𝑑

𝑛
) is an 𝑛 × 𝑛 diagonal

matrix, 𝑑
𝑖
> 0, 𝑖 = 1, . . . , 𝑛, are the neuron self-inhibition,

𝐴 = (𝑎
𝑖𝑗
)
𝑛×𝑛

, 𝐵 = (𝑏
𝑖𝑗
)
𝑛×𝑛

, and 𝐶 = (𝑐
𝑖𝑗
)
𝑛×𝑛

are real connection
weight matrices representing the weighting coefficients of the
neurons, 𝑔(𝑥(𝑡)) = (𝑔

1
(𝑥
1
(𝑡)), 𝑔

2
(𝑥
2
(𝑡)), . . . , 𝑔

𝑛
(𝑥
𝑛
(𝑡)))

𝑇, 𝑔
𝑖
,

𝑖 = 1, . . . , 𝑛, represent the neuron input-output activations,
𝐼(𝑡) = (𝐼

1
(𝑡), 𝐼

2
(𝑡), . . . , 𝐼

𝑛
(𝑡))

𝑇 is a real vector function rep-
resenting the external inputs of the neuron at time 𝑡, and
the functions and 𝜏(𝑡) and 𝜎(𝑡) denote the discrete and
distributed time-varying delays, respectively, satisfying

0 ≤ 𝜏 (𝑡) ≤ 𝜏
𝑀
, ̇𝜏 (𝑡) ≤ 𝜏

𝐷
< 1,

0 ≤ 𝜎 (𝑡) ≤ 𝜎
𝑀
, �̇� (𝑡) ≤ 𝜎

𝐷
< 1.

(4)

We have D = [𝐷,𝐷] = {𝐷 = diag(𝑑
𝑖
) : 0 < 𝑑

𝑖
≤ 𝑑

𝑖
≤ 𝑑

𝑖
, 𝑖 =

1, . . . , 𝑛}, 𝐷 = diag(𝑑
𝑖
), 𝐷 = diag(𝑑

𝑖
), A = [𝐴, 𝐴] = {𝐴 =

(𝑎
𝑖𝑗
) : 𝑎

𝑖𝑗
≤ 𝑎

𝑖𝑗
≤ 𝑎

𝑖𝑗
, 𝑖, 𝑗 = 1, . . . , 𝑛}, 𝐴 = (𝑎

𝑖𝑗
), 𝐴 = (𝑎

𝑖𝑗
),

B=[𝐵, 𝐵]= {𝐵 = (𝑏
𝑖𝑗
) : 𝑏

𝑖𝑗
≤𝑏

𝑖𝑗
≤ 𝑏

𝑖𝑗
, 𝑖, 𝑗 = 1, . . . , 𝑛}, 𝐵=(𝑏

𝑖𝑗
),

𝐵 = (𝑏
𝑖𝑗
), and C = [𝐶, 𝐶] = {𝐶 = (𝑐

𝑖𝑗
) : 𝑐

𝑖𝑗
≤ 𝑐

𝑖𝑗
≤ 𝑐

𝑖𝑗
, 𝑖, 𝑗 =

1, . . . , 𝑛}, 𝐶 = (𝑐
𝑖𝑗
), 𝐶 = (𝑐

𝑖𝑗
).

The activation function 𝑔 satisfies the following assump-
tion.

(𝐴
1
): (1) 𝑔

𝑖
, 𝑖 = 1, . . . , 𝑛, is piecewise continuous; that

is, 𝑔
𝑖
is continuous in R except a countable set of

jump discontinuous points and in every compact set
of R has only a finite number of jump discontinuous
points.

(2) 𝑔
𝑖
, 𝑖 = 1, 2, . . . , 𝑛, is nondecreasing.
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System (3) can be equivalently written as

�̇� (𝑡) = − (𝐷
0
+ 𝐸

𝐷
𝐹
𝐷
𝑁
𝐷
) 𝑥 (𝑡) + (𝐴

0
+ 𝐸

𝐴
𝐹
𝐴
𝑁
𝐴
) 𝑔 (𝑥 (𝑡))

+ (𝐵
0
+ 𝐸

𝐵
𝐹
𝐵
𝑁
𝐵
) 𝑔 (𝑥 (𝑡 − 𝜏 (𝑡)))

+ (𝐶
0
+ 𝐸

𝐶
𝐹
𝐶
𝑁
𝐶
) ∫

𝑡

𝑡−𝜎(𝑡)

𝑔 (𝑥 (𝑠)) 𝑑𝑠 + 𝐼 (𝑡) ,

(5)

where 𝐹
𝑘
∈ 𝐹, 𝑘 = 𝐷,𝐴, 𝐵, 𝐶,

𝐹 = {diag (𝛿
11
, . . . , 𝛿

1𝑛
, . . . , 𝛿

𝑛1
, . . . , 𝛿

𝑛𝑛
) ∈ 𝑅

𝑛
2
×𝑛
2

:


𝛿
𝑖𝑗


≤ 1, 𝑖, 𝑗 = 1, 2, . . . , 𝑛} ,

𝐷
0
=

1

2
(𝐷 + 𝐷) , 𝐴

0
=

1

2
(𝐴 + 𝐴) ,

𝐵
0
=

1

2
(𝐵 + 𝐵) , 𝐶

0
=

1

2
(𝐶 + 𝐶) ,

𝐸
𝑘
= (√𝛽

(𝑘)

11
𝑒
1
, . . . , √𝛽

(𝑘)

1𝑛
𝑒
1
, . . . , √𝛽

(𝑘)

𝑛1
𝑒
𝑛
, . . . , √𝛽

(𝑘)

𝑛𝑛
𝑒
𝑛
)
𝑛×𝑛
2

,

𝑁
𝑘
= (√𝛽

(𝑘)

11
𝑒
1
, . . . , √𝛽

(𝑘)

1𝑛
𝑒
𝑛
, . . . , √𝛽

(𝑘)

𝑛1
𝑒
1
, . . . , √𝛽

(𝑘)

𝑛𝑛
𝑒
𝑛

)

𝑇

𝑛
2
×𝑛

,

(6)

where 𝑒
𝑖
∈ 𝑅

𝑛 denotes the column vector with 𝑖th element to
be 1 and others to be 0.

Under assumption (𝐴
1
), 𝑔(𝑥) is undefined at the points

where 𝑔(𝑥) is discontinuous, and 𝐾[𝑔(𝑥)] = (𝐾[𝑔
1
(𝑥
1
)],

. . . , 𝐾[𝑔
𝑛
(𝑥
𝑛
)])

𝑇, where 𝐾[𝑔
𝑖
(𝑥
𝑖
)] = [𝑔

𝑖
(𝑥
−

𝑖
), 𝑔

𝑖
(𝑥
+

𝑖
)], 𝑖 = 1,

. . . , 𝑛. System (3) is a differential equation with discontinuous
right-hand side. For system (3), we adopt the following
definition of the solution in the sense of Filippov [39].

Definition 1. A function 𝑥 : [−𝜄, 𝑇) → R𝑛, 𝑇 ∈ (0, +∞] is a
solution of system (3) on [−𝜄, 𝑇) if

(1) 𝑥(𝑡) is continuous on [−𝜄, 𝑇) and absolutely continu-
ous on [0, 𝑇);

(2) 𝑥(𝑡) satisfies

�̇� (𝑡) ∈ 𝜙 (𝑥, 𝑡) = − (𝐷
0
+ 𝐸

𝐷
𝐹
𝐷
𝑁
𝐷
) 𝑥 (𝑡)

+ (𝐴
0
+ 𝐸

𝐴
𝐹
𝐴
𝑁
𝐴
)𝐾 [𝑔 (𝑥 (𝑡))]

+ (𝐵
0
+ 𝐸

𝐵
𝐹
𝐵
𝑁
𝐵
)𝐾 [𝑔 (𝑥 (𝑡 − 𝜏 (𝑡)))]

+ (𝐶
0
+ 𝐸

𝐶
𝐹
𝐶
𝑁
𝐶
) ∫

𝑡

𝑡−𝜎(𝑡)

𝐾[𝑔 (𝑥 (𝑠))] 𝑑𝑠

+ 𝐼 (𝑡) , for a.a. 𝑡 ∈ [0, 𝑇) ,

(7)
where 𝜄 = max{𝜏

𝑀
, 𝜎

𝑀
}.

