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This paper considers the complete synchronization problem for 𝑁 coupled chaotic systems with ring connections. First, we use
a direct design method to design a synchronization controller. It transforms the error system into a stable system with special
antisymmetric structure. And then, we get some simple stability criteria of achieving the complete synchronization. These criteria
are not only easily verified but also improve and generalize previous known results. Finally, numerical examples are provided to
demonstrate the effectiveness of the theoretical analysis.

1. Introduction

Since the pioneering work of Pecora and Carroll [1], chaotic
synchronization has been intensively investigated due to its
potential applications in many fields [2–4]. Several types of
synchronization phenomena have been reported, such as
complete synchronization [5], phase synchronization [6],
antisynchronization [7], projective synchronization [8, 9],
and generalized synchronization [10]. To solve the problem of
chaotic synchronization, many approaches have been devel-
oped. That includes a sliding mode control method [11], an
impulsive controlmethod [11], an adaptive controlmethod [7,
12], a pinning control method [13], and a sampled-data con-
trol method [14]. However, these control algorithms are just
suitable to synchronize two identical or nonidentical chaotic
systems.

Nowadays, the synchronization of multiple chaotic sys-
tems has attracted increasing attention. It has been widely
used in secure communication area in order to reduce the
synchronizing cost of multiple chaotic communication and
make simultaneous multiparty communications possible.
Therefore, the synchronization in multiple chaotic systems
has more advantages and deserves to be deeply investigated
comparing with the conventional chaotic synchronization.

Several types of synchronization in an array of chaotic sys-
tems have been investigated in the past few years, for example,
the global synchronization in [15, 16], and the adaptive cou-
pled synchronization in [17], the projective synchronization
in [18]. In [19–21], the synchronization of 𝑁 chaotic systems
of with ring and chain connection was investigated. In addi-
tion, Yang and Zhang [22] studied the synchronization of an
array of identical chaotic systems and discussed its applica-
tion for secure communication with noise perturbation.

However, it is notable that the realization of synchroniza-
tion of𝑁 coupled chaotic systems is much more difficult. So,
it is necessary to find an easy method that realizes the syn-
chronization of suchmultiple chaotic systems. Cai et al. [7, 8]
investigated the generalized projective synchronization of
two different chaotic systems based on a special antisymmet-
ric structure. We studied the problem of synchronization of
𝑁 different chaotic systems by using a special antisymmetric
structure [21]. Inspired by the above discussions, we further
discuss the synchronization of 𝑁 coupled chaotic systems in
this paper. First, a synchronization controller that is designed
by using a direct design method transforms the error system
into a stable system with special antisymmetric structure.
And then, we derive some sufficient conditions in order to
guarantee the asymptotical stabilization of the error system
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at the origin. It means that the synchronization of𝑁 coupled
chaotic systems is realized.

The paper is organized as follows. In Section 2, the
synchronization of𝑁 coupled chaotic systems with ring con-
nection is theoretically analyzed. A stability theorem for such
systems with special antisymmetric structure is given. In Sec-
tion 3, the synchronization control schemes are applied to
three identical and non-identical coupled chaotic systems.
Simulation results demonstrate the effectiveness of proposed
schemes. And finally some concluding remarks are given in
Section 4.

2. Synchronization of 𝑁 Chaotic Systems
and Controllers Design

Consider 𝑁 coupled chaotic systems with ring connections
described by
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then the system (1) is an array of non-identical chaotic sys-
tems.

Now the above simple coupling form is applied to inves-
tigate the synchronization of𝑁 chaotic systems. The systems
are
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Let the state error be 𝑒
𝑖−1

= 𝑥
𝑖
− 𝑥
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, (𝑖 = 2, . . . , 𝑁). It is
not difficult to obtain the following dynamical error system:
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Our purpose is to design the controllers 𝑢
𝑖
(𝑖 = 1, . . . , 𝑁−

1) such that the error system (4) is asymptotically stable at the
origin. That is,
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This implies that the synchronization of chaotic systems (3)
is realized.

Here a direct design control method [7, 8, 21] is used to
achieve the objective. This method presents an easy proce-
dure of selecting proper controllers in chaos synchronization.
So we adopt this method to transform the error system into
a stable system with a special antisymmetric structure. The
main results are given below.
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𝑖
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known items that cannot be shown in the form of the error
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where [V1 V
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coefficient matrix. So, the error systems (4) are rewritten by
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then the system (7) is asymptotically stable, which means that
the complete synchronization of 𝑁 coupled chaotic systems (3)
are achieved.

Proof. Choose a Lyapunov function to be
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Since 𝐿(𝑒) = 𝐿
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𝑇
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2
𝑒 < 0. (12)

From Lyapunov stability theory, we know that the equi-
librium 𝑒 = 0 of the system (7) is global asymptotically stable.
Then the complete synchronization of 𝑁 chaotic systems (3)
is achieved.

