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We investigate a neutralmultispecies logarithmic populationmodel with feedback control and impulse. By applying the contraction
mapping principle and some inequality techniques, a set of easily applicable criteria for the existence, uniqueness, and global
attractivity of positive periodic solution are established. The conditions we obtained are weaker than the previously known ones
and can be easily reduced to several special cases. We also give an example to illustrate the applicability of our results.

1. Introduction

As is known to all, ecosystem in the real world is continuously
distributed by unpredictable forces which can result in
changes in the biological parameters such as survival rates.
Of practical interest in ecology is the question of whether
or not an ecosystem can withstand those unpredictable dis-
turbances which persist for a finite period of time. In recent
years, the qualitative behaviors of the population dynamics
with feedback control has attracted the attention of many
mathematicians and biologists [1–5]. On the other hand,
there are some other perturbations in the real world such
as fires and floods, which are not suitable to be considered
continually.These perturbations bring sudden changes to the
system. Systems with such sudden perturbations involving
impulsive differential equations have attracted the interest
of many researchers in the past twenty years [6–10], since
they provide a natural description of several real processes
subject to certain perturbations whose duration is negligible
in comparison with the duration of the process. Such pro-
cesses are often investigated in various fields of science and
technology such as physics, population dynamics, ecology,
biological systems, and optimal control; for details, see [11–
13].However, to the best of the author’s knowledge, to this day,
no scholar considered the neutral multispecies logarithmic
population model with feedback control and impulse.

The aim of this paper is to investigate the existence,
uniqueness, and global attractivity of the positive periodic
solution for the following neutral multispecies logarithmic
population system with feedback control and impulse:

𝑑𝑁
𝑖 (𝑡)

𝑑𝑡

= 𝑁
𝑖 (𝑡)

[

[

𝑟
𝑖 (𝑡) −

𝑛

∑

𝑗=1

𝑎
𝑖𝑗 (𝑡) ln𝑁𝑗 (𝑡)

−

𝑛

∑

𝑗=1

𝑏
𝑖𝑗 (𝑡) ln𝑁𝑗 (𝑡 − 𝜏𝑖𝑗 (𝑡))

−

𝑛

∑

𝑗=1

𝑐
𝑖𝑗 (𝑡) ∫

𝑡

−∞

𝐾
𝑖𝑗 (𝑡 − 𝑠) ln𝑁𝑗 (𝑠) 𝑑𝑠

−

𝑛

∑

𝑗=1

𝑑
𝑖𝑗 (𝑡)

𝑑 ln𝑁
𝑗
(𝑡 − 𝛿

𝑖𝑗 (𝑡))

𝑑𝑡

−𝑒
𝑖 (𝑡) 𝑢𝑖 (𝑡) − 𝑓𝑖 (𝑡) 𝑢𝑖 (𝑡 − 𝜎𝑖 (𝑡))

]

]

,

𝑡 ̸= 𝑡
𝑘
,
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𝑑𝑢
𝑖 (𝑡)

𝑑𝑡
= −𝛼
𝑖 (𝑡) 𝑢𝑖 (𝑡) + 𝛽𝑖 (𝑡) ln𝑁𝑖 (𝑡)

+ 𝜗
𝑖 (𝑡) ln𝑁𝑖 (𝑡 − 𝛾𝑖 (𝑡)) , 𝑡 ≥ 0,

𝑁
𝑖
(𝑡
+

𝑘
) = 𝑒
(1+𝜃𝑖𝑘)𝑁

𝑖
(𝑡
𝑘
) , 𝑖 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . . ,

(1)

where 𝑢
𝑖
(𝑡) denote indirect feedback control variables. For

the ecological justification of (1) and the similar types, refer
to [14–20].

For the sake of generality and convenience, we always
make the following fundamental assumptions:

(𝐻
1
) 𝑟
𝑖
(𝑡), 𝑎

𝑖𝑗
(𝑡), 𝑏
𝑖𝑗
(𝑡), 𝑐
𝑖𝑗
(𝑡), 𝑑

𝑖𝑗
(𝑡), 𝑒

𝑖
(𝑡), 𝑓

𝑖
(𝑡), 𝜏

𝑖𝑗
(𝑡),

𝛿
𝑖𝑗
(𝑡) ∈ 𝐶

2
(𝑅, 𝑅), 𝜎

𝑖
(𝑡), 𝛾
𝑖
(𝑡), 𝛼
𝑖
(𝑡), 𝛽
𝑖
(𝑡), and 𝜂

𝑖
(𝑡) are

continuous nonnegative 𝜔-periodic functions with
∫
𝜔

0
𝑟
𝑖
(𝑡) > 0, 𝑎

𝑖𝑖
(𝑡) > 0, 𝛿󸀠

𝑖𝑗
(𝑡) < 1, 𝜏 =

max
𝑡∈[0,𝜔]