By the assumption (𝐴
1
)(1), it is easy to check that 𝜙(𝑥, 𝑡)

is an upper semicontinuous set-valued map with nonempty,
compact, and convex values. Hence, 𝜙(𝑥, 𝑡) is measurable
[40]. By themeasurable selection theorem, if 𝑥(𝑡) is a solution

of system (3), then there exists a measurable function 𝛾 =

(𝛾
1
, 𝛾
2
, . . . , 𝛾

𝑛
)
𝑇

: [−𝜄, 𝑇) → R𝑛 such that 𝛾(𝑡) ∈ 𝐾[𝑔(𝑥(𝑡))]

and

�̇� (𝑡) = − (𝐷
0
+ 𝐸

𝐷
𝐹
𝐷
𝑁
𝐷
) 𝑥 (𝑡)

+ (𝐴
0
+ 𝐸

𝐴
𝐹
𝐴
𝑁
𝐴
) 𝛾 (𝑡) + (𝐵

0
+ 𝐸

𝐵
𝐹
𝐵
𝑁
𝐵
) 𝛾 (𝑡 − 𝜏 (𝑡))

+ (𝐶
0
+ 𝐸

𝐶
𝐹
𝐶
𝑁
𝐶
) ∫

𝑡

𝑡−𝜎(𝑡)

𝛾 (𝑠) 𝑑𝑠 + 𝐼 (𝑡) ,

(8)

for a.a. 𝑡 ∈ [0, 𝑇).
The function 𝛾(𝑡) in (8) is called an output solution

associated with the state variable 𝑥(𝑡) and represents the
vector of neural network outputs.

Definition 2. For any continuous function 𝜙 : [−𝜄, 0] → R𝑛

and any measurable selection 𝜓 : [−𝜄, 0] → R𝑛, such that
𝜓(𝑠) ∈ 𝐾[𝑔(𝜙(𝑠))] for a.a. 𝑠 ∈ [−𝜄, 0]. An absolute continuous
function 𝑥(𝑡) = 𝑥(𝑡, 𝜙, 𝜓) associated with a measurable
function 𝛾(𝑡) is said to be a solution of the initial value
problem (IVP) for system (3) on [0, 𝑇) (𝑇 might be ∞) with
initial value (𝜙(𝑠), 𝜓(𝑠)), 𝑠 ∈ [−𝜄, 0], if

�̇� (𝑡) = − (𝐷
0
+ 𝐸

𝐷
𝐹
𝐷
𝑁
𝐷
) 𝑥 (𝑡) + (𝐴

0
+ 𝐸

𝐴
𝐹
𝐴
𝑁
𝐴
) 𝛾 (𝑡)

+ (𝐵
0
+ 𝐸

𝐵
𝐹
𝐵
𝑁
𝐵
) 𝛾 (𝑡 − 𝜏 (𝑡))

+ (𝐶
0
+ 𝐸

𝐶
𝐹
𝐶
𝑁
𝐶
) ∫

𝑡

𝑡−𝜎(𝑡)

𝛾 (𝑠) 𝑑𝑠 + 𝐼 (𝑡) ,

𝑥 (𝑠) = 𝜙 (𝑠) , ∀𝑠 ∈ [−𝜄, 0] ,

𝛾 (𝑠) = 𝜓 (𝑠) , for a.a. 𝑠 ∈ [−𝜄, 0] .

(9)

Definition 3 (see [41]). A continuous function 𝑥(𝑡) : R →

R𝑛 is said to be almost periodic on R if, for any scalar 𝜀 > 0,
there exist scalars 𝑙 = 𝑙(𝜀) > 0 and 𝜔 = 𝜔(𝜀) in any interval
with the length of 𝑙, such that ‖𝑥(𝑡 + 𝜔) − 𝑥(𝑡)‖ < 𝜀 for all
𝑡 ∈ R.

Definition 4. The almost periodic solution 𝑥
∗

(𝑡) of interval
neural network (3) is said to be global robust exponentially
stable if, for any 𝐷 ∈ D, 𝐴 ∈ A, 𝐵 ∈ B, 𝐶 ∈ C, there exist
scalars 𝛼 > 0 and 𝛿 > 0, such that

𝑥 (𝑡, 𝜙, 𝜓) − 𝑥
∗

(𝑡)
 ≤ 𝛼𝑒

−𝛿𝑡

, 𝑡 ≥ 0, (10)

where 𝑥(𝑡, 𝜙, 𝜓) is the solution of system (3) with initial value
(𝜙(𝑠), 𝜓(𝑠)), 𝑠 ∈ [−𝜄, 0] and 𝛿 is called as the exponential
convergence rate.

Lemma 5 (chain rule [38]). If 𝑉(𝑥) : R𝑛

→ R is C-reg-
ular and 𝑥(𝑡) : [0, +∞) → R𝑛 is absolutely continuous
on any compact interval of [0, +∞), then 𝑥(𝑡) and 𝑉(𝑥(𝑡)) :

[0, +∞) → R are differential for a.a. 𝑡 ∈ [0, +∞), and

�̇� (𝑥 (𝑡)) = ⟨𝜍, �̇� (𝑡)⟩, ∀𝜍 ∈ 𝜕𝑉 (𝑥) . (11)
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Lemma 6 (Jensen’s inequality [17]). For any constant matrix
𝐴 > 0, any scalars 𝑎 and 𝑏 with 𝑏 > 𝑎 and a vector function
𝑥(𝑡) : [𝑎, 𝑏] → R𝑛 such that the integrals are concerned as
well defined, then

(∫

𝑏

𝑎

𝑥 (𝑠) 𝑑𝑠)

𝑇

𝐴(∫

𝑏

𝑎

𝑥 (𝑠) 𝑑𝑠) ≤ (𝑏 − 𝑎) ∫

𝑏

𝑎

𝑥
𝑇

(𝑠) 𝐴𝑥 (𝑠) 𝑑𝑠.

(12)

Lemma 7 (see [42]). Given any real matrices 𝑄
1
, 𝑄

2
, 𝑄

3
of

appropriate dimensions and a scalar 𝜀 > 0, if 𝑄
3

= 𝑄
𝑇

3
> 0,

then the following inequality holds:

𝑄
𝑇

1
𝑄
2
+ 𝑄

𝑇

2
𝑄
1
≤ 𝜀𝑄

𝑇

1
𝑄
3
𝑄
1
+

1

𝜀
𝑄
𝑇

2
𝑄
−1

3
𝑄
2
. (13)

Lemma 8 (see [35]). Let 𝑈, 𝑉, and 𝑊 be real matrices of
appropriate dimension with 𝑀 satisfying 𝑀 = 𝑀

𝑇, then

𝑀 + 𝑈𝑉𝑊 + 𝑊
𝑇

𝑉
𝑇

𝑈
𝑇

< 0, (14)

for all 𝑉𝑇

𝑉 ≤ 𝐸, if and only if there exists a positive constant
𝛽, such that

𝑀 + 𝛽
−1

𝑈𝑈
𝑇

+ 𝛽𝑊
𝑇

𝑊 < 0. (15)

Lemma 9 (see [36]). For any 𝐴 ∈ [𝐴,𝐴], 𝐵 ∈ [𝐵, 𝐵], one has

‖𝐴‖ ≤
𝐴0

 +
𝐻𝐴

 , ‖𝐵‖ ≤
𝐵0

 +
𝐻𝐵

 , (16)

where 𝐴
0

= (𝐴 + 𝐴)/2, 𝐻
𝐴

= (𝐴 − 𝐴)/2, 𝐵
0

= (𝐵 + 𝐵)/2,
𝐻
𝐵
= (𝐵 − 𝐵)/2.

Lemma 10 (see [43]). For sequence {𝑓
𝑛
} ⊂ 𝐿(𝐸), if there exists

𝐹(𝑥) ∈ 𝐿(𝐸), such that |𝑓
𝑛
(𝑥)| < 𝐹(𝑥), and lim

𝑛→∞
𝑓
𝑛

= 𝑓,
a.e. 𝑥 ∈ 𝐸, then 𝑓 ∈ 𝐿(𝐸), and

lim
𝑛→∞

∫
𝐸

𝑓
𝑛
(𝑥) 𝑑𝑥 = ∫

𝐸

lim
𝑛→∞

𝑓
𝑛
(𝑥) 𝑑𝑥 = ∫

𝐸

𝑓 (𝑥) 𝑑𝑥.

(17)

Before proceeding to the main results, the following
assumptions need further to be made.

(𝐴
2
): 𝐼

𝑖
(𝑡), 𝜏(𝑡), and 𝜎(𝑡) are continuous functions and

possess almost periodic property that is, for any 𝜀 > 0,
there exist 𝑙 = 𝑙(𝜀) > 0 and 𝜔 = 𝜔(𝜀) in any interval
with the length of 𝑙, such that

𝐼𝑖 (𝑡 + 𝜔) − 𝐼
𝑖
(𝑡)

 < 𝜀,

|𝜏 (𝑡 + 𝜔) − 𝜏 (𝑡)| < 𝜀,

|𝜎 (𝑡 + 𝜔) − 𝜎 (𝑡)| < 𝜀.

