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We study a slow diffusive 𝑝-Laplace equation in a bounded domain with the Neumann boundary conditions. A natural energy is
associated to the equation. It is shown that the solution blows up in finite time with the nonpositive initial energy, based on an
energy technique. Furthermore, under some assumptions of initial data, we prove that the solutions with bounded initial energy
also blow up.

1. Introduction

In this paper, we consider a slowdiffusive𝑝-Laplace equation:

𝑢
𝑡
− div (|∇𝑢|𝑝−2∇𝑢) = |𝑢|

𝑞−1
𝑢 − −∫
Ω

|𝑢|
𝑞−1

𝑢 𝑑𝑥,

(𝑥, 𝑡) ∈ Ω × (0, 𝑇) ,

𝜕𝑢

𝜕𝑛
= 0, (𝑥, 𝑡) ∈ 𝜕Ω × (0, 𝑇) ,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , 𝑥 ∈ Ω

(1)

with −∫
Ω
𝑢
0
𝑑𝑥 = 0, whereΩ is a bounded smooth domainΩ ⊂

R𝑁, 𝑝 > 2, 𝑞 > 𝑝 − 1, and 𝑢
0
∈ 𝐿
∞
(Ω) ∩ 𝑊

1,𝑝
(Ω), 𝑢

0
̸≡ 0,

and denote −∫
Ω
𝑓𝑑𝑥 = (1/|Ω|) ∫

Ω
𝑓𝑑𝑥. It is easy to check that

∫
Ω
𝑢 𝑑𝑥 = 0; that is, the mass of 𝑢 is conserved.
The problem (1) with 𝑝 = 2 can be used to model phe-

nomena in population dynamics and biological sciences
where the total mass of a chemical or an organism is con-
served [1, 2]. If 𝑝 > 2, the problem (1) is the degenerate
parabolic equation and appears to be relevant in the theory
of non-Newtonian fluids (see [3]). Here, we are mainly
interested in the case 𝑝 > 2, namely, the degenerate one.

When 𝑝 = 2, (1) becomes the heat equation which has been
deeply studied in [4, 5].When 1 < 𝑝 < 2, (1) is singular, which
can be handled similar to that of [6].

As an important feature of many evolutionary equations,
the properties of blow-up solution have been the subject of
intensive study during the last decades. Among those inves-
tigations in this area, it was Fujita [7] who first established
the so-called theory of critical blow-up exponents for the
heat equation with reaction sources in 1966, which can be, of
course, regarded as the elegant description for either blow-
up or global existence of solutions. From then on, there
has been increasing interest in the study of critical Fujita
exponents for different kinds of evolutionary equations; see
[8, 9] for a survey of the literature. In recent years, special
attention has been paid to the blow-up property to nonlinear
degenerate or singular diffusion equations with different
nonlinear sources, including the inner sources, boundary
flux, or multiple sources; see, for example, [3, 10, 11].

In some situations, we have to deal with changing sign
solutions. For instance, the changing sign solutions were
considered in [1] for the nonlocal and quadratic equation

𝑢
𝑡
= Δ𝑢 + 𝑢

2
− −∫
Ω

𝑢
2
𝑑𝑥 (2)
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with the Neumann boundary condition. The study in [5] for

𝑢
𝑡
= Δ𝑢 + |𝑢|

𝑝
− −∫
Ω

|𝑢|
𝑝
𝑑𝑥, (3)

a natural generalization of (2), proposed with 1 < 𝑝 ≤ 2

a global existence result (for small initial data) and a new
blow-up criterion (based on the partial maximum principle
and a Gamma-convergence argument). The authors also
conjectured that the solutions blow up when 𝑝 > 2, which
was then provedwith a positive answer [4].The changing sign
solutions to the reaction-diffusion equation

𝑢
𝑡
= Δ𝑢 + 𝑓 (𝑢, 𝑘 (𝑡)) (4)

were discussed in [2], with such as 𝑓(𝑢, 𝑘(𝑡)) = |𝑢|
𝑝−1

𝑢−𝑘(𝑡).
The blow-up of solutions was obtained even under the source
with −∫

Ω
𝑓𝑑𝑥 = 0. The semilinear parabolic equation [12]

𝑢
𝑡
= Δ𝑢 + |𝑢|

𝑝−1
𝑢 − −∫
Ω

|𝑢|
𝑝−1

𝑢 𝑑𝑥 (5)

with a homogeneous Neumann’s boundary condition is stud-
ied. A blow-up result for the changing sign solution with
positive initial energy is established. In [6], a fast diffusive 𝑝-
Laplace equation with the nonlocal source

