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We prove some best proximity point results for relatively u-continuous mappings in Banach and hyperconvex metric spaces. Our
results generalize and extend some recent results to relatively u-continuous mappings and to general spaces.

1. Introduction

Let 𝐴, 𝐵 be nonempty subsets of a Banach space (𝑀, ‖ ⋅ ‖). In
[1], Eldred et al. considered the best proximity point problem
for mappings 𝑇 : 𝐴 ∪ 𝐵 → 𝐴 ∪ 𝐵 with 𝑇(𝐴) ⊂ 𝐵 and
𝑇(𝐵) ⊂ 𝐴 or 𝑇(𝐴) ⊂ 𝐴 and 𝑇(𝐵) ⊂ 𝐵, respectively; that is,
they sought conditions on the subsets 𝐴, 𝐵, the space𝑀, and
the mapping 𝑇 that assure existence of points 𝑥

0
∈ 𝐴, 𝑦

0
∈ 𝐵

such that
𝑥0 − 𝑇 (𝑥0)

 =
𝑦0 − 𝑇 (𝑦0)

 = dist (𝐴, 𝐵) , (1)
or

𝑥
0
= 𝑇 (𝑥

0
) ,

𝑦
0
= 𝑇 (𝑦

0
) ,

𝑥0 − 𝑦0
 = dist (𝐴, 𝐵) ,

(2)

respectively. In solving this problem they considered a new
class of mappings.

Definition 1 (see [1]). Let 𝐴, 𝐵 be nonempty subsets of a
metric space (𝑀,𝑑). Then a mapping 𝑇 : 𝐴 ∪ 𝐵 → 𝐴 ∪ 𝐵

is said to be relatively nonexpansive if
𝑑 (𝑇 (𝑥) , 𝑇 (𝑦)) ≤ 𝑑 (𝑥, 𝑦) for 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵. (3)

The assumption that a mapping is relatively nonexpansive is
weaker than the assumption that it is nonexpansive and does
not even imply continuity [1].

Introducing a geometric condition for Banach spaces
called proximal normal structure, they obtained the following
result.

Theorem2 (see [1]). Let (𝐴, 𝐵) be a nonemptyweakly compact
convex pair in a Banach space (𝑀, ‖ ⋅ ‖). Let 𝑇 : 𝐴 ∪ 𝐵 →

𝐴∪𝐵 be a relatively nonexpansivemapping such that𝑇(𝐴) ⊂ 𝐵

and 𝑇(𝐵) ⊂ 𝐴, and suppose that (𝐴, 𝐵) has proximal normal
structure. Then there exists (𝑥

0
, 𝑦
0
) ∈ 𝐴 × 𝐵 such that

𝑥0 − 𝑇 (𝑥0)
 =

𝑦0 − 𝑇 (𝑦0)
 = dist (𝐴, 𝐵) . (4)

With the goal of generalizing relatively nonexpansive
mappings, Eldred et al. [2] introduced the notion of a
relatively 𝑢-continuous mapping in Banach spaces, which we
state here for a metric space.

Definition 3 (see [2]). Let 𝐴, 𝐵 be nonempty subsets of a
metric space (𝑀,𝑑). A mapping 𝑇 : 𝐴∪𝐵 → 𝐴∪𝐵 is said to
be relatively 𝑢-continuous if for each 𝜖 > 0, there exists 𝛿 > 0

such that 𝑑(𝑇(𝑥), 𝑇(𝑦)) < 𝜀 + dist(𝐴, 𝐵) whenever

𝑑 (𝑥, 𝑦) < 𝛿 + dist (𝐴, 𝐵) , ∀𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵. (5)

Every relatively nonexpansive mapping is relatively 𝑢-
continuous. For an example showing that the converse is not
true see [2, Example 2.1].

Eldred et al. [2] were able to extend some of the results of
[1] to include the class of relatively 𝑢-continuous mappings.
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Theorem 4 (see [2]). Let 𝐴, 𝐵 be nonempty compact convex
subsets of a strictly convex Banach space𝑋, and let𝑇 : 𝐴∪𝐵 →

𝐴∪𝐵 be a relatively 𝑢-continuous mapping such that𝑇(𝐴) ⊂ 𝐵

and 𝑇(𝐵) ⊂ 𝐴. Then there exists

(𝑥
0
, 𝑦
0
) ∈ 𝐴 × 𝐵

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡
𝑥0 − 𝑇 (𝑥0)

 =
𝑦0 − 𝑇 (𝑦0)

 = dist (𝐴, 𝐵) .
(6)

In this paper we show that Theorem 4 holds for any
Banach space without the assumption of strict convexity as
follows.