{𝜏
𝑖𝑗
(𝑡), 𝛿
𝑖𝑗
(𝑡), 𝜎
𝑖
(𝑡), 𝛾
𝑖
(𝑡)}, and ∫∞

0
𝐾
𝑖𝑗
(𝑠)𝑑𝑠 =

1, ∫+∞
0

𝑠𝐾
𝑖𝑗
(𝑠)𝑑𝑠 < +∞, 𝑖, 𝑗 = 1, 2, . . . , 𝑛;

(𝐻
2
) 0 < 𝑡

1
< 𝑡
2
< ⋅ ⋅ ⋅ < 𝑡

𝑘
< ⋅ ⋅ ⋅ are fixed impulsive

points with lim
𝑘→∞

𝑡
𝑘
= +∞;

(𝐻
3
) {𝜃
𝑖𝑘
} is a real sequence, 𝜃

𝑖𝑘
+1 > 0, and∏

0<𝑡𝑘<𝑡
(1+𝜃
𝑖𝑘
)

is an 𝜔-periodic function.

In the following section, some definitions and some use-
ful lemmas are listed. In the third section, by applying the
contraction mapping principle, some sufficient conditions
which ensure the existence and uniqueness of positive peri-
odic solution of system (1) are established, and then we get a
few sufficient conditions ensuring the global attractivity of
the positive periodic solution by employing some inequality
techniques. Finally, we give an example to show our results.

2. Preliminaries

In order to obtain the existence and uniqueness of a periodic
solution for system (1), we first give some definitions and lem-
mas.

Definition 1. A function𝑁
𝑖
: 𝑅 → (0,∞) (𝑖 = 1, 2, . . . , 𝑛) is

said to be a positive solution of (1), if the following conditions
are satisfied:

(a) 𝑁
𝑖
(𝑡) is absolutely continuous on each (𝑡

𝑘
, 𝑡
𝑘+1

);
(b) for each 𝑘 ∈ 𝑍

+
,𝑁
𝑖
(𝑡
+

𝑘
) and𝑁

𝑖
(𝑡
−

𝑘
) exist, and𝑁

𝑖
(𝑡
−

𝑘
) =

𝑁
𝑖
(𝑡
𝑘
);

(c) 𝑁
𝑖
(𝑡) satisfies the first equation of (1) for almost

everywhere (for short a.e.) in [0,∞]\{𝑡
𝑘
} and satisfies

𝑁
𝑖
(𝑡
+

𝑘
) = (1+𝜃

𝑖𝑘
)𝑁
𝑖
(𝑡
𝑘
) for 𝑡 = 𝑡

𝑘
, 𝑘 ∈ 𝑍

+
= {1, 2, . . .}.

Definition 2. System (1) is said to be globally attractive, if
there exists a positive solution (𝑁

𝑖
(𝑡), 𝑢
𝑖
(𝑡)) of (1) such that

lim
𝑡→+∞

|𝑁
𝑖
(𝑡) −𝑁

∗

𝑖
(𝑡)| = 0, lim

𝑡→+∞
|𝑢
𝑖
(𝑡) − 𝑢

∗

𝑖
(𝑡)| = 0, for

any other positive solution (𝑁∗
𝑖
(𝑡), 𝑢
∗

𝑖
(𝑡)) of the system (1).

We can easily get the following lemma.

Lemma 3. 𝑅2𝑛
+

= {(𝑁
𝑖
(𝑡), 𝑢
𝑖
(𝑡)) : 𝑁

𝑖
(0) > 0, 𝑢

𝑖
(0) > 0, 𝑖 =

1, 2, . . . , 𝑛} is the positive invariable region of the system (1).

Proof. In view of biological population, we obtain𝑁
𝑖
(0) > 0,

𝑢
𝑖
(0) > 0. By the system (1), we have

𝑁
𝑖 (𝑡) = 𝑁𝑖 (0)

× exp
{

{

{

∫

𝑡

0

[

[

𝑟
𝑖
(𝜂) −

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
(𝜂) ln𝑁

𝑗
(𝜂)

−

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(𝜂) ln𝑁

𝑗
(𝜂 − 𝜏

𝑖𝑗
(𝜂))

−

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
(𝜂) ∫

𝑡

−∞

𝐾
𝑖𝑗
(𝜂 − 𝑠) ln𝑁

𝑗 (𝑠) 𝑑𝑠

−

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
(𝜂)