𝑢
𝑡
− div (|∇𝑢|𝑝−2∇𝑢) = |𝑢|

𝑞
− −∫
Ω

|𝑢|
𝑞
𝑑𝑥,

(𝑥, 𝑡) ∈ Ω × (0, 𝑇) ,

𝜕𝑢

𝜕𝑛
= 0, (𝑥, 𝑡) ∈ 𝜕Ω × (0, 𝑇) ,

𝑢 (𝑥, 0) = 𝑢
0
(𝑥) , 𝑥 ∈ Ω,

(6)

was considered. The authors showed that a critical blow-
up criterion was determined for the changing sign weak
solutions, depending on the size of 𝑞 and the sign of the
natural energy associated.The relationship between the finite
time blow-up and the nonpositivity of initial energy was
discussed, based on an energy technique.

Notice that (1) is degenerate if 𝑝 > 2 at points where ∇𝑢 =
0; therefore, there is no classical solution in general. For this,
a weak solution for problem (1) is defined as follows.

Definition 1. A function 𝑢 ∈ 𝐿
∞
(Ω × (0, 𝑇)) ∩ 𝐿

𝑝
(0, 𝑇,

𝑊
1,𝑝
(Ω))with 𝑢

𝑡
∈ 𝐿
2
(Ω× (0, 𝑇)) is called a weak solution of

(1) if

∫

𝑡

0

∫
Ω

[𝑢
𝜕𝜑

𝜕𝑠
− |∇𝑢|

𝑝−2
∇𝑢 ⋅ ∇𝜑 + (|𝑢|

𝑞
− −∫
Ω

|𝑢|
𝑞
)𝜑] 𝑑𝑥 𝑑𝑠

= ∫
Ω

𝑢 (𝑥, 𝑡) 𝜑 (𝑥, 𝑡) 𝑑𝑥 − ∫
Ω

𝑢
0
(𝑥) 𝜑 (𝑥, 0) 𝑑𝑥

(7)

holds for all 𝜑 ∈ 𝐶
1
(Ω × [0, 𝑇]).

The local existence of the weak solutions can be obtained
via the standard procedure of regularized approximations

[10]. Throughout the paper, we always assume that the weak
solution is appropriately smooth for convenience of argu-
ments, instead of considering the corresponding regularized
problems.

This paper is organized as follows. In Section 2, we show
that the solutions to (1) blow up with nonpositive initial
energy. In Section 3, under some assumptions of initial data,
we prove that the solutions with bounded initial energy also
blow up in finite time.

2. Nonpositive Initial Energy Case

The technique used here is the same as in [4]; define the
energy functional by

𝐸 (𝑡) =
1

𝑝
∫
Ω

|∇𝑢|
𝑝
𝑑𝑥 −

1

𝑞 + 1
∫
Ω

|𝑢|
𝑞+1

𝑑𝑥. (8)

and denote

𝑀(𝑡) =
1

2
∫
Ω

𝑢
2
(𝑥, 𝑡) 𝑑𝑥, 𝐻 (𝑡) = ∫

𝑡

0

𝑀(𝑠) 𝑑𝑠. (9)

Theorem 2. Assume that 𝑝 > 2, 𝑞 > 𝑝− 1, and 𝑢
0
∈ 𝐿
∞
(Ω) ∩

𝑊
1,𝑝
(Ω), 𝑢

0
̸≡ 0, and let the initial energy

𝐸 (0) =
1

𝑝
∫
Ω

∇𝑢0

𝑝

𝑑𝑥 −
1

𝑞 + 1
∫
Ω

𝑢0

𝑞+1

𝑑𝑥 (10)

be nonpositive. Then, there exists 𝑇
0
with 0 < 𝑇

0
< ∞, such

that

lim
𝑡→𝑇0

𝑀(𝑡) = +∞. (11)

We need three lemmas for the functionals𝐸(𝑡),𝑀(𝑡), and
𝐻(𝑡), respectively.