Theorem 5. Let (𝑀, ‖ ⋅ ‖) be a Banach space, and let 𝐴, 𝐵 be
nonempty compact convex subsets of𝑀. If 𝑇 : 𝐴∪𝐵 → 𝐴∪𝐵

is relatively 𝑢-continuous such that 𝑇(𝐴) ⊂ 𝐵 and 𝑇(𝐵) ⊂ 𝐴,
then there exist points 𝑥 ∈ 𝐴 and 𝑦 ∈ 𝐵 such that ‖𝑥−𝑇(𝑥)‖ =
‖𝑦 − 𝑇(𝑦)‖ = dist(𝐴, 𝐵).

Some interesting best proximity point theorems for var-
ious kinds of mappings have been accomplished in [3–8].
Other related results on cyclical mappings can be found in
[9, 10].

The aim of this paper is to prove some best proximity
point results for relatively 𝑢-continuous mappings in Banach
and hyperconvex metric spaces. Our results generalize and
extend some recent results to relatively 𝑢-continuous map-
pings and to general spaces.

2. Preliminaries

Let 𝐴 and 𝐵 be nonempty subsets of a metric space (𝑀,𝑑).
Define

dist (𝐴, 𝐵) = inf {𝑑 (𝑥, 𝑦) : 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵} ,

𝐴
0
= {𝑥 ∈ 𝐴 : 𝑑 (𝑥, 𝑦) = dist (𝐴, 𝐵) for some 𝑦 ∈ 𝐵} ,

𝐵
0
= {𝑦 ∈ 𝐵 : 𝑑 (𝑥, 𝑦) = dist (𝐴, 𝐵) for some 𝑥 ∈ 𝐴} .

(7)

Definition 6. A metric space (𝑀,𝑑) is hyperconvex if given
any family {𝑥

𝛼
: 𝛼 ∈ 𝐼} of points in𝑀 and any family {𝑟

𝛼
} of

nonnegative real numbers satisfying 𝑑(𝑥
𝛼
, 𝑥
𝛽
) ≤ 𝑟
𝛼
+ 𝑟
𝛽
for

all 𝛼, 𝛽 ∈ 𝐼, then ∩𝐵(𝑥
𝛼
; 𝑟
𝛼
) ̸= 0, where

𝐵 (𝑥; 𝑟) = {𝑦 ∈ 𝑀 : 𝑑 (𝑥, 𝑦) ≤ 𝑟} . (8)

Definition 7. The admissible subsets of𝑀 are sets of the form
∩𝐵(𝑥
𝛼
; 𝑟
𝛼
), that is, the family of ball intersections in 𝑀. For

a subset 𝑋 of 𝑀, 𝑁
𝜀
(𝑋) denotes the closed 𝜀-hull of 𝑋; that

is, 𝑁
𝜀
(𝑋) = {𝑥 ∈ 𝑀 : dist(𝑥, 𝑋) ≤ 𝜀}, where dist(𝑥, 𝑋) =

inf{𝑑(𝑥, 𝑦) : 𝑥 ∈ 𝑋}.

If𝑋 is an admissible set, then𝑁
𝜀
(𝑋) is also an admissible

set [11]. For recent progress in hyperconvex metric spaces, we
refer the reader to [12].

Definition 8. Let (𝑀, 𝑑) be a metric space and 𝐹 : 𝑀 → 2
𝑀

a multivalued mapping with nonempty values. Then 𝐹 is said
to be almost lower semicontinuous at a point 𝑥 ∈ 𝑀 if for each

𝜀 > 0 there is an open neighborhood 𝑈(𝑥) of 𝑥 and a point
𝑧 ∈ 𝑀 such that, for 𝑦 ∈ 𝑈(𝑥),

𝐵 (𝑧; 𝜀) ∩ 𝐹 (𝑦) ̸= 0. (9)

In establishing existence of best proximity points for rel-
atively 𝑢-continuous mappings in Banach and hyperconvex
spaces, we apply the following continuous selection and fixed
point theorems.