(18)

(𝐴
3
): For any 𝜂

𝑖
∈ 𝐾[𝑔

𝑖
(𝑥
𝑖
)], 𝜁

𝑖
∈ 𝐾[𝑔

𝑖
(𝑦
𝑖
)], 𝜁

𝑖
̸= 𝜂
𝑖
, there

exists constant 𝑒
𝑖
> 0, such that

𝜂
𝑖
− 𝜁

𝑖

𝑥
𝑖
− 𝑦

𝑖

≤ 𝑒
𝑖
, 𝑖 = 1, 2, . . . , 𝑛. (19)

(𝐴
4
): For a given constant 𝛿 > 0, there exist positive
matrices 𝑃, 𝑅, and 𝐻 and a positive definite diagonal
matrix 𝑄, such that

Θ =

(
(
(
(
(
(

(

Π
1

𝑃𝐴
0

𝑃𝐵
0

𝑃𝐶
0

𝑃𝐸
𝐷

𝑃𝐸
𝐴

𝑃𝐸
𝐵

𝑃𝐸
𝐶

⋆ Π
2

𝑄𝐵
0

𝑄𝐶
0

𝑄𝐸
𝐷

𝑄𝐸
𝐴

𝑄𝐸
𝐵

𝑄𝐸
𝐶

⋆ ⋆ Π
3

0 0 0 0 0

⋆ ⋆ ⋆ Π
4

0 0 0 0

⋆ ⋆ ⋆ ⋆ −𝛼
1
𝐸 0 0 0

⋆ ⋆ ⋆ ⋆ ⋆ −𝛼
2
𝐸 0 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −𝛼
3
𝐸 0

⋆ ⋆ ⋆ ⋆ ⋆ ⋆ ⋆ −𝛼
4
𝐸

)
)
)
)
)
)

)

< 0, (20)

whereΠ
1
= Υ

11
+ 𝛼

1
𝑁
𝑇

𝐷
𝑁
𝐷
, Υ

11
= −𝑄𝐷

0
−𝐷

𝑇

0
𝑄+ 2𝛿𝑃,Π

2
=

Υ
22

+ 𝛼
2
𝑁
𝑇

𝐴
𝑁
𝐴
, Υ

22
= 𝑄𝐴

0
+ 𝐴

𝑇

0
𝑄+ 𝛿𝑄+ 𝑒

𝛿𝜏
𝑀𝑅+ 𝑒

𝛿𝜎
𝑀𝜎

𝑀
𝐻,

Π
3
= −𝑅 + 𝛼

3
𝑁
𝑇

𝐵
𝑁
𝐵
, Π

4
= −((1 − 𝜎

𝐷
)/𝜎

𝑀
)𝐻 + 𝛼

4
𝑁
𝑇

𝐶
𝑁
𝐶
.

3. Main Results

Theorem 11. Suppose that assumptions (𝐴
1
), (𝐴

2
), and (𝐴

4
)

are satisfied. Then interval neural network system (3) has a
solution of IVP on [0, +∞) for any initial value (𝜙(𝑠), 𝜓(𝑠)),
𝑠 ∈ [−𝜄, 0].

Proof. For any initial value (𝜙(𝑠), 𝜓(𝑠)), 𝑠 ∈ [−𝜄, 0], similar
to the proof of Lemma 1 in [2], under the assumptions

(𝐴
1
)(1), system (3) has a local solution 𝑥(𝑡) associated with

a measurable function 𝛾(𝑡) with initial value (𝜙(𝑠), 𝜓(𝑠)), 𝑠 ∈

[−𝜄, 0] on [0, 𝑇), where 𝑇 ∈ (0, +∞) or 𝑇 = +∞, and [0, 𝑇) is
themaximal right-side existence interval of the local solution.

Consider the following Lyapunov functional candidate:

𝑉 (𝑡) = 𝑒
𝛿𝑡

𝑥
𝑇

(𝑡) 𝑃𝑥 (𝑡) + 2

𝑛

∑

𝑖=1

𝑒
𝛿𝑡

𝑞
𝑖
∫

𝑥
𝑖
(𝑡)

0

𝑔
𝑖
(𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡−𝜏(𝑡)

𝑒
𝛿(𝑠+𝜏

𝑀
)

𝛾
𝑇

(𝑠) 𝑅𝛾 (𝑠) 𝑑𝑠

+ ∫

0

−𝜎(𝑡)

∫

𝑡

𝑡+𝜃

𝑒
𝛿(𝑠+𝜎

𝑀
)

𝛾
𝑇

(𝑠)𝐻𝛾 (𝑠) 𝑑𝑠 𝑑𝜃.

(21)
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By Lemma 5, calculating the time derivative of𝑉(𝑡) along the
local solution of system (3) on [0, 𝑇), it yields

�̇� (𝑡) = 𝛿𝑒
𝛿𝑡

𝑥
𝑇

(𝑡) 𝑃𝑥 (𝑡)

+ 2𝑒
𝛿𝑡

𝑥
𝑇

(𝑡) 𝑃 [− (𝐷
0
+ 𝐸

𝐷
𝐹
𝐷
𝑁
𝐷
) 𝑥 (𝑡)

+ (𝐴
0
+ 𝐸

𝐴
𝐹
𝐴
𝑁
𝐴
) 𝛾 (𝑡)

+ (𝐵
0
+ 𝐸

𝐵
𝐹
𝐵
𝑁
𝐵
) 𝛾 (𝑡 − 𝜏 (𝑡))

+ (𝐶
0
+ 𝐸

𝐶
𝐹
𝐶
𝑁
𝐶
)

× ∫

𝑡

𝑡−𝜎(𝑡)

𝛾 (𝑠) 𝑑𝑠 + 𝐼 (𝑡)]

+ 2𝑒
𝛿𝑡

𝛾
𝑇

(𝑡) 𝑄 [− (𝐷
0
+ 𝐸

𝐷
𝐹
𝐷
𝑁
𝐷
) 𝑥 (𝑡)

+ (𝐴
0
+ 𝐸

𝐴
𝐹
𝐴
𝑁
𝐴
) 𝛾 (𝑡)

+ (𝐵
0
+ 𝐸

𝐵
𝐹
𝐵
𝑁
𝐵
) 𝛾 (𝑡 − 𝜏 (𝑡))

+ (𝐶
0
+ 𝐸

𝐶
𝐹
𝐶
𝑁
𝐶
)

× ∫

𝑡

𝑡−𝜎(𝑡)

𝛾 (𝑠) 𝑑𝑠 + 𝐼 (𝑡)]

+ 2𝛿𝑒
𝛿𝑡

𝑛

∑

𝑖=1

𝑞
𝑖
∫

𝑥
𝑖
(𝑡)

0

𝑔
𝑖
(𝑠) 𝑑𝑠

+ 𝑒
𝛿(𝑡+𝜏
𝑀
)

𝛾
𝑇

(𝑡) 𝑅𝛾 (𝑡)

− (1 − ̇𝜏 (𝑡)) 𝑒
𝛿(𝑡+𝜏
𝑀
−𝜏(𝑡))

𝛾
𝑇

(𝑡 − 𝜏 (𝑡)) 𝑅𝛾 (𝑡 − 𝜏 (𝑡))

+ 𝜎 (𝑡) 𝑒
𝛿(𝑡+𝜎

𝑀
)

𝛾
𝑇

(𝑡)𝐻𝛾 (𝑡)

− (1 − �̇� (𝑡)) ∫

𝑡

𝑡−𝜎(𝑡)

𝑒
𝛿(𝑠+𝜎

𝑀
)

𝛾
𝑇

(𝑠)𝐻𝛾 (𝑠) 𝑑𝑠.

(22)

Without loss of generality, we can suppose that 0 ∈ 𝐾[𝑔(0)].
In fact, if this is not the case, set𝐺(𝑥) = 𝑔(𝑥)−𝜂, 𝜂 ∈ 𝐾[𝑔(0)].
Then system (8) could be equivalently changed as

�̇� (𝑡) = − (𝐷
0
+ 𝐸

𝐷
𝐹
𝐷
𝑁
𝐷
) 𝑥 (𝑡) + (𝐴

0
+ 𝐸

𝐴
𝐹
𝐴
𝑁
𝐴
) 𝛾 (𝑡)

+ (𝐵
0
+ 𝐸

𝐵
𝐹
𝐵
𝑁
𝐵
) 𝛾 (𝑡 − 𝜏 (𝑡))

+ (𝐶
0
+ 𝐸

𝐶
𝐹
𝐶
𝑁
𝐶
) ∫

𝑡

𝑡−𝜎(𝑡)