Lemma 3. The energy 𝐸(𝑡) is a nonincreasing function and

𝐸 (𝑡) = 𝐸 (0) − ∫

𝑡

0

∫
Ω

(𝑢
𝑡
)
2

𝑑𝑥 𝑑𝑠. (12)

Proof. A direct computation using (1) and by parts yields

𝑑

𝑑𝑡
𝐸 (𝑡) = ∫

Ω

(|∇𝑢|
𝑝−2

∇𝑢 ⋅ ∇𝑢
𝑡
− |𝑢|
𝑞−1

𝑢𝑢
𝑡
) 𝑑𝑥

= ∫
Ω

(− div (|∇𝑢|𝑝−2∇𝑢) − |𝑢|𝑞−1𝑢) 𝑢
𝑡
𝑑𝑥

= ∫
Ω

(−𝑢
𝑡
− −∫
Ω

|𝑢|
𝑞−1

𝑢 𝑑𝑥) 𝑢
𝑡
𝑑𝑥

= −∫
Ω

(𝑢
𝑡
)
2

𝑑𝑥.

(13)

Integrate from 0 to 𝑡 to get (12).

Lemma 4. Assume that 𝑝 > 2, 𝑞 > 𝑝− 1, and 𝐸(0) ≤ 0. Then,
𝑀(𝑡) satisfies the following inequality:

𝑀

(𝑡) ≥ (𝑞 + 1)∫

𝑡

0

∫
Ω

(𝑢
𝑡
)
2

𝑑𝑥 𝑑𝑠. (14)
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Proof. An easy computation using (1) and the fact∫
Ω
𝑢 𝑑𝑥 = 0

and by parts shows that

𝑀

(𝑡) = ∫

Ω

𝑢𝑢
𝑡
𝑑𝑥

= ∫
Ω

𝑢 (div (|∇𝑢|𝑝−2∇𝑢) + |𝑢|𝑞−1𝑢 − −∫
Ω

|𝑢|
𝑞−1

𝑢 𝑑𝑥)

= −∫
Ω

|∇𝑢|
𝑝
𝑑𝑥 + ∫

Ω

|𝑢|
𝑞+1

𝑑𝑥

= − (𝑞 + 1) 𝐸 (𝑡) +
𝑞 + 1 − 𝑝

𝑝
∫
Ω

|∇𝑢|
𝑝
𝑑𝑥.

(15)

The last equality implies

𝑀

(𝑡) ≥ − (𝑞 + 1) 𝐸 (𝑡)

= − (𝑞 + 1) 𝐸 (0) + (𝑞 + 1) ∫

𝑡

0

∫
Ω

(𝑢
𝑡
)
2

𝑑𝑥 𝑑𝑠

≥ (𝑞 + 1)∫

𝑡

0

∫
Ω

(𝑢
𝑡
)
2

𝑑𝑥 𝑑𝑠,

(16)

because of (12) of Lemma 3 and the assumption𝐸(0) ≤ 0.

Lemma 5. Assume that 𝑝 > 2, 𝑞 > 𝑝 − 1, and 𝐸(0) ≤ 0. Then,
𝐻(𝑡) satisfies

𝑞 + 1

2
(𝐻

(𝑡) − 𝐻


(0))
2

≤ 𝐻 (𝑡)𝐻

(𝑡) . (17)

Proof. Note the definition of 𝑀(𝑡) and 𝐻(𝑡), and a simple
calculation shows that

𝐻

(𝑡) − 𝐻


(0)

= 𝑀 (𝑡) − 𝑀 (0)

= ∫

𝑡

0

𝑀

(𝑠) 𝑑𝑠 = ∫

𝑡

0

∫
Ω

𝑢𝑢
𝑡
𝑑𝑥 𝑑𝑠

≤ (∫

𝑡

0

∫
Ω

𝑢
2
𝑑𝑥 𝑑𝑠)

1/2

(∫

𝑡

0

∫
Ω

(𝑢
𝑡
)
2

𝑑𝑥 𝑑𝑠)

1/2

≤ (
2

𝑞 + 1
)

1/2

(𝐻 (𝑡))
1/2
(𝑀

(𝑡))
1/2

= (
2

𝑞 + 1
)

1/2

(𝐻 (𝑡))
1/2
(𝐻

(𝑡))
1/2

.

(18)

Furthermore,

𝐻

(𝑡) − 𝐻


(0) = ∫

𝑡

0

𝑀

(𝑠) 𝑑𝑠

≥ (𝑞 + 1) 𝑡 ∫

𝑡

0

∫
Ω

(𝑢
𝑡
)
2

𝑑𝑥 𝑑𝑠 ≥ 0.