Theorem 9 (see [13]). Let 𝑋 be a paracompact space and 𝑌
a normed linear space. Let 𝐹 : 𝑋 → 2

𝑌 be a multivalued
mapping with nonempty closed convex values. Then 𝐹 is an
almost lower semicontinuous mapping if and only if for each
𝜖 > 0, 𝐹 has a continuous 𝜖-approximate selection; that is,
a function 𝑓 : 𝑋 → 𝑌 such that for every 𝑥 ∈ 𝑋,
dist(𝑓(𝑥), 𝐹(𝑥)) < 𝜖.

Theorem 10 (see [14]). Let 𝑋 be a paracompact topological
space, (𝑀, 𝑑) a hyperconvexmetric space, and𝐹 : 𝑋 → 2

𝑀 an
almost lower semicontinuous mapping with admissible values.
Then 𝐹 has a continuous selection; that is, there is a continuous
mapping 𝑓 : 𝑋 → 𝑀 such that 𝑓(𝑥) ∈ 𝐹(𝑥) for each 𝑥 ∈ 𝑋.

Theorem 11 (see [15, 16]). Let (𝑀, 𝑑) be a compact hypercon-
vex metric space and 𝑓 : 𝑀 → 𝑀 a continuous mapping.
Then 𝑓 has a fixed point.

3. Best Proximity Points in Banach Spaces

Thefollowing theoremextends the best proximity point result
of Eldred et al. [2, Theorem 3.1] for strictly convex Banach
spaces to any Banach space.

Proof of Theorem 5. Since 𝐴, 𝐵 are compact convex subsets,
𝐴
0
, 𝐵
0
are nonempty compact convex subsets. By [2, Propo-

sition 3.1] 𝑇(𝐴
0
) ⊂ 𝐵
0
and 𝑇(𝐵

0
) ⊂ 𝐴

0
.

By 𝑢-continuity of 𝑇, for any 𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 such that
‖𝑥−𝑦‖ = dist(𝐴, 𝐵) and any positive integer 𝑛 there is a 𝛿

𝑛
> 0

and a neighborhood of 𝑥 in 𝐴
0
defined as

𝑈 (𝑥, 𝛿
𝑛
) = {𝑢 ∈ 𝐴

0
: ‖𝑢 − 𝑥‖ < 𝛿

𝑛
} , (10)

such that 𝑢 ∈ 𝑈(𝑥, 𝛿
𝑛
) implies that

𝑇 (𝑢) − 𝑇 (𝑦)
 ≤ (

1

𝑛
) + dist (𝐴, 𝐵) . (11)

For each positive integer 𝑛, define a multivaluedmapping
𝐹
𝑛
: 𝐴
0
→ 2
𝐴0 by

𝐹
𝑛
(V) = 𝐵 (𝑇 (V) ; (

1

𝑛
) + dist (𝐴, 𝐵)) ∩ 𝐴

0
, (12)

for V ∈ 𝐴
0
. Since 𝑇(V) ∈ 𝐵

0
, 𝐹
𝑛
(V) is nonempty. As the

intersection of closed convex sets, each 𝐹
𝑛
(V) is also closed

convex.
By (11), 𝑇(𝑦) ∈ 𝐹

𝑛
(𝑢) for each 𝑢 ∈ 𝑈(𝑥, 𝛿

𝑛
), which

implies that the mapping 𝐹
𝑛
is almost lower semicontinuous.

By the approximate selection result of Deutsch et al. [13]
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(see Theorem 9), for any 𝛼 > 0, 𝐹
𝑛
has a continuous 𝛼-

approximate selection; that is, there is a continuous 𝑓
𝑛

:

𝐴
0
→ 𝐴

0
such that dist(𝑓

𝑛
(V), 𝐹
𝑛
(V)) ≤ 𝛼. Choosing 𝛼 =

1/𝑛, by the definition of 𝐹
𝑛
the selection 𝑓

𝑛
satisfies

𝑇 (V) − 𝑓𝑛 (V)
 ≤ (

2

𝑛
) + dist (𝐴, 𝐵) ,

for V ∈ 𝐴
0
.