𝛾 (𝑠) 𝑑𝑠 + 𝐼 (𝑡) ,

(23)

where 𝛾(𝑡) = 𝛾(𝑡) − 𝜂 ∈ 𝐾[𝐺(𝑥(𝑡))], for a.a. 𝑡 ∈ [0, 𝑇),
and 𝐼(𝑡) = ((𝐴

0
+ 𝐸

𝐴
𝐹
𝐴
𝑁
𝐴
) + (𝐵

0
+ 𝐸

𝐵
𝐹
𝐵
𝑁
𝐵
) + 𝜎(𝑡)(𝐶

0
+

𝐸
𝐶
𝐹
𝐶
𝑁
𝐶
))𝜂 + 𝐼(𝑡). It is obvious that 0 ∈ 𝐾[𝐺(0)]. In fact,

we can choose a sufficiently small constant 0 < 𝛿 < 𝑑 =

min{𝑑
1
, 𝑑

2
, . . . , 𝑑

𝑛
}, under the assumption (𝐴

1
)(2) and 0 ∈

𝐾[𝑔
𝑖
(0)], such that

𝛿∫

𝑥
𝑖
(𝑡)

0

𝑔
𝑖
(𝑠) 𝑑𝑠 ≤ 𝛿𝑥

𝑖
(𝑡) 𝛾

𝑖
(𝑡) ≤ 𝑑𝑥

𝑖
(𝑡) 𝛾

𝑖
(𝑡) . (24)

Using Lemmas 6 and 7, we can obtain that

�̇� (𝑡) ≤ 𝑒
𝛿𝑡

{𝑥
𝑇

(𝑡) (2𝛿𝑃 − 2 (𝐷
0
+ 𝐸

𝐷
𝐹
𝐷
𝑁
𝐷
)) 𝑥 (𝑡)

+ 2𝑥
𝑇

(𝑡) 𝑃 (𝐴
0
+ 𝐸

𝐴
𝐹
𝐴
𝑁
𝐴
) 𝛾 (𝑡)

+ 2𝑥
𝑇

(𝑡) 𝑃 (𝐵
0
+ 𝐸

𝐵
𝐹
𝐵
𝑁
𝐵
) 𝛾 (𝑡 − 𝜏 (𝑡))

+ 2𝑥
𝑇

(𝑡) 𝑃 (𝐶
0
+ 𝐸

𝐶
𝐹
𝐶
𝑁
𝐶
) ∫

𝑡

𝑡−𝜎(𝑡)

𝛾 (𝑠) 𝑑𝑠

+ 2𝛾
𝑇

(𝑡) 𝑄 (𝐴
0
+ 𝐸

𝐴
𝐹
𝐴
𝑁
𝐴
) 𝛾 (𝑡)

+ 2𝛾
𝑇

(𝑡) 𝑄 (𝐵
0
+ 𝐸

𝐵
𝐹
𝐵
𝑁
𝐵
) 𝛾 (𝑡 − 𝜏 (𝑡))

+ 2𝛾
𝑇

(𝑡) 𝑄 (𝐶
0
+ 𝐸

𝐶
𝐹
𝐶
𝑁
𝐶
)

× ∫

𝑡

𝑡−𝜎(𝑡)

𝛾 (𝑠) 𝑑𝑠 + 𝛿𝛾
𝑇

(𝑡) 𝑄𝛾 (𝑡)

+ 𝑒
𝛿𝜏
𝑀𝛾

𝑇

(𝑡) 𝑅𝛾 (𝑡)

− (1 − 𝜏
𝐷
) 𝛾

𝑇

(𝑡 − 𝜏 (𝑡)) 𝑅𝛾 (𝑡 − 𝜏 (𝑡))

+ 𝜎
𝑀
𝑒
𝛿𝜎
𝑀𝛾

𝑇

(𝑡)𝐻𝛾 (𝑡)

−
1 − 𝜎

𝐷

𝜎
𝑀

∫

𝑡

𝑡−𝜎(𝑡)

𝛾
𝑇

(𝑠) 𝑑𝑠𝐻∫

𝑡

𝑡−𝜎(𝑡)

𝛾 (𝑠) 𝑑𝑠}

+
𝑒
𝛿𝑡

𝛿
(𝐼
𝑇

(𝑡) 𝑃𝐼 (𝑡) + 𝐼
𝑇

(𝑡) 𝑄𝐼 (𝑡))

= 𝑒
𝛿𝑡

𝑧
𝑇

Θ
1
𝑧 +

𝑒
𝛿𝑡

𝛿
(𝐼
𝑇

(𝑡) 𝑃𝐼 (𝑡) + 𝐼
𝑇

(𝑡) 𝑄𝐼 (𝑡))

≤ 𝑒
𝛿𝑡

𝑧
𝑇

Θ
1
𝑧 + 𝜆max (𝑃 + 𝑄)

𝑒
𝛿𝑡

𝛿
‖𝐼 (𝑡)‖

2

,

(25)

where 𝑧 = [𝑥
𝑇

(𝑡) 𝛾
𝑇

(𝑡) 𝛾
𝑇

(𝑡 − 𝜏(𝑡)) ∫
𝑡

𝑡−𝜎(𝑡)

𝛾
𝑇

(𝑠)𝑑𝑠]

𝑇

,

Θ
1
= (

(

Ψ
1
+ Υ



11
𝑃 (𝐴

0
+ 𝐸

𝐴
𝐹
𝐴
𝑁
𝐴
) 𝑃 (𝐵

0
+ 𝐸

𝐵
𝐹
𝐵
𝑁
𝐵
) 𝑃 (𝐶

0
+ 𝐸

𝐶
𝐹
𝐶
𝑁
𝐶
)

⋆ Ψ
2
+ Υ



22
𝑄 (𝐵

0
+ 𝐸

𝐵
𝐹
𝐵
𝑁
𝐵
) 𝑄 (𝐶

0
+ 𝐸

𝐶
𝐹
𝐶
𝑁
𝐶
)

⋆ ⋆ − (1 − 𝜏
𝐷
) 𝑅 0

⋆ ⋆ ⋆ −
1 − 𝜎

𝐷

𝜎
𝑀

𝐻

)

)

, (26)
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Ψ
1
= −𝑄(𝐷

0
+𝐸

𝐷
𝐹
𝐷
𝑁
𝐷
) − (𝐷

0
+𝐸

𝐷
𝐹
𝐷
𝑁
𝐷
)
𝑇

𝑄,Ψ
2
= 𝑄(𝐴

0
+

𝐸
𝐴
𝐹
𝐴
𝑁
𝐴
) + (𝐴

0
+ 𝐸

𝐴
𝐹
𝐴
𝑁
𝐴
)
𝑇

𝑄, Υ
11

= 2𝛿𝑃, Υ
22

= 𝑒
𝛿𝜏
𝑀𝑅 +

𝑒
𝛿𝜎
𝑀𝜎

𝑀
𝐻 + 𝛿𝑄.

Θ
1
can be rearranged as

Θ
1
= (

(

Υ
11

𝑃𝐴
0

𝑃𝐵
0

𝑃𝐶
0

⋆ Υ
22

𝑄𝐵
0

𝑄𝐶
0

⋆ ⋆ −𝑅 0

⋆ ⋆ ⋆ −
1 − 𝜎

𝐷

𝜎
𝑀

𝐻

)

)

+ 𝑈
𝐷
𝐹
𝐷
𝑊
𝐷

+ 𝑊
𝑇

𝐷
𝐹
𝑇

𝐷
𝑈
𝑇

𝐷
+ 𝑈

𝐴
𝐹
𝐴
𝑊
𝐴

+ 𝑊
𝑇

𝐴
𝐹
𝑇

𝐴
𝑈
𝑇

𝐴

+ 𝑈
𝐵
𝐹
𝐵
𝑊
𝐵
+ 𝑊

𝑇

𝐵
𝐹
𝑇

𝐵
𝑈
𝑇

𝐵
+ 𝑈

𝐶
𝐹
𝐶
𝑊
𝐶
+ 𝑊

𝑇

𝐶
𝐹
𝑇

𝐶
𝑈
𝑇

𝐶
,

(27)

where 𝑈
𝐷

= (𝐸
𝑇

𝐷
𝑄 0 0 0)

𝑇

, 𝑊
𝐷

= (−𝑁
𝐷

0 0 0), 𝑈
𝐴

=

(𝐸
𝑇

𝐴
𝑃 𝐸

𝑇

𝐴
𝑄 0 0)

𝑇, 𝑊
𝐴

= (0 𝑁
𝐴

0 0), 𝑈
𝐵
= (𝐸

𝑇

𝐵
𝑃 𝐸

𝑇

𝐵
𝑄 0 0)

𝑇,
𝑊
𝐵

= (0 0 𝑁
𝐵

0), 𝑈
𝐶

= (𝐸
𝑇

𝐶
𝑃 𝐸

𝑇

𝐶
𝑄 0 0)

𝑇, and 𝑊
𝐶

=

(0 0 0 𝑁
𝐶
).