𝑑 ln𝑁
𝑗
(𝜂 − 𝛿

𝑖𝑗
(𝜂))

𝑑𝑡

− 𝑒
𝑖
(𝜂) 𝑢
𝑖
(𝜂)

−𝑓
𝑖
(𝜂) 𝑢
𝑖
(𝜂 − 𝜎

𝑖
(𝜂))]

]

𝑑𝜂
}

}

}

,

𝑡 ∈ [0, 𝑡
1
] , 𝑖 = 1, 2, . . . , 𝑛,

𝑁
𝑖 (𝑡) = 𝑁𝑖 (𝑡𝑘)

× exp
{

{

{

∫

𝑡

𝑡𝑘

[

[

𝑟
𝑖
(𝜂)

−

𝑛

∑

𝑗=1

𝑎
𝑖𝑗
(𝜂) ln𝑁

𝑗
(𝜂)

−

𝑛

∑

𝑗=1

𝑏
𝑖𝑗
(𝜂) ln𝑁

𝑗
(𝜂 − 𝜏

𝑖𝑗
(𝜂))

−

𝑛

∑

𝑗=1

𝑐
𝑖𝑗
(𝜂) ∫

𝑡

−∞

𝐾
𝑖𝑗
(𝜂 − 𝑠) ln𝑁

𝑗 (𝑠) 𝑑𝑠

−

𝑛

∑

𝑗=1

𝑑
𝑖𝑗
(𝜂)

𝑑 ln𝑁
𝑗
(𝜂 − 𝛿

𝑖𝑗
(𝜂))

𝑑𝑡

− 𝑒
𝑖
(𝜂) 𝑢
𝑖
(𝜂)

−𝑓
𝑖
(𝜂) 𝑢
𝑖
(𝜂 − 𝜎

𝑖
(𝜂))]

]

𝑑𝜂
}

}

}

,

𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

] , 𝑖 = 1, 2, . . . , 𝑛,

𝑁
𝑖
(𝑡
+

𝑘
) = 𝑒
(1+𝑝𝑖𝑘)𝑁

𝑖
(𝑡
𝑘
) > 0, 𝑘 ∈ 𝑁, 𝑖 = 1, 2, . . . , 𝑛,

𝑢
𝑖 (𝑡) = ∫

𝑡+𝜔

𝑡

𝐺 (𝑡, 𝑠) [𝛽
𝑖
(𝑠) ln𝑁𝑖 (𝑠)

+𝜗
𝑖 (𝑠) ln𝑁𝑖 (𝑠 − 𝛾𝑖 (𝑠))] 𝑑𝑠

:= (𝜙
𝑖
ln𝑁
𝑖
) (𝑡) ,

(2)
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where

𝐺
𝑖 (𝑡, 𝑠) =

exp {∫𝑠
𝑡
𝛼
𝑖 (𝜉) 𝑑𝜉}

exp {∫𝑠
𝑡
𝛼
𝑖 (𝜉) 𝑑𝜉} − 1

. (3)

Then the solution of the system (1) is positive.
Under the above hypotheses (𝐻

1
)–(𝐻
3
), we consider the

neutral nonimpulsive system:

𝑑𝑦
𝑖 (𝑡)

𝑑𝑡
= 𝑦
𝑖 (𝑡)

[

[

𝑟
𝑖 (𝑡) −

𝑛

∑

𝑗=1

𝐴
𝑖𝑗 (𝑡) ln𝑦𝑗 (𝑡)

−

𝑛

∑

𝑗=1

𝐵
𝑖𝑗 (𝑡) ln𝑦𝑗 (𝑡 − 𝜏𝑖𝑗 (𝑡))

−

𝑛

∑

𝑗=1

𝐶
𝑖𝑗 (𝑡) ∫

𝑡

−∞

𝐾
𝑖𝑗 (𝑡 − 𝑠) ln𝑦𝑗 (𝑠) 𝑑𝑠

−

𝑛

∑

𝑗=1

𝐷
𝑖𝑗 (𝑡)

𝑑 ln𝑦
𝑗
(𝑡 − 𝛿

𝑖𝑗 (𝑡))

𝑑𝑡

−𝑒
𝑖 (𝑡) 𝑢𝑖 (𝑡) − 𝑓𝑖 (𝑡) 𝑢𝑖 (𝑡 − 𝜎𝑖 (𝑡))

]

]

,

𝑑𝑢
𝑖 (𝑡)

𝑑𝑡
= −𝛼
𝑖 (𝑡) 𝑢𝑖 (𝑡) + 𝛽

∗

𝑖
(𝑡) ln𝑦𝑖 (𝑡)