(13)

Since the mapping 𝑓
𝑛
is continuous and 𝐴

0
is a compact

convex subset of a Banach space, the Schauder fixed point
theorem implies that 𝑓

𝑛
has a fixed point 𝑥

𝑛
; that is, there is a

point 𝑥
𝑛
∈ 𝐴
0
such that 𝑥

𝑛
= 𝑓
𝑛
(𝑥
𝑛
).

By (13), ‖𝑇(𝑥
𝑛
) − 𝑥
𝑛
‖ → dist(𝐴, 𝐵), and by compactness

of𝐴
0
and𝐵

0
, we can assume that𝑥

𝑛
→ 𝑥 ∈ 𝐴

0
and𝑇(𝑥

𝑛
) →

𝑝 ∈ 𝐵
0
. Therefore, ‖𝑥 − 𝑝‖ = dist(𝐴, 𝐵), and by 𝑢-continuity

of 𝑇, ‖𝑇(𝑥
𝑛
) − 𝑇(𝑝)‖ → dist(𝐴, 𝐵). It follows that

dist (𝐴, 𝐵) ≤ 𝑝 − 𝑇 (𝑝)


≤
𝑝 − 𝑇 (𝑥𝑛)

 +
𝑇 (𝑥𝑛) − 𝑇 (𝑝)



→ dist (𝐴, 𝐵) ,

(14)

which implies that ‖𝑝 − 𝑇(𝑝)‖ = dist(𝐴, 𝐵).

The following proposition follows by a slight change in
the proof in [2, Proposition 3.1].

Proposition 12. Let 𝐴, 𝐵 be nonempty subsets of a normed
linear space𝑀, and let 𝑇 : 𝐴 ∪ 𝐵 → 𝐴 ∪ 𝐵 be a relatively 𝑢-
continuous mapping such that 𝑇(𝐴) ⊂ 𝐴 and 𝑇(𝐵) ⊂ 𝐵. Then
𝑇(𝐴
0
) ⊂ 𝐴

0
and 𝑇(𝐵

0
) ⊂ 𝐵
0
.

Proposition 13 (see [17]). Let (𝑀, ‖ ⋅ ‖) be a strictly convex
Banach space,𝐴 a nonempty compact convex subset of𝑀, and
𝐵 a nonempty closed convex subset of𝑀. Let {𝑥

𝑛
} be a sequence

in 𝐴 and 𝑦 ∈ 𝐵. If

𝑥𝑛 − 𝑦
 → dist (𝐴, 𝐵) , 𝑡ℎ𝑒𝑛 𝑥

𝑛
→ 𝑃
𝐴
(𝑦) . (15)

In [1] a best proximity result was given for relatively
nonexpansive mappings in a uniformly convex space. The
following result is a version of that result for relatively 𝑢-
continuous mappings in a strictly convex space.

Theorem 14. Let (𝑀, ‖ ⋅ ‖) be a strictly convex Banach space,
and let 𝐴, 𝐵 be compact convex subsets of𝑀. If 𝑇 : 𝐴 ∪ 𝐵 →

𝐴∪𝐵 is relatively 𝑢-continuous such that𝑇(𝐴) ⊂ 𝐴 and𝑇(𝐵) ⊂
𝐵, then there exist points 𝑥

0
∈ 𝐴 and 𝑦

0
∈ 𝐵 such that 𝑥

0
=

𝑇(𝑥
0
), 𝑦
0
= 𝑇(𝑦

0
) and ‖𝑥

0
− 𝑦
0
‖ = dist(𝐴, 𝐵).

Proof. Since 𝐴, 𝐵 are compact convex sets, 𝐴
0
and 𝐵

0

are nonempty compact convex sets, and by Proposition 12,
𝑇(𝐴
0
) ⊂ 𝐴

0
and 𝑇(𝐵

0
) ⊂ 𝐵
0
.