In view of Lemma 8, Θ
1
< 0 is equivalent to

Θ
2
= (

(

Υ
11

𝑃𝐴
0

𝑃𝐵
0

𝑃𝐶
0

⋆ Υ
22

𝑄𝐵
0

𝑄𝐶
0

⋆ ⋆ −𝑅 0

⋆ ⋆ ⋆ −
1 − 𝜎

𝐷

𝜎
𝑀

𝐻

)

)

+ 𝛼
−1

1
𝑈
𝐷
𝑈
𝑇

𝐷
+ 𝛼

1
𝑊

𝑇

𝐷
𝑊
𝐷

+ 𝛼
−1

2
𝑈
𝐴
𝑈
𝑇

𝐴
+ 𝛼

2
𝑊

𝑇

𝐴
𝑊
𝐴

+ 𝛼
−1

3
𝑈
𝐵
𝑈
𝑇

𝐵
+ 𝛼

3
𝑊

𝑇

𝐵
𝑊
𝐵
+ 𝛼

−1

4
𝑈
𝐶
𝑈
𝑇

𝐶
+ 𝛼

4
𝑊

𝑇

𝐶
𝑊
𝐶

=
(
(

(

Υ
11

+ 𝛼
1
𝑁
𝑇

𝐷
𝑁
𝐷

𝑃𝐴
0

𝑃𝐵
0

𝑃𝐶
0

⋆ Υ
22

+ 𝛼
2
𝑁
𝑇

𝐴
𝑁
𝐴

𝑄𝐵
0

𝑄𝐶
0

⋆ ⋆ −𝑅 + 𝛼
3
𝑁
𝑇

𝐵
𝑁
𝐵

0

⋆ ⋆ ⋆ −
1 − 𝜎

𝐷

𝜎
𝑀

𝐻 + 𝛼
4
𝑁
𝑇

𝐶
𝑁
𝐶

)
)

)

+ 𝛼
−1

1
𝑈
𝐷
𝑈
𝑇

𝐷
+ 𝛼

−1

2
𝑈
𝐴
𝑈
𝑇

𝐴
+ 𝛼

−1

3
𝑈
𝐵
𝑈
𝑇

𝐵
+ 𝛼

−1

4
𝑈
𝐶
𝑈
𝑇

𝐶
< 0.

(28)

By the Schur complement, Θ < 0 is equivalent to Θ
2
< 0, so

the LMI Θ < 0 is also equivalent to Θ
1
< 0. This implies that

�̇� (𝑡) ≤ 𝜆max (𝑃 + 𝑄)
𝑒
𝛿𝑡

𝛿
‖𝐼 (𝑡)‖

2

. (29)

By the assumption (𝐴
2
), 𝐼(𝑡) is bounded for 𝑡 ≥ 0. Hence,

there exists a constant 𝑀 > 0 such that

0 < 𝜆max (𝑃 + 𝑄)
𝑒
𝛿𝑡

𝛿
‖𝐼 (𝑡)‖

2

< 𝑀, 𝑡 ≥ 0. (30)

It follows that

�̇� (𝑡) ≤ 𝑀𝑒
𝛿𝑡

, 𝑡 ∈ [0, 𝑇) . (31)

Integrating both sides of (31) from 0 to 𝑡, 𝑡 ∈ [0, 𝑇), it follows
that

𝑉 (𝑡) ≤ 𝑉 (0) + ∫

𝑡

0

𝑀𝑒
𝛿𝑠

𝑑𝑠 = 𝑉 (0) +
𝑀

𝛿
(𝑒
𝛿𝑡

− 1) . (32)

In view of the definition of 𝑉(𝑡) in (21) and the fact that all
the terms in 𝑉(𝑡) are not negative, we have

𝑉 (𝑡) ≥ 𝑒
𝛿𝑡

𝑥
𝑇

(𝑡) 𝑃𝑥 (𝑡) , 𝑡 ∈ [0, 𝑇) . (33)

Combining (32) and (33), it is easy to obtain

𝜆min (𝑃) ‖𝑥 (𝑡)‖
2

≤ 𝑒
−𝛿𝑡

𝑉 [𝑥, 𝛾] (0)

+
𝑀

𝛿
(1 − 𝑒

−𝛿𝑡

) , 𝑡 ∈ [0, 𝑇) .

(34)

Therefore, lim
𝑡→𝑇

−‖𝑥(𝑡)‖ < +∞. By the viability theorem in
differential inclusions theory [40], one yields 𝑇 = +∞. That
is, system (3) has a solution of IVP on [0, +∞) for any initial
value. The proof is completed.

Theorem 12. Suppose that the assumptions (𝐴
1
)–(𝐴

4
) are

satisfied. Then the solution of IVP of interval neural network
system (3) is asymptotically almost periodic.

Proof. Let 𝑥(𝑡) be a solution of IVP of system (3) associated
with ameasurable function 𝛾(𝑡)with initial value (𝜙(𝑠), 𝜓(𝑠)),
𝑠 ∈ [−𝜄, 0]. Set 𝑦(𝑡) = 𝑥(𝑡 + 𝜔) − 𝑥(𝑡), we have

̇𝑦 (𝑡) = − (𝐷
0
+ 𝐸

𝐷
𝐹
𝐷
𝑁
𝐷
) 𝑥 (𝑡 + 𝜔)

+ (𝐴
0
+ 𝐸

𝐴
𝐹
𝐴
𝑁
𝐴
) 𝛾 (𝑡 + 𝜔)

+ (𝐵
0
+ 𝐸

𝐵
𝐹
𝐵
𝑁
𝐵
) 𝛾 (𝑡 + 𝜔 − 𝜏 (𝑡 + 𝜔))
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+ (𝐶
0
+ 𝐸

𝐶
𝐹
𝐶
𝑁
𝐶
) ∫

𝑡+𝜔

𝑡+𝜔−𝜎(𝑡+𝜔)

𝛾 (𝑠) 𝑑𝑠

+ 𝐼 (𝑡 + 𝜔) − [− (𝐷
0
+ 𝐸

𝐷
𝐹
𝐷
𝑁
𝐷
) 𝑥 (𝑡)

+ (𝐴
0
+ 𝐸

𝐴
𝐹
𝐴
𝑁
𝐴
) 𝛾 (𝑡)

+ (𝐵
0
+ 𝐸

𝐵
𝐹
𝐵
𝑁
𝐵
) 𝛾 (𝑡 − 𝜏 (𝑡))

+ (𝐶
0
+ 𝐸

𝐶
𝐹
𝐶
𝑁
𝐶
)

×∫

𝑡

𝑡−𝜎(𝑡)

𝛾 (𝑠) 𝑑𝑠 + 𝐼 (𝑡)]

= − (𝐷
0
+ 𝐸

𝐷
𝐹
𝐷
𝑁
𝐷
) 𝑦 (𝑡)

+ (𝐴
0
+ 𝐸

𝐴
𝐹
𝐴
𝑁
𝐴
) [𝛾 (𝑡 + 𝜔) − 𝛾 (𝑡)]

+ (𝐵
0
+ 𝐸

𝐵
𝐹
𝐵
𝑁
𝐵
) [𝛾 (𝑡 + 𝜔 − 𝜏 (𝑡)) − 𝛾 (𝑡 − 𝜏 (𝑡))]

+ (𝐶
0
+ 𝐸

𝐶
𝐹
𝐶
𝑁
𝐶
)

× ∫

𝑡

𝑡−𝜎(𝑡)

𝛾 (𝑠 + 𝜔) − 𝛾 (𝑠) 𝑑𝑠 + 𝜌 (𝜔, 𝑡) ,

(35)

where
𝜌 (𝜔, 𝑡) = (𝐵

0
+ 𝐸

𝐵
𝐹
𝐵
𝑁
𝐵
)

× [𝛾 (𝑡 + 𝜔 − 𝜏 (𝑡 + 𝜔)) − 𝛾 (𝑡 + 𝜔 − 𝜏 (𝑡))]

+ (𝐶
0
+ 𝐸

𝐶
𝐹
𝐶
𝑁
𝐶
) ∫

𝑡−𝜎(𝑡)

𝑡−𝜎(𝑡+𝜔)

𝛾 (𝑠 + 𝜔) 𝑑𝑠

+ 𝐼 (𝑡 + 𝜔) − 𝐼 (𝑡) .

(36)

Consider a Lyapunov functional candidate as

𝑊(𝑡) = 𝑒
𝛿𝑡

𝑦
𝑇

(𝑡) 𝑃𝑦 (𝑡)

+ 2

𝑛

∑

𝑖=1

𝑒
𝛿𝑡

𝑞
𝑖
∫

𝑦
𝑖
(𝑡)

0

𝑔
𝑖
(𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡−𝜏(𝑡)

𝑒
𝛿(𝑠+𝜏

𝑀
)

(𝛾 (𝑠 + 𝜔) − 𝛾 (𝑠))
𝑇

× 𝑅 (𝛾 (𝑠 + 𝜔) − 𝛾 (𝑠)) 𝑑𝑠

+ ∫

0

−𝜎(𝑡)

∫

𝑡

𝑡+𝜃

𝑒
𝛿(𝑠+𝜎

𝑀
)

(𝛾 (𝑠 + 𝜔) − 𝛾 (𝑠))
𝑇

× 𝐻 (𝛾 (𝑠 + 𝜔) − 𝛾 (𝑠)) 𝑑𝑠 𝑑𝜃.