Remark 2. The error dynamic system (4) is transformed into
the systems ̇𝑒 = 𝐿(𝑒)𝑒 under the control law 𝑢

𝑖
, where 𝐿(𝑒)

possesses the antisymmetric structure. Theorem 1 ensures
that the error system (4) is asymptotically stable at the origin.

Remark 3. There are many possible choices for𝐻 as long as it
guarantees the error dynamic system (7) to be asymptotically
stable at the origin. Without loss of generality, we define𝐻 to
be a state dependent coefficient matrix. As a result, the suffi-
cient stability conditions of the systems (7) are given by trans-
forming it into a stable system with a special antisymmetric
structure.

Remark 4. Theantisymmetric structures inTheorem 1 are the
generalization of the tridiagonal structures. The error system
constructed with the antisymmetric structure is more con-
venient than the onewith tridiagonal structurewhen the orig-
inal systemhas some zero elements at the tridiagonal position
and nonzero elements at other positions.

Since the antisymmetric structure is related to the coeffi-
cient matrices and the states of the original system, the select-
ing of the coefficient matrices with antisymmetric structure
is an important and difficult task. In the next section, we will
demonstrate the proposed approaches for the special struc-
ture through numerical examples.

3. Applications of Synchronization
Control Schemes

In this section, we use two simulation examples to illustrate
the effectiveness of the proposed schemes. The synchroniza-
tion is simulated for the non-identical and identical chaotic
systems, respectively.

Case 1. When the drive system and response systems are
identical chaotic systems, the drive system and response sys-
tems are all the Lorenz chaotic system. They are described as
follows:
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are satisfied, thenTheorem 1 tells us that the error systems (19)
are asymptotically stable at the origin under the controllers 𝑢

1

and 𝑢
2
. It means that the synchronization of (13) is realized.

Fourth order Runge-Kutta integration method is used to
numerical simulation with time step size 0.001. Let the initial
conditions of the drive system and the response systems be
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3, and 4, respectively. It is easy to see that the state variables
and the error variables all tend towards to less than 2 s under
the controllers. Simulation results demonstrate that the con-
vergence rates aremuch faster than the earlier research results
proposed in the literature [19, 21]; then the effectiveness of the
synchronization control schemes is confirmed.

Case 2. When the drive system and response systems are
non-identical chaotic systems, the Chen system, Lü system,
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of the Lorenz

systems with time 𝑡.

and Lorenz system are considered as drive system and
response systems, respectively. They are described as follows:

�̇�
11

= − 35𝑥
11

+ 35𝑥
12

+ 𝑑
11

(𝑥
31

− 𝑥
11
) ,

�̇�
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11
𝑥
13

+ 𝑑
12

(𝑥
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− 𝑥
12
) ,

�̇�
13

= − 3𝑥
13

+ 𝑥
11
𝑥
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+ 𝑑
13

(𝑥
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− 𝑥
13
) ,

�̇�
21

= − 36𝑥
21

+ 36𝑥
22

+ 𝑑
21

(𝑥
11

− 𝑥
21
) + 𝑢
11
,

�̇�
22

= 20𝑥
22

− 𝑥
21
𝑥
23

+ 𝑑
22

(𝑥
12

− 𝑥
22
) + 𝑢
12
,

�̇�
23

= − 3𝑥
23

+ 𝑥
21
𝑥
22

+ 𝑑
23

(𝑥
13

− 𝑥
23
) + 𝑢
13
,

�̇�
31

= − 10𝑥
31

+ 10𝑥
32

+ 𝑑
31

(𝑥
21

− 𝑥
31
) + 𝑢
21
,

�̇�
32

= 28𝑥
31

− 𝑥
32

− 𝑥
31
𝑥
33

+ 𝑑
32

(𝑥
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− 𝑥
32
) + 𝑢
22
,

�̇�
33

= −
8

3
𝑥
33

+ 𝑥
31
𝑥
32

+ 𝑑
33

(𝑥
23

− 𝑥
33
) + 𝑢
23
,

(22)
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Figure 4: The state trajectories 𝑥
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, 𝑥
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, and 𝑥

33
of the Lorenz sys-

tems with time 𝑡.

where

𝐴
1
= [

[

−35 35 0

−7 28 0

0 0 −3

]

]

, 𝐴
2
= [

[

−36 36 0

0 20 0

0 0 −3

]

]

,

𝐴
3
=
[
[

[

−10 10 0

28 −1 0

0 0 −
8

3

]
]

]

,

𝑔
1
(𝑥
1
) = [

[

0

−𝑥
11
𝑥
13

𝑥
11
𝑥
12

]