By 𝑢-continuity of 𝑇, for any positive integer 𝑛 there is a
𝛿
𝑛
> 0 such that

𝑥 − 𝑦
 ≤ 𝛿
𝑛
+ dist (𝐴, 𝐵) (16)

implies that ‖𝑇(𝑥)−𝑇(𝑦)‖ < (1/𝑛)+dist(𝐴, 𝐵), for 𝑥 ∈ 𝐴 and
𝑦 ∈ 𝐵. For 𝑥 ∈ 𝐴

0
define 𝑈(𝑥, 𝛿

𝑛
) = {𝑢 ∈ 𝐴

0
: ‖𝑢 − 𝑥‖ < 𝛿

𝑛
},

and let 𝑦 = 𝑃
𝐵
(𝑥). Then 𝑢 ∈ 𝑈(𝑥, 𝛿

𝑛
) implies that

𝑢 − 𝑦
 ≤ ‖𝑢 − 𝑥‖ +

𝑥 − 𝑦
 < 𝛿
𝑛
+ dist (𝐴, 𝐵) , (17)

and therefore, by 𝑢-continuity of 𝑇,

𝑇 (𝑢) − 𝑇 (𝑦)
 ≤ (

1

𝑛
) + dist (𝐴, 𝐵) . (18)

For each positive integer 𝑛, define a map 𝐹
𝑛
: 𝐴
0
→ 2
𝐵0

by

𝐹
𝑛
(V) = 𝐵 (𝑇 (V) ; (

1

𝑛
) + dist (𝐴, 𝐵)) ∩ 𝐵

0
, (19)

for V ∈ 𝐴
0
. As the intersection of closed convex sets, 𝐹

𝑛
(V) is

also closed convex. By (18), 𝑇(𝑦) ∈ 𝐹
𝑛
(𝑢) for 𝑢 ∈ 𝑈(𝑥, 𝛿

𝑛
),

which implies that 𝐹
𝑛
(𝑢) is nonempty and also that 𝐹

𝑛
is an

almost lower semicontinuous mapping.
Since 𝑀 is a normed linear space, by Theorem 9 for

any 𝛼 > 0, 𝐹
𝑛
has a continuous 𝛼-approximate selection;

that is, there is a continuous 𝑓
𝑛
: 𝐴
0

→ 𝐵
0
such that

dist(𝑓
𝑛
(V), 𝐹
𝑛
(V)) ≤ 𝛼, for V ∈ 𝐴

0
. Choosing 𝛼 = 1/𝑛, by

the definition of 𝐹
𝑛
the selection 𝑓

𝑛
satisfies

𝑇 (V) − 𝑓𝑛 (V)
 ≤ (

2

𝑛
) + dist (𝐴, 𝐵) , (20)

for V ∈ 𝐴
0
.

Consider the metric projection operator 𝑃
𝐴
: 𝑀 → 𝐴.

Since 𝑓
𝑛
(𝐴
0
) ⊂ 𝐵

0
and 𝑃

𝐴
(𝐵
0
) ⊂ 𝐴

0
, the map 𝑃

𝐴
I𝑓
𝑛
sends

𝐴
0
into 𝐴

0
. Since 𝑃

𝐴
I𝑓
𝑛
is continuous and 𝐴

0
is compact

and convex, by the Schauder fixed point theorem there is a
fixed point 𝑥

𝑛
= 𝑃
𝐴
I𝑓
𝑛
(𝑥
𝑛
) ∈ 𝐴

0
. Let 𝑦

𝑛
= 𝑓
𝑛
(𝑥
𝑛
) ∈ 𝐵

0
,

and assume by compactness that 𝑥
𝑛
, 𝑦
𝑛
converge to 𝑥

0
∈ 𝐴
0
,

𝑦
0
∈ 𝐵
0
, respectively. By continuity of 𝑃

𝐴
, 𝑥
0
= 𝑃
𝐴
(𝑦
0
).

By definition of the map 𝑓
𝑛
, ‖𝑇(𝑥

𝑛
) − 𝑦
𝑛
‖ ≤ (2/𝑛) +

dist(𝐴, 𝐵), and since 𝑦
𝑛
→ 𝑦
0
we have

𝑇 (𝑥𝑛) − 𝑦0


≤
𝑇 (𝑥𝑛) − 𝑦𝑛

 +
𝑦𝑛 − 𝑦0

 → dist (𝐴, 𝐵) .
(21)

Therefore, by Proposition 13,

𝑇 (𝑥
𝑛
) → 𝑃

𝐴
(𝑦
0
) . (22)

By 𝑢-continuity of 𝑇, for any 𝜖 > 0 there is a 𝛿 > 0 such
that
𝑇 (𝑥𝑛) − 𝑇 (𝑦0)



< 𝜖 + dist (𝐴, 𝐵) provided 𝑥𝑛 − 𝑦0
 < 𝛿 + dist (𝐴, 𝐵) .