(37)

Calculating the time derivative of 𝑊(𝑡) along trajectories
of system (35), similar to the proof of Theorem 11, we can
get

�̇� (𝑡) ≤ 𝜆max (𝑃 + 𝑄)
𝑒
𝛿𝑡

𝛿

𝜌 (𝜔, 𝑡)


2

. (38)

From the proof of Theorem 11, we can get that 𝑥(𝑡) is
bounded. Consequently, 𝛾(𝑡) is also bounded. Define 𝐻

𝐵
=

(𝛽
(𝐵)

𝑖𝑗
)
𝑛×𝑛

= (1/2)(𝐵 − 𝐵), 𝐻
𝐶

= ((𝛽
(𝐶)

𝑖𝑗
))
𝑛×𝑛

= (1/2)(𝐶 − 𝐶).
By the assumption (𝐴

3
) and Lemma 9, there exist positive

constants 𝛼 and 𝛽, such that
𝜌 (𝜔, 𝑡)

 ≤ 𝛼
(𝐵0 + 𝐸

𝐵
𝐹
𝐵
𝑁
𝐵
)
 |𝜏 (𝑡 + 𝜔) − 𝜏 (𝑡)|

+ 𝛽
(𝐶0 + 𝐸

𝐶
𝐹
𝐶
𝑁
𝐶
)
 |𝜎 (𝑡 + 𝜔) − 𝜎 (𝑡)|

+ ‖𝐼 (𝑡 + 𝜔) − 𝐼 (𝑡)‖

≤ 𝛼 (
𝐵0

 +
𝐻𝐵

) |𝜏 (𝑡 + 𝜔) − 𝜏 (𝑡)|

+ 𝛽 (
𝐶0

 +
𝐻𝐶

) |𝜎 (𝑡 + 𝜔) − 𝜎 (𝑡)|

+ ‖𝐼 (𝑡 + 𝜔) − 𝐼 (𝑡)‖ .

(39)

Therefore, by using the assumption (𝐴
2
), it is easy to obtain

that, for any 𝜀 > 0, there exist 𝑙 = 𝑙(𝜀) and 𝜔 = 𝜔(𝜀) in any
interval with the length of 𝑙, such that

𝜆max (𝑃 + 𝑄)
𝜌 (𝜔, 𝑡)



2

≤
1

2
𝛿
2

𝜀
2

, 𝑡 ≥ 0. (40)

This implies that

�̇� (𝑡) ≤
1

2
𝜀
2

𝛿𝑒
𝛿𝑡

. (41)

By combining (37) and (41), we have
𝑦 (𝑡)



2

≤ 𝑒
−𝛿𝑡

𝑊(𝑡) ≤ 𝑒
−𝛿𝑡

𝑊(0)

+
1

2
𝑒
−𝛿𝑡

∫

𝑡

0

𝜀
2

𝛿𝑒
𝛿𝑠

𝑑𝑠

= 𝑒
−𝛿𝑡

𝑊(0) +
1

2
𝜀
2

(1 − 𝑒
−𝛿𝑡

) .

(42)

Therefore, there exists𝑇 > 0, such that for any 𝑡 > 𝑇, ‖𝑦(𝑡)‖ <

(1/√2)𝜀 < 𝜀, that is, ‖𝑥(𝑡+𝜔)−𝑥(𝑡)‖ < 𝜀. This shows that any
solution of system (3) is asymptotically almost periodic. The
proof is complete.

Remark 13. In the proof of Theorem 12, the assumption (𝐴
3
)

plays an important role. Under this assumption, ‖𝜌(𝜔, 𝑡)‖ < 𝜀

can be ensured.

Theorem 14. If the assumptions (𝐴
1
)–(𝐴

4
) hold, then interval

neural network system (3) has a unique almost periodic
solution which is global robust exponentially stable.

Proof. Firstly, we prove the existence of the almost periodic
solution for interval neural network system (3).

By Theorem 12, for any initial value (𝜙(𝑠), 𝜓(𝑠)), 𝑠 ∈

[−𝜄, 0], interval neural network (3) has a solution which is
asymptotically almost periodic. Let 𝑥(𝑡) be any solution of
system (3) associated with a measurable function 𝛾(𝑡) with
the initial value (𝜙(𝑠), 𝜓(𝑠)), 𝑠 ∈ [−𝜄, 0]. Then

�̇� (𝑡) = − (𝐷
0
+ 𝐸

𝐷
𝐹
𝐷
𝑁
𝐷
) 𝑥 (𝑡)

+ (𝐴
0
+ 𝐸

𝐴
𝐹
𝐴
𝑁
𝐴
) 𝛾 (𝑡)

+ (𝐵
0
+ 𝐸

𝐵
𝐹
𝐵
𝑁
𝐵
) 𝛾 (𝑡 − 𝜏 (𝑡))

+ (𝐶
0
+ 𝐸

𝐶
𝐹
𝐶
𝑁
𝐶
) ∫

𝑡

𝑡−𝜎(𝑡)

𝛾 (𝑠) 𝑑𝑠 + 𝐼 (𝑡) ,

(43)

for a.a. 𝑡 ∈ [−𝜄, +∞).
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By using (40), we can pick a sequence {𝑡
𝑘
} satisfying

lim
𝑘→+∞

𝑡
𝑘

= +∞ and ‖𝜌(𝑡
𝑘
, 𝑡)‖ < 1/𝑘, for all 𝑡 ≥ 0, where

𝜌(𝜔, 𝑡) is defined in (36). In addition, the sequence {𝑥(𝑡 + 𝑡
𝑘
)}

is equicontinuous and uniformly bounded. By Arzela-Ascoli
theorem and diagonal selection principle, we can select a
subsequence of {𝑡

𝑘
} (still denoted by {𝑡

𝑘
}), such that {𝑥(𝑡+𝑡

𝑘
)}

uniformly converges to a absolute continuous function 𝑥
∗

(𝑡)

on any compact set of R.
On the other hand, since 𝛾(𝑡 + 𝑡

𝑘
) ∈ 𝐾[𝑔(𝑥(𝑡 + 𝑡

𝑘
))]

and 𝐾[𝑔(𝑥(𝑡 + 𝑡
𝑘
))] is bounded by the boundedness of 𝑥(𝑡),

the sequence {𝛾(𝑡 + 𝑡
𝑘
)} is bounded. Hence, we can also

select a subsequence of 𝑡
𝑘
(still denoted by {𝑡

𝑘
}), such that

{𝛾(𝑡 + 𝑡
𝑘
)} converges to a measurable function 𝛾

∗

(𝑡) for any
𝑡 ∈ [−𝜄, +∞). According to the fact that

(i) 𝐾[𝑔(⋅)] is an upper semicontinuous set-valued map,

(ii) for 𝑡 ∈ [−𝜄, +∞), 𝑥(𝑡 + 𝑡
𝑘
) → 𝑥

∗

(𝑡) as 𝑘 → +∞,

we can get that for any 𝜖 > 0, there exists 𝑁 > 0, such
that 𝐾[𝑔(𝑥(𝑡 + 𝑡

𝑘
))] ⊆ 𝐾[𝑔(𝑥

∗

(𝑡))] + 𝜖B for 𝑘 > 𝑁 and
𝑡 ∈ [−𝜄, +∞), whereB is an 𝑛-dimensional unit ball. Hence,
the fact 𝛾(𝑡 + 𝑡

𝑘
) ∈ 𝐾[𝑔(𝑥(𝑡 + 𝑡

𝑘
))] implies that 𝛾(𝑡 + 𝑡

𝑘
) ∈

𝐾[𝑔(𝑥
∗

(𝑡))]+𝜖B. On the other hand, since𝐾[𝑔(𝑥
∗

(𝑡))]+𝜖B
is a compact subset ofR𝑛, we have 𝛾∗(𝑡) = lim

𝑘→+∞
𝛾(𝑡+𝑡

𝑘
) ∈

𝐾[𝑔(𝑥
∗

(𝑡))]+𝜖B. Noting the arbitrariness of 𝜖, it follows that
𝛾
∗

(𝑡) ∈ 𝐾[𝑔(𝑥
∗

(𝑡))] for a.a. 𝑡 ∈ [−𝜄, +∞).
By Lebesgue’s dominated convergence theorem (Lemma

10),

𝑥
∗

(𝑡 + ℎ) − 𝑥
∗

(𝑡)