]

, 𝑔
2
(𝑥
2
) = [

[

0

−𝑥
21
𝑥
23

𝑥
21
𝑥
22

]

]

,

𝑔
3
(𝑥
3
) = [

[

0

−𝑥
31
𝑥
33

𝑥
31
𝑥
32

]

]

,

(23)

and 𝐷
1

= diag(𝑑
11
, 𝑑
12
, 𝑑
13
), 𝐷
2

= diag(𝑑
21
, 𝑑
22
, 𝑑
23
), and

𝐷
3
= diag(𝑑

31
, 𝑑
32
, 𝑑
33
) are the coupled matrices, and 𝑢

1
=

[𝑢
11
, 𝑢
12
, 𝑢
13
]
𝑇 and 𝑢

2
= [𝑢

21
, 𝑢
22
, 𝑢
23
]
𝑇 are the control

inputs.

Let the synchronization error state be ̇𝑒
𝑖−1

= �̇�
𝑖
− �̇�
𝑖−1

,
(𝑖 = 2, 3). The error dynamical equations are

̇𝑒 = [
Δ
1

Δ
2

Δ
3

Δ
4

] 𝑒

+

[
[
[
[
[
[
[
[
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𝑥
22

+ 𝑢
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]
]
]
]
]
]
]

]

,

(24)

where

Δ
1
= [

[

−36 − 𝑑
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− 𝑑
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36 0

0 20 − 𝑑
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0 0 −3 − 𝑑
13

− 𝑑
23

]

]

,

Δ
2
= [
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(25)

The controllers 𝑢
1
and 𝑢

2
are designed as

𝑢
1
= V
1
− (𝐴
2
− 𝐴
1
) 𝑥
1
− 𝑔
2
(𝑥
2
) + 𝑔
1
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𝑢
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2
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1
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3
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3
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1
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1
) ,

(26)

where

V
1
= [

[
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V
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The error systems (24) become

̇𝑒 = [

Δ
∗

1
Δ
∗
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Δ
∗

3
Δ
∗

4

] 𝑒, (28)
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,

Δ
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[
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.
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Figure 5: Dynamics of the variables 𝑒
11
, 𝑒
12
, and 𝑒

13
of the error sys-

tem 𝑒
1
with time 𝑡.
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Figure 6: The state trajectories 𝑥
11
, 𝑥
21
, and 𝑥

31
of the chaotic sys-

tems with time 𝑡.

FromTheorem 1, we know that the conditions

− 36 − 𝑑
11

− 𝑑
21

< 0, 20 − 𝑑
12

− 𝑑
22

< 0,

− 3 − 𝑑
13

− 𝑑
23

< 0, −10 − 𝑑
31

< 0,

− 1 − 𝑑
32

< 0, −
8

3
− 𝑑
33

< 0

(30)

ensure that the error systems (28) are asymptotically stable at
the origin under the controllers 𝑢

1
and 𝑢
2
.Thus, the synchro-

nization between the response systems and the drive systems
is realized.

Similar to Case 1, let the initial conditions of the drive sys-
tem and the response systems be (𝑥

11
(0), 𝑥
12
(0), 𝑥
13
(0)) =

(10, 20, 30), (𝑥
21
(0), 𝑥
22
(0), 𝑥
23
(0)) = (−5.8, 8, 10), and

(𝑥
31
(0), 𝑥
32
(0), 𝑥
33
(0)) = (11, 15, 26), respectively. And we

choose that 𝑑
11

= 𝑑
21

= 𝑑
13

= 𝑑
23

= 𝑑
31

= 𝑑
33

= 0,
𝑑
12

= 10, 𝑑
22

= 11, and 𝑑
32

= 1. The state trajectories of
the error systems and chaotic systems are shown in Figures
5, 6, 7, and 8, respectively. It is easy to see that the state
variables and the error variables all tend towards to less than
1.5 s under the controllers. Simulation results demonstrate
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Figure 7: The state trajectories 𝑥
12
, 𝑥
22
, and 𝑥

32
of the chaotic sys-

tems with time 𝑡.
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of the chaotic sys-

tems with time 𝑡.

that the convergence rates are much faster than the earlier
research results proposed in the literature [19, 21]; then
the effectiveness of the synchronization control schemes is
confirmed.

4. Conclusions

This paper concerns the synchronization of 𝑁 coupled cha-
otic systems with ring connection. A direct design control
method is firstly used to design the controllers. The synchro-
nization of𝑁 coupled chaotic systems is realized by coupling
the state variables.This technology will undoubtedly improve
performance of secret signaling and possess better applica-
tion value in practice. Furthermore, our presented strategy
can ensure strict synchronization between𝑁 coupled chaotic
systems. This will lead to a rapid development in multilateral
communications.
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