(19)

Therefore,
𝑞 + 1

2
(𝐻

(𝑡) − 𝐻


(0))
2

≤ 𝐻 (𝑡)𝐻

(𝑡) . (20)

Proof of Theorem 2. Assume for contradiction that the solu-
tion 𝑢 exists for all 𝑡 > 0. We claim that

∫

𝑡0

0

∫
Ω

(𝑢
𝑡
)
2

𝑑𝑥 𝑑𝑠 > 0 (21)

for any 𝑡
0
> 0. Otherwise, there exists 𝑡

0
> 0 such that

∫

𝑡0

0

∫
Ω

(𝑢
𝑡
)
2

𝑑𝑥 𝑑𝑠 = 0, (22)

and hence 𝑢
𝑡
= 0 for a.e. (𝑥, 𝑡) ∈ Ω × (0, 𝑡

0
]. Therefore, notic-

ing 𝐸(𝑡) ≤ 0 by Lemma 3, we have from (15) that

∫
Ω

|∇𝑢|
𝑝
𝑑𝑥 = 0 (23)

for a.e. 𝑡 ∈ (0, 𝑡
0
]. Using the Poincaré inequality with

∫
Ω
𝑢 𝑑𝑥 = 0, we have 𝑢 = 0 for a.e. (𝑥, 𝑡) ∈ Ω × (0, 𝑡

0
]. This

contradicts 𝑢
0

̸≡ 0.
Integrating (14) from 𝑡

0
to 𝑡, we have

𝑀(𝑡) ≥ 𝑀(𝑡
0
) + (𝑞 + 1)∫

𝑡

𝑡0

∫

𝜏

0

∫
Ω

(𝑢
𝑡
)
2

𝑑𝑥 𝑑𝑠 𝑑𝜏, (24)

which implies that

lim
𝑡→∞

𝐻

(𝑡) = lim
𝑡→∞

𝑀(𝑡) = +∞. (25)

Thus, there exists 𝑡∗ ≥ 𝑡
0
such that for all 𝑡 ≥ 𝑡

∗

3𝑞 + 5

4
(𝐻

(𝑡))
2

≤ (𝑞 + 1) [𝐻

(𝑡) − 𝐻


(0)]
2

. (26)

Thus, combining (17), we further have

3𝑞 + 5

4
(𝐻

(𝑡))
2

≤ 2𝐻 (𝑡)𝐻

(𝑡) (27)

for all 𝑡 ≥ 𝑡
∗. Now, we consider the function 𝐺(𝑡) =

(𝐻(𝑡))
−((𝑞−1)/4). Combining with the above inequality and a

simple calculation shows that

𝐺

(𝑡) =

𝑞 − 1

4
(𝐻 (𝑡))

(−𝑞−7)/4

× (
𝑞 + 3

4
(𝐻

(𝑡))
2

− 𝐻 (𝑡)𝐻

(𝑡))

≤ −
(𝑞 − 1)

2

32
(𝐻 (𝑡))

(−𝑞−7)/4
(𝐻

(𝑡))
2

≤ 0

(28)

for all 𝑡 ≥ 𝑡
∗. However, since

lim
𝑡→∞

𝐻(𝑡) = lim
𝑡→∞

𝑀(𝑡) = ∞, (29)

we also have

lim
𝑡→∞

𝐺 (𝑡) = 0, (30)

which is a contradiction.
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3. Bounded Initial Energy Case

Define

𝑊(Ω) = {𝑢 ∈ 𝑊
1,𝑝

(Ω) | ∫
Ω

𝑢 𝑑𝑥 = 0} (31)

with the norm ‖𝑢‖ = (∫
Ω
|∇𝑢|
𝑝
𝑑𝑥)
1/𝑝. Let 𝐵 be the optimal

constant of the embedding inequality

‖𝑢‖
𝑞+1

≤ 𝐵‖∇𝑢‖
𝑝
, (32)

where 𝑝 − 1 < 𝑞 ≤ (𝑁𝑝/(𝑁 − 𝑝)
+
) − 1. Set

𝛼
1
= 𝐵
−(𝑞+1)/(𝑞−𝑝+1)

,

𝐸
1
= (

1

𝑝
−

1

𝑞 + 1
)𝐵
−𝑝(𝑞+1)/(𝑞−𝑝+1)

> 0.

(33)

Theorem6. Assume that𝑝 > 2,𝑝−1 < 𝑞 ≤ (𝑁𝑝/(𝑁−𝑝)
+
)−1.