= lim
𝑘→+∞

[𝑥 (𝑡 + 𝑡
𝑘
+ ℎ) − 𝑥 (𝑡 + 𝑡

𝑘
)]

= lim
𝑘→+∞

∫

𝑡+ℎ

𝑡

[− (𝐷
0
+ 𝐸

𝐷
𝐹
𝐷
𝑁
𝐷
) 𝑥 (𝑡

𝑘
+ 𝜃)

+ (𝐴
0
+ 𝐸

𝐴
𝐹
𝐴
𝑁
𝐴
) 𝛾 (𝑡

𝑘
+ 𝜃)

+ (𝐵
0
+ 𝐸

𝐵
𝐹
𝐵
𝑁
𝐵
) 𝛾 (𝑡

𝑘
+ 𝜃 − 𝜏 (𝑡

𝑘
+ 𝜃))

+ (𝐶
0
+ 𝐸

𝐶
𝐹
𝐶
𝑁
𝐶
) ∫

𝑡
𝑘
+𝜃

𝑡
𝑘
+𝜃−𝜎(𝑡

𝑘
+𝜃)

𝛾 (𝑠) 𝑑𝑠

+𝐼 (𝑡
𝑘
+ 𝜃)] 𝑑𝜃

= lim
𝑘→+∞

∫

𝑡+ℎ

𝑡

[− (𝐷
0
+ 𝐸

𝐷
𝐹
𝐷
𝑁
𝐷
) 𝑥 (𝑡

𝑘
+ 𝜃)

+ (𝐴
0
+ 𝐸

𝐴
𝐹
𝐴
𝑁
𝐴
) 𝛾 (𝑡

𝑘
+ 𝜃)

+ (𝐵
0
+ 𝐸

𝐵
𝐹
𝐵
𝑁
𝐵
) 𝛾 (𝑡

𝑘
+ 𝜃 − 𝜏 (𝜃))

+ (𝐶
0
+ 𝐸

𝐶
𝐹
𝐶
𝑁
𝐶
) ∫

𝜃

𝜃−𝜎(𝜃)

𝛾 (𝑡
𝑘
+ 𝑠) 𝑑𝑠

+𝐼 (𝜃) + 𝜌 (𝑡
𝑘
, 𝜃)] 𝑑𝜃

= ∫

𝑡+ℎ

𝑡

[− (𝐷
0
+ 𝐸

𝐷
𝐹
𝐷
𝑁
𝐷
) 𝑥

∗

(𝜃)

+ (𝐴
0
+ 𝐸

𝐴
𝐹
𝐴
𝑁
𝐴
) 𝛾

∗

(𝜃)

+ (𝐵
0
+ 𝐸

𝐵
𝐹
𝐵
𝑁
𝐵
) 𝛾

∗

(𝜃 − 𝜏 (𝜃))

+ (𝐶
0
+ 𝐸

𝐶
𝐹
𝐶
𝑁
𝐶
) ∫

𝜃

𝜃−𝜎(𝜃)

𝛾
∗

(𝑠) 𝑑𝑠 + 𝐼 (𝜃)] 𝑑𝜃,

(44)

for any 𝑡 ∈ [−𝜄, +∞) and ℎ ∈ R. This implies that 𝑥∗(𝑡) is a
solution of system (3).

Notice that 𝑥(𝑡) is asymptotically almost periodic. Then,
for any 𝜀 > 0, there exist 𝑇 > 0, 𝑙 = 𝑙(𝜀), and 𝜔 = 𝜔(𝜀) in any
interval with the length of 𝑙, such that ‖𝑥(𝑡 + 𝜔) − 𝑥(𝑡)‖ < 𝜀,
for all 𝑡 > 𝑇. Therefore, there exists a constant 𝑁 > 0, when
𝑘 > 𝑁, ‖𝑥(𝑡 + 𝑡

𝑘
+ 𝜔) − 𝑥(𝑡 + 𝑡

𝑘
)‖ < 𝜀, for any 𝑡 ∈ [−𝜄, +∞).

Let 𝑘 → +∞, it follows that ‖𝑥
∗

(𝑡 + 𝜔) − 𝑥
∗

(𝑡)‖ < 𝜀, for
any 𝑡 ∈ [−𝜄, +∞). This shows that 𝑥∗(𝑡) is an almost periodic
solution of system (3).

Secondly, we prove that the almost periodic solution of
interval neural network system (3) is global robust exponen-
tially stable.

Let𝑥(𝑡) be an arbitrary, solution and let𝑥∗(𝑡) be an almost
solution of interval neural network system (3) associated
with outputs 𝜉(𝑡) and 𝛾

∗

(𝑡). Consider the change of variables
𝑧(𝑡) = 𝑥(𝑡) − 𝑥

∗

(𝑡), which transforms (3) into the differential
equation

�̇� (𝑡) = − (𝐷
0
+ 𝐸

𝐷
𝐹
𝐷
𝑁
𝐷
) 𝑧 (𝑡)

+ (𝐴
0
+ 𝐸

𝐴
𝐹
𝐴
𝑁
𝐴
) 𝜂 (𝑡)

+ (𝐵
0
+ 𝐸

𝐵
𝐹
𝐵
𝑁
𝐵
) 𝜂 (𝑡 − 𝜏 (𝑡))

+ (𝐶
0
+ 𝐸

𝐶
𝐹
𝐶
𝑁
𝐶
) ∫

𝑡

𝑡−𝜎(𝑡)

𝜂 (𝑠) 𝑑𝑠,

(45)

where 𝜂(𝑡) ∈ 𝐾[𝐺(𝑧(𝑡))] is measurable, 𝐺(𝑧(𝑡)) = (𝐺
1
(𝑧
1
(𝑡)),

𝐺
2
(𝑧
2
(𝑡)), . . . , 𝐺

𝑛
(𝑧
𝑛
(𝑡)))

𝑇, and 𝐺
𝑖
(𝑧
𝑖
(𝑡)) = 𝑔

𝑖
(𝑧
𝑖
(𝑡) + 𝑥

∗

𝑖
(𝑡)) −

𝑔
𝑖
(𝑥
∗

𝑖
(𝑡)) (𝑖 = 1, 2, . . . , 𝑛).

Similar to 𝑉(𝑡) in (21), define a Lyapunov functional
candidate as

𝐿 (𝑡) = 𝑒
𝛿𝑡

𝑧
𝑇

(𝑡) 𝑃𝑧 (𝑡) + 2

𝑛

∑

𝑖=1

𝑒
𝛿𝑡

𝑞
𝑖
∫

𝑧
𝑖
(𝑡)

0

𝐺 (𝑠) 𝑑𝑠

+ ∫

𝑡

𝑡−𝜏(𝑡)

𝑒
𝛿(𝑠+𝜏

𝑀
)

𝜂
𝑇

(𝑠) 𝑅𝜂 (𝑠) 𝑑𝑠

+ ∫

0

−𝜎(𝑡)

∫

𝑡

𝑡+𝜃

𝑒
𝛿(𝑠+𝜎

𝑀
)

𝜂
𝑇

(𝑠)𝐻𝜂 (𝑠) 𝑑𝑠 𝑑𝜃.

(46)

Calculating the derivative of 𝐿(𝑡) along the solution of system
(45), similar to the proof of Theorem 11, we have

�̇� (𝑡) ≤ 𝑒
𝛿𝑡

𝜐
𝑇

Θ
1
𝜐 − 𝛿𝑒

𝛿𝑡

𝑧
𝑇

(𝑡) 𝑃𝑧 (𝑡)

−𝛿𝑒
𝛿𝑡

𝜂
𝑇

(𝑡) 𝑄𝜂 (𝑡) < 0,

(47)
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where 𝜐=[𝑧
𝑇

(𝑡) 𝜂
𝑇

(𝑡) 𝜂
𝑇

(𝑡 − 𝜏(𝑡)) ∫
𝑡

𝑡−𝜎(𝑡)

𝜂
𝑇

(𝑠)𝑑𝑠]

𝑇

. Com-
bining (46) and (47) gives

‖𝑧 (𝑡)‖ ≤ √𝐿 (𝑡)𝑒
−(𝛿/2)𝑡

≤ √𝐿 (0)𝑒
−(𝛿/2)𝑡

. (48)

This means that the almost periodic solution 𝑥
∗

(𝑡) of interval
neural network system (3) is global robust exponentially
stable. Consequently, the almost periodic solution of system
(3) is unique. The proof is complete.

Remark 15. As far as we know, all the existing results con-
cerning the almost periodic dynamical behaviors of neural
networks with discontinuous activation functions [30–33]
have not considered the global robust exponential stabil-
ity performance. In this paper, by constructing appropri-
ate generalized Lyapunov functional, we have obtained a
delay-dependent criterion, which guarantee the existence,
uniqueness, and global robust exponential stability of almost
periodic solution. Moreover, the given result is formulated by
LMIs, which can be easily verified by the existing powerful
tools, such as the LMI toolbox of MATLAB. Therefore,
results of this paper improve corresponding parts of those in
[30–33].