+ 𝜗
∗

𝑖
(𝑡) ln𝑦𝑖 (𝑡 − 𝛾𝑖 (𝑡)) ,

(4)

where

𝐴
𝑖𝑗 (𝑡) = 𝑎𝑖𝑗 (𝑡) ∏

0<𝑡𝑘<𝑡

(1 + 𝜃
𝑖𝑘
) ,

𝐵
𝑖𝑗 (𝑡) = 𝑏𝑖𝑗 (𝑡) ∏

0<𝑡𝑘<𝑡−𝜏𝑖𝑗(𝑡)

(1 + 𝜃
𝑖𝑘
) ,

𝐶
𝑖𝑗 (𝑡) = 𝑐𝑖𝑗 (𝑡) ∏

0<𝑡𝑘<𝑡

(1 + 𝜃
𝑖𝑘
) ,

𝐷
𝑖𝑗 (𝑡) = 𝑑𝑖𝑗 (𝑡) ∏

0<𝑡𝑘<𝑡−𝛿𝑖𝑗(𝑡)

(1 + 𝜃
𝑖𝑘
) ,

𝛽
∗

𝑖
(𝑡) = 𝛽𝑖 (𝑡) ∏

0<𝑡𝑘<𝑡

(1 + 𝜃
𝑖𝑘
) ,

𝜗
∗

𝑖
(𝑡) = 𝜃𝑖 (𝑡) ∏

0<𝑡𝑘<𝑡−𝛾𝑖(𝑡)

(1 + 𝜃
𝑖𝑘
) .

(5)

By a solution (𝑦
𝑖
(𝑡), 𝑢
𝑖
(𝑡)) of (4), it means an absolutely

continuous function (𝑦
𝑖
(𝑡), 𝑢
𝑖
(𝑡)) defined on [−𝜏, 0] that

satisfies (4) a.e., for 𝑡 ≥ 0, and 𝑦(𝜉) = 𝜑(𝜉), 𝑦󸀠(𝜉) = 𝜑
󸀠
(𝜉)

on [−𝜏, 0].

The following lemma will be used in the proofs of our
results, and the proof of the lemma is similar to that ofTheo-
rem 1 in [6].

Lemma 4. Suppose that (𝐻
1
)–(𝐻
4
) hold. Then

(i) if (𝑦
𝑖
(𝑡), 𝑢
𝑖
(𝑡)) is a solution of (4) on [−𝜏, +∞), then

(𝑁
𝑖
(𝑡), 𝑢
𝑖
(𝑡)) = (∏

0<𝑡𝑘<𝑡
𝑒
(1+𝜃𝑖𝑘)𝑦

𝑖
(𝑡), 𝑢
𝑖
(𝑡)) is a solution

of (1) on [−𝜏, +∞),

(ii) if (𝑁
𝑖
(𝑡), 𝑢
𝑖
(𝑡)) is a solution of (1) on [−𝜏, +∞), then

(𝑦
𝑖
(𝑡), 𝑢
𝑖
(𝑡)) = (∏

0<𝑡𝑘<𝑡
(𝑒
(1+𝜃𝑖𝑘))

−1
𝑁
𝑖
(𝑡), 𝑢
𝑖
(𝑡)) is a

solution of (4) on [−𝜏, +∞).

Proof. (i) It is easy to see that (𝑁
𝑖
(𝑡), 𝑢
𝑖
(𝑡)) = (∏

0<𝑡𝑘<𝑡
𝑒
(1+𝜃𝑖𝑘)

𝑦
𝑖
(𝑡), 𝑢
𝑖
(𝑡)) is absolutely continuous on every interval (𝑡

𝑘
,

𝑡
𝑘+1

], 𝑡 ̸= 𝑡
𝑘
, 𝑘 = 1, 2, . . .,

𝑁
󸀠

𝑖
(𝑡) − 𝑁𝑖 (𝑡)

× [

[

𝑟
𝑖 (𝑡) −

𝑛

∑

𝑗=1

𝑎
𝑖𝑗 (𝑡) ln𝑁𝑗 (𝑡) −

𝑛

∑

𝑗=1

𝑏
𝑖𝑗 (𝑡) ln𝑁𝑗 (𝑡 − 𝜏𝑖𝑗 (𝑡))

−

𝑛

∑

𝑗=1

𝑐
𝑖𝑗 (𝑡) ∫

𝑡

−∞

𝐾
𝑖𝑗 (𝑡 − 𝑠) ln𝑁𝑗 (𝑠) 𝑑𝑠

−

𝑛

∑

𝑗=1

𝑑
𝑖𝑗 (𝑡)