(23)

Since 𝑥
𝑛
→ 𝑥
0
, choose 𝑛 sufficiently large that ‖𝑥

𝑛
−𝑥
0
‖ < 𝛿.

Then
𝑥𝑛 − 𝑦0



≤
𝑥𝑛 − 𝑥0

 +
𝑥0 − 𝑦0

 < 𝛿 + dist (𝐴, 𝐵) ,
(24)
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which implies that

dist (𝐴, 𝐵)

≤
𝑇 (𝑥𝑛) − 𝑇 (𝑦0)

 < 𝜖 + dist (𝐴, 𝐵) .
(25)

Since 𝜖 is arbitrary,
𝑇 (𝑥𝑛) − 𝑇 (𝑦0)

 → dist (𝐴, 𝐵) . (26)

Therefore, by Proposition 13,

𝑇 (𝑥
𝑛
) → 𝑃

𝐴
(𝑇 (𝑦
0
)) . (27)

By the relations (22) and (27), 𝑇(𝑥
𝑛
) converges to both

𝑃
𝐴
(𝑦
0
) and 𝑃

𝐴
(𝑇(𝑦
0
)). Therefore, 𝑥

0
= 𝑃
𝐴
(𝑦
0
) = 𝑃
𝐴
(𝑇(𝑦
0
)).

Since 𝑦
0
, 𝑇(𝑦
0
) ∈ 𝐵
0
, ‖𝑥
0
− 𝑦
0
‖ = ‖𝑥

0
− 𝑇(𝑦

0
)‖ = dist(𝐴, 𝐵),

and by strict convexity of𝑀, 𝑦
0
= 𝑇(𝑦

0
).

Since ‖𝑥
0
− 𝑦
0
‖ = dist(𝐴, 𝐵), we have by 𝑢-continuity

of 𝑇 that ‖𝑇(𝑥
0
) − 𝑇(𝑦

0
)‖ = dist(𝐴, 𝐵). Therefore, 𝑇(𝑥

0
) =

𝑃
𝐴
(𝑇(𝑦
0
)), and since 𝑥

0
= 𝑃
𝐴
(𝑇(𝑦
0
)), this implies that 𝑥

0
=

𝑇(𝑥
0
).

4. Best Proximity Points in
Hyperconvex Spaces

The following is a best proximity point result for relatively
𝑢-continuous mappings in hyperconvex metric spaces. Best
proximity point/pair results were obtained in the setting of
hyperconvex spaces by some authors in [18–21].

Theorem 15. Let 𝐴, 𝐵 be admissible subsets of a hyperconvex
metric space (𝑀, 𝑑), let 𝐴

0
be a compact subset of 𝑀 and let

𝑇 : 𝐴∪𝐵 → 𝐴∪𝐵 be a relatively 𝑢-continuous mapping such
that 𝑇(𝐴) ⊂ 𝐵, and 𝑇(𝐵) ⊂ 𝐴. Then there is an 𝑥

0
∈ 𝐴
0
such

that 𝑑(𝑥
0
, 𝑇(𝑥
0
)) = dist(𝐴, 𝐵).

Proof. By a result of Kirk et al. [18], the sets 𝐴
0
and 𝐵

0
are

nonempty and hyperconvex. For 𝑥 ∈ 𝐴
0
, choose 𝑦 ∈ 𝐵

0
such

that 𝑑(𝑥, 𝑦) = dist(𝐴, 𝐵). Then, by 𝑢-continuity of 𝑇, for any
𝜀 > 0 there is a 𝛿 > 0 such that for 𝑢 ∈ 𝐴, V ∈ 𝐵,

𝑑 (𝑢, V) < 𝛿 + dist (𝐴, 𝐵)

implies that 𝑑 (𝑇 (𝑢) , 𝑇 (V)) < 𝜀 + dist (𝐴, 𝐵) .
(28)

It follows that 𝑑(𝑇(𝑥), 𝑇(𝑦)) = dist(𝐴, 𝐵). This implies that
𝑇(𝑥) ∈ 𝐵

0
for 𝑥 ∈ 𝐴

0
.