Remark 16. In [34–36], some criteria on the robust stability of
an equilibrium point for neural networks with discontinuous
activation functions have been given. Compared to the main
results in [34–36], our results make the following improve-
ments.

(1) In [34, 35], the activation function 𝑔
𝑖
is assumed to

bemonotonic nondecreasing and bounded. However,
from the assumption (𝐴

1
), we can see that the

activation function 𝑔
𝑖
can be unbounded.

(2) Although the assumption of boundedness was
dropped in [36], the monotonic nondecreasing and
the growth condition were indispensable. In this
paper, the activation function is only assumed to be
monotonic nondecreasing.

(3) In contrast to themodels in [34–36], distributed time-
varying delays are considered in this paper. If we
choose 𝜎(𝑡) = 0 and 𝐼(𝑡) = 𝐼, then themodels in these
papers are the special cases of our model.

Notice that periodic function can be regarded as a special
almost periodic function. Hence, based on Theorems 11 and
14, we can obtain the following.

Corollary 17. Suppose that 𝐼(𝑡), 𝜏(𝑡), and 𝜎(𝑡) are periodic
functions, if the assumptions (𝐴

1
), (𝐴

3
), and (𝐴

4
) are satisfied.

Then

(1) neural network system (3) has a solution of IVP on
[0, +∞) for any initial value (𝜙(𝑠), 𝜓(𝑠)), 𝑠 ∈ [−𝜄, 0],

(2) neural network system (3) has a unique periodic sol-
ution which is global robust exponentially stable.

When 𝐼
𝑖
(𝑡) is a constant external input 𝐼

𝑖
, system (3)

changes as

�̇� (𝑡) = −𝐷𝑥 (𝑡) + 𝐴𝑔 (𝑥 (𝑡)) + 𝐵𝑔 (𝑥 (𝑡 − 𝜏 (𝑡)))

+ 𝐶∫

𝑡

𝑡−𝜎(𝑡)

𝑔 (𝑥 (𝑠)) 𝑑𝑠 + 𝐼,

𝐷 ∈ D, 𝐴 ∈ A, 𝐵 ∈ B, 𝐶 ∈ C.

(49)

Since a constant function can be also regarded as a special
almost periodic function, by applyingTheorems 11 and 14, we
can obtain

Corollary 18. If the assumptions (𝐴
1
), (𝐴

3
), and (𝐴

4
) are

satisfied, then

(1) Neural network system (49) has a solution of
IVP on [0, +∞) for any initial value (𝜙(𝑠), 𝜓(𝑠)),
𝑠 ∈ [−𝜄, 0].

(2) Neural network system (49) has a unique equilibrium
point which is global robust exponentially stable.

4. Illustrative Example

Example 1. Consider the third-order interval neural network
(3) with the following system parameters:

𝐷 = (

2 0 0

0 2 0

0 0 2

) , 𝐷 = (

1 0 0

0 1 0

0 0 1

) ,

𝐴 = (

−3 0.5 0.4

0.1 −3 −0.6

0.2 0.3 −3

) , 𝐴 = (

−4 0.2 0.2

−0.2 −4 −1

−0.1 0.2 −4

) ,

𝐵 = (

0.3 0.3 0.3

−0.2 0.3 0.3

0.4 0.1 −0.3

) , 𝐵 = (

−0.1 −0.1 0.1

−0.3 −0.3 0

0.2 −0.3 −0.5

) ,

𝐶 = (

0.3 0.3 −0.1

0.2 0.1 −0.2

0.4 −0.1 0.3

) , 𝐶 = (

−0.1 0.1 −0.2

−0.1 −0.2 −0.5

0.1 −0.2 0.2

) .

(50)

Set 𝑔
1
(𝑠) = 𝑔

2
(𝑠) = 𝑔

3
(𝑠) = 5𝑠 + sign(𝑠), 𝜏(𝑡) = 0.5 + 0.5 cos 𝑡,

and 𝜎(𝑡) = 0.8−0.2 sin 𝑡. It is easy to check that assumptions
(𝐴

1
)–(𝐴

3
) hold and 𝜏

𝑀
= 1, 𝜏

𝐷
= 0.2, 𝜎

𝑀
= 1, and

𝜎
𝐷

= 0.5.
Let 𝛿 = 0.5. Solving the LMI in (𝐴

4
) by using appropriate

LMI solver in the MATLAB, the feasible positive definite
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matrices 𝑃, 𝑅, and 𝐻 and positive definite diagonal matrix
𝑄 could be as

𝑃 = (

148.9391 9.2264 −2.4915

9.2264 138.5453 −16.7765

2.4915 −16.7765 178.0600

) ,

𝑄 = (

264.9438 0 0

0 255.8510 0

0 0 268.7436

) ,

𝑅 = (

381.3968 −25.5537 −29.0966

−25.5537 338.0614 54.0433

−29.0966 54.0433 370.5851

) ,

𝐻 = (

302.0513 −19.9994 −4.0452

−19.9994 319.33320 31.7509

−4.0452 31.7509 328.8760

) ,

𝛼
1
= 799.7423, 𝛼

2
= 723.0122,

𝛼
3
= 754.7854, 𝛼

4
= 712.9184,

(51)

and the assumption (𝐴
4
) is also satisfied. Hence, it follows

from Theorems 11–14 that system (3) with parameter ranges
given above has a unique almost periodic solution which is
global robust exponentially stable.

In view of Corollary 17, when the external input 𝐼(𝑡) is a
periodic function, this neural network has a unique periodic
solution which is global robust exponentially stable, as well
as the similar result of an equilibrium for the system with
constant input.

As a special case, we choose the system as follows:

𝐷 = (

1.48 0 0

0 1.88 0

0 0 1.67

) ,

𝐴 = (

−3.69 0.38 0.27

−0.13 −3.42 −0.64

0.16 0.27 −3.53

) ,

𝐵 = (

0.17 −0.05 0.21

−0.23 −0.24 0.13

0.25 −0.26 −0.46

) ,

𝐶 = (

0.22 0.28 −0.17

0.14 −0.12 −0.34

0.35 −0.19 0.27

) .

(52)

Figures 1 and 2 display the state trajectories of this
neural network with initial value 𝜙(𝑡) = (sin 𝑡, −0.3 tanh 𝑡,

−0.5 cos 𝑡)𝑇, 𝑡 ∈ [−1, 0] when 𝐼(𝑡) = (15 sin 𝑡, 10 cos 𝑡,
15 cos 𝑡)𝑇. It can be seen that these trajectories converge to
a unique periodic. This is in accordance with the conclusion
of Corollary 17. Figure 3 displays the state trajectories of this
neural network with initial values 𝜙(𝑡) = (sin 𝑡, −0.3 tanh 𝑡,

−0.5 cos 𝑡)𝑇, 𝑡 ∈ [−1, 0] when 𝐼(𝑡) = (10, 5, −10)
𝑇. It
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Figure 1: Time-domain behavior of the state variables 𝑥
1
, 𝑥

2
, and 𝑥

3

when 𝐼(𝑡) = (15 sin 𝑡, 10 cos 𝑡, 15 cos 𝑡)𝑇.
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Figure 2: Phase plane behavior of the state variables 𝑥
1
, 𝑥

2
, and 𝑥

3

when 𝐼(𝑡) = (15 sin 𝑡, 10 cos 𝑡, 15 cos 𝑡)𝑇.

can be seen that these trajectories converge to a unique
equilibrium point. This is in accordance with the conclusion
of Corollary 18.

5. Conclusion

In this paper, under the framework of Filippov differential
inclusions, by constructing generalized Lyapunov-Krasovskii
functional and applying LMI techniques, a sufficient con-
dition which ensures the existence, uniqueness, and global
robust exponential stability of almost periodic solution has
been obtained in terms of LMIs, which is easy to be checked
and applied in practice. A numerical example has been given
to illustrate the validity of the theoretical results.

In [2], Forti et al. conjectured that all solutions of delayed
neural networks with discontinuous neuron activations and
periodic inputs converge to an asymptotically stable limit
cycle. In this paper, under the assumptions (𝐴

1
)–(𝐴

4
), the

results obtained conform that Forti’s conjecture is true for
interval neural networks withmixed time-varying delays and
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Figure 3: Time-domain behavior of the state variables 𝑥
1
, 𝑥

2
, and

𝑥
3
when 𝐼(𝑡) = (10, 5, −10)

𝑇.

discontinuous activation functions. Note that the synchro-
nization or sliding mode control issues have been studied
in [44–47] by using the delay-fractioning approach, and
the obtained results have less conservative. Whether it is
effective to deal with the time-delays for discontinuous neural
networks via delay-fractioning approach will be the topic of
our further research.
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