Let the initial data 𝑢
0
satisfying 𝐸(0) ≤ 𝐸

1
and ‖∇𝑢

0
‖
𝑝
> 𝛼
1
.

Then, there exists 𝑇
1
with 0 < 𝑇

1
< ∞, such that

lim
𝑡→𝑇1

𝑀(𝑡) = +∞. (34)

First, we prove the following two Lemmas, similar to the
idea in [13].

Lemma 7. Assume that 𝑢 is a solution of the system (1). If
𝐸(0) < 𝐸

1
and ‖∇𝑢

0
‖
𝑝
> 𝛼
1
. Then, there exists a positive con-

stant 𝛼
2
> 𝛼
1
, such that

‖∇𝑢‖
𝑝
≥ 𝛼
2
, for any 𝑡 ≥ 0, (35)

‖𝑢‖
𝑞+1

≥ 𝐵𝛼
2
, for any 𝑡 ≥ 0. (36)

Proof. Let ‖∇𝑢‖
𝑝
= 𝛼 and by (32), we have

𝐸 (𝑡) =
1

𝑝
∫
Ω

|∇𝑢|
𝑝
𝑑𝑥 −

1

𝑞 + 1
∫
Ω

|𝑢|
𝑞+1

𝑑𝑥

≥
1

𝑝
‖∇𝑢‖
𝑝

𝑝
−

1

𝑞 + 1
𝐵
𝑞+1

‖∇𝑢‖
𝑞+1

𝑝

=
1

𝑝
𝛼
𝑝
−

1

𝑞 + 1
𝐵
𝑞+1

𝛼
𝑞+1

.

(37)

For convenience, we define

𝑔 (𝛼) =
1

𝑝
𝛼
𝑝
−

1

𝑞 + 1
𝐵
𝑞+1

𝛼
𝑞+1

. (38)

It is easy to find that 𝑔 increases if 0 < 𝛼 < 𝛼
1
and decreases if

𝛼 > 𝛼
1
. Moreover, 𝑔(𝛼) → −∞ as 𝛼 → ∞ and 𝑔(𝛼

1
) = 𝐸
1
.

Due to 𝐸(0) < 𝐸
1
, there exists 𝛼

2
> 𝛼
1
such that 𝑔(𝛼

2
) =

𝐸(0). Let ‖∇𝑢
0
‖
𝑝
= 𝛼
0
; thus 𝛼

0
> 𝛼
1
. Then by (37) and (38),

we have 𝑔(𝛼
0
) ≤ 𝐸(0) = 𝑔(𝛼

2
), which implies that 𝛼

0
≥ 𝛼
2
.

For contradiction to establish (35), we assume that there exists
𝑡
0
> 0 such that

𝛼
1
<
∇𝑢 (⋅, 𝑡0)

𝑝 < 𝛼
2
. (39)

It follows from (37) and (38) that

𝐸 (𝑡
0
) ≥ 𝑔 (

∇𝑢 (⋅, 𝑡0)
𝑝) > 𝑔 (𝛼

2
) = 𝐸 (0) , (40)

which is in contradiction with Lemma 3. Hence, (35) is
established.

Next to prove (36),

𝐸 (𝑡) =
1

𝑝
∫
Ω

|∇𝑢|
𝑝
𝑑𝑥 −

1

𝑞 + 1
∫
Ω

|𝑢|
𝑞+1

𝑑𝑥 ≤ 𝐸 (0) , (41)

which implies that

1

𝑞 + 1
∫
Ω

|𝑢|
𝑞+1

𝑑𝑥 ≥
1

𝑝
∫
Ω

|∇𝑢|
𝑝
𝑑𝑥 − 𝐸 (0) ≥

1

𝑝
𝛼
𝑝

2
− 𝑔 (𝛼

2
) .

(42)

Therefore, (36) is concluded.

Define

𝐹 (𝑡) = 𝐸
1
− 𝐸 (𝑡) , for any 𝑡 ≥ 0. (43)

Then, we have the following.