𝑑 ln𝑁
𝑗
(𝑡 − 𝛿

𝑖𝑗 (𝑡))

𝑑𝑡

−𝑒
𝑖 (𝑡) 𝑢𝑖 (𝑡) − 𝑓𝑖 (𝑡) 𝑢𝑖 (𝑡 − 𝜎𝑖 (𝑡))

]

]

= ∏

0<𝑡𝑘<𝑡

𝑒
(1+𝜃𝑖𝑘)𝑦

󸀠

𝑖
(𝑡) − ∏

0<𝑡𝑘<𝑡

𝑒
(1+𝜃𝑖𝑘)𝑦

𝑖 (𝑡)

× [

[

𝑟
𝑖 (𝑡) −

𝑛

∑

𝑗=1

𝑎
𝑖𝑗 (𝑡) ∏

0<𝑡𝑘<𝑡

(1 + 𝜃
𝑖𝑘
) ln𝑦
𝑗 (𝑡)

−

𝑛

∑

𝑗=1

𝑏
𝑖𝑗 (𝑡) ∏

0<𝑡𝑘<𝑡−𝜏𝑖𝑗(𝑡)

(1 + 𝜃
𝑖𝑘
) ln𝑦
𝑗
(𝑡 − 𝜏
𝑖𝑗 (𝑡))

−

𝑛

∑

𝑗=1

𝑐
𝑖𝑗 (𝑡) ∫

𝑡

−∞

𝐾
𝑗 (𝑡 − 𝑠) ∏

0<𝑡𝑘<𝑡

(1 + 𝜃
𝑖𝑘
) ln𝑦
𝑗 (𝑠) 𝑑𝑠

−

𝑛

∑

𝑗=1

𝑑
𝑖𝑗 (𝑡) ∏

0<𝑡𝑘<𝑡−𝛿𝑖𝑗(𝑡)

(1 + 𝜃
𝑖𝑘
)
𝑑𝑦
𝑗
(𝑡 − 𝛿

𝑖𝑗 (𝑡))

𝑑𝑡

−𝑒
𝑖 (𝑡) 𝑢𝑖 (𝑡) − 𝑓𝑖 (𝑡) 𝑢𝑖 (𝑡 − 𝜎𝑖 (𝑡))

]

]

= ∏

0<𝑡𝑘<𝑡

𝑒
(1+𝜃𝑘)

×
{

{

{

𝑦
󸀠
(𝑡) − 𝑦 (𝑡)

× [

[

𝑟
𝑖 (𝑡) −

𝑛

∑

𝑗=1

𝐴
𝑖𝑗 (𝑡) ln𝑦𝑗 (𝑡)

−

𝑛

∑

𝑗=1

𝐵
𝑖𝑗 (𝑡) ln𝑦𝑗 (𝑡 − 𝜏𝑖𝑗 (𝑡))
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−

𝑛

∑

𝑗=1

𝐶
𝑖𝑗 (𝑡) × ∫

𝑡

−∞

𝐾
𝑖𝑗 (𝑡 − 𝑠) ln𝑦𝑗 (𝑠) 𝑑𝑠

−

𝑛

∑

𝑗=1

𝐷
𝑖𝑗 (𝑡)

𝑑 ln𝑦
𝑗
(𝑡 − 𝛿

𝑖𝑗 (𝑡))

𝑑𝑡

−𝑒
𝑖 (𝑡) 𝑢𝑖 (𝑡) − 𝑓𝑖 (𝑡) 𝑢𝑖 (𝑡 − 𝜎𝑖 (𝑡))

]

]

}

}

}

= 0,

𝑢
󸀠

𝑖
(𝑡) + 𝛼𝑖 (𝑡) 𝑢𝑖 (𝑡) − 𝛽𝑖 (𝑡) ln𝑁𝑖 (𝑡) − 𝜗𝑖 (𝑡) ln𝑁𝑖 (𝑡 − 𝛾𝑖 (𝑡))

= 𝑢
󸀠

𝑖
(𝑡) + 𝛼𝑖 (𝑡) 𝑢𝑖 (𝑡) − 𝛽

∗

𝑖
(𝑡) ln𝑦𝑖 (𝑡)

− 𝜗
∗

𝑖
(𝑡) ln𝑦𝑖 (𝑡 − 𝛾𝑖 (𝑡)) = 0. (6)

On the other hand, for any 𝑡 = 𝑡
𝑘
, 𝑘 = 1, 2, . . .,

𝑁
𝑖
(𝑡
+

𝑘
) = lim
𝑡→ 