Define an open neighborhood of 𝑥 in 𝐴
0
by 𝑈(𝑥) = {𝑢 ∈

𝐴
0
: 𝑑(𝑢, 𝑥) < 𝛿}.
Then 𝑢 ∈ 𝑈(𝑥) implies that

𝑑 (𝑢, 𝑦) ≤ 𝑑 (𝑢, 𝑥) + 𝑑 (𝑥, 𝑦) < 𝛿 + dist (𝐴, 𝐵) , (29)

and therefore, by 𝑢-continuity of 𝑇,

𝑑 (𝑇 (𝑢) , 𝑇 (𝑦)) < 𝜀 + dist (𝐴, 𝐵) . (30)

Define a multivalued 𝐹 : 𝐴
0
→ 2
𝐴0 by

𝐹 (V) = 𝐵 (𝑇 (V) ; dist (𝐴, 𝐵)) ∩ 𝐴, (31)

for V ∈ 𝐴
0
. Since 𝑇(V) ∈ 𝐵

0
for V ∈ 𝐴

0
, 𝐹(V) is a nonempty

subset of𝐴
0
, and since𝐴 is admissible,𝐹(V) is also admissible.

We show that 𝐹 is almost lower semicontinuous by
establishing that 𝐵(𝑇(𝑦); 𝜀) ∩ 𝐹(𝑢) ̸= 0 for 𝑢 ∈ 𝑈(𝑥). By (30)
and the hyperconvexity of𝑀, for 𝑢 ∈ 𝑈(𝑥),

𝐵 (𝑇 (𝑦) ; 𝜀) ∩ 𝐵 (𝑇 (𝑢) ; dist (𝐴, 𝐵)) ̸= 0. (32)

Since 𝑇(𝑢) ∈ 𝐵
0
, we have

𝐵 (𝑇 (𝑢) ; dist (𝐴, 𝐵)) ∩ 𝐴 ̸= 0. (33)

Anypoint𝑝 in the intersection (33) is in𝐴
0
since𝑑(𝑝, 𝑇(𝑢)) =

dist(𝐴, 𝐵). Therefore,

𝐵 (𝑇 (𝑢) ; dist (𝐴, 𝐵)) ∩ 𝐴 ⊂ 𝐴
0
. (34)

By (32), (33), and the fact that 𝑇(𝑦) ∈ 𝐴
0
, the sets 𝐵(𝑇(𝑦); 𝜀),

𝐵(𝑇(𝑢); dist(𝐴, 𝐵)), and 𝐴 have pairwise nonempty inter-
section. Since all of these sets are ball intersections, the
hyperconvexity of the space𝑀 implies that

𝐵 (𝑇 (𝑦) ; 𝜀) ∩ 𝐵 (𝑇 (𝑢) ; dist (𝐴, 𝐵)) ∩ 𝐴 ̸= 0. (35)

Further, by (34), the intersection in (35) is contained in𝐴
0
. It

follows from (35) that 𝐵(𝑇(𝑦); 𝜀)∩𝐹(𝑢) ̸= 0 for 𝑢 ∈ 𝑈(𝑥).This
implies that the mapping 𝐹 is almost lower semicontinuous.

By the selection theorem inMarkin [14] (seeTheorem 10),
an almost lower semicontinuous mapping on a hyperconvex
space with nonempty admissible values has a continuous
selection; that is, there is a continuous𝑓 : 𝐴

0
→ 𝐴
0
such that

𝑓(𝑥) ∈ 𝐹(𝑥) for 𝑥 ∈ 𝐴
0
. By Theorem 11, a continuous self-

mapping on a compact hyperconvex space has a fixed point.
Therefore, there is a 𝑤 ∈ 𝐴

0
such that 𝑤 = 𝑓(𝑤) ∈ 𝐹(𝑤). By

the definition of 𝐹,

𝑑 (𝑤, 𝑇 (𝑤)) = dist (𝐴, 𝐵) . (36)
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