Lemma 8. Assume that 𝑢 is a solution of the system (1). If
𝐸(0) < 𝐸

1
and ‖∇𝑢

0
‖
𝑝
> 𝛼
1
. Then for all 𝑡 ≥ 0,

0 < 𝐹 (0) ≤ 𝐹 (𝑡) ≤
1

𝑞 + 1
∫
Ω

|𝑢|
𝑞+1

𝑑𝑥. (44)

Proof. By Lemma 3, we know that 𝐹(𝑡) ≥ 0. Thus,

𝐹 (𝑡) ≥ 𝐹 (0) = 𝐸
1
− 𝐸 (0) > 0. (45)

According to (35) of Lemma 7, a simple computation shows
that

𝐹 (𝑡) = 𝐸
1
−
1

𝑝
∫
Ω

|∇𝑢|
𝑝
𝑑𝑥 +

1

𝑞 + 1
∫
Ω

|𝑢|
𝑞+1

𝑑𝑥

≤ 𝐸
1
−
1

𝑝
𝐵
−𝑝(𝑞+1)/(𝑞−𝑝+1)

+
1

𝑞 + 1
∫
Ω

|𝑢|
𝑞+1

𝑑𝑥

= −
1

𝑞 + 1
𝐵
−𝑝(𝑞+1)/(𝑞−𝑝+1)

+
1

𝑞 + 1
∫
Ω

|𝑢|
𝑞+1

𝑑𝑥

≤
1

𝑞 + 1
∫
Ω

|𝑢|
𝑞+1

𝑑𝑥,

(46)

which guarantees the conclusion of the lemma.

At the end, let us finish the proof of Theorem 6.

Proof of Theorem 6. According to (15), we have

𝑀

(𝑡) = −∫

Ω

|∇𝑢|
𝑝
𝑑𝑥 + ∫

Ω

|𝑢|
𝑞+1

𝑑𝑥

= ∫
Ω

|𝑢|
𝑞+1

𝑑𝑥 − 𝑝𝐸 (𝑡) −
𝑝

𝑞 + 1
∫
Ω

|𝑢|
𝑞+1

𝑑𝑥

=
𝑞 + 1 − 𝑝

𝑞 + 1
∫
Ω

|𝑢|
𝑞+1

𝑑𝑥 − 𝑝𝐸
1
+ 𝑝𝐹 (𝑡) .

(47)
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By using (33) and (36), we obtain

𝑝𝐸
1
= (1 −

𝑝

𝑞 + 1
)𝐵
−𝑝(𝑞+1)/(𝑞+1−𝑝)

=
𝛼
𝑞+1

1

𝛼
𝑞+1

2

𝑞 + 1 − 𝑝

𝑞 + 1
𝐵
𝑞+1

𝛼
𝑞+1

2

≤
𝛼
𝑞+1

1

𝛼
𝑞+1

2

𝑞 − 𝑝 + 1

𝑞 + 1
∫
Ω

|𝑢|
𝑞+1

𝑑𝑥.

(48)

Combining (47) and (48), we get

𝑀

(𝑡) ≥ (1 −

𝛼
𝑞+1

1

𝛼
𝑞+1

2

)
𝑞 + 1 − 𝑝

𝑞 + 1
∫
Ω

|𝑢|
𝑞+1

𝑑𝑥 + 𝑝𝐹 (𝑡)

≥ (1 −
𝛼
𝑞+1

1

𝛼
𝑞+1

2

)
𝑞 + 1 − 𝑝

𝑞 + 1
|Ω|
(1−𝑞)/2

𝑀
(𝑞+1)/2

.

(49)

Since 𝑞 > 𝑝 − 1 > 1,𝑀(𝑡) blows up at a finite time.The proof
of Theorem 6 is complete.

Remark 9 (behavior of the energy 𝐸(𝑡)). Similar to Theorem
1.3 of [5], it is easy to be proved. Let 𝑝 > 2, 𝑝 − 1 < 𝑞 ≤

(𝑁𝑝/(𝑁 − 𝑝)
+
) − 1, and let 𝑢 be a weak solution of (1). If

there exists a constant𝐶
0
> 0 and a time𝑇

0
> 0, such that the

solution 𝑢 exists on [0, 𝑇
0
) and satisfies𝐸(𝑡) ≥ −𝐶

0
on [0, 𝑇

0
),

then 𝐹(𝑡) is bounded on [0, 𝑇


0
). Thus, the above result and

Theorem 6 reveal that even though the initial energy could be
chosen as positive, the energy 𝐸(𝑡) needs to become negative
at a certain time and then goes to −∞. Otherwise, 𝐸(𝑡) has a
lower bound on [0, +∞); thus 𝐹(𝑡) is bounded on [0, +∞). It
is in contradiction withTheorem 6.
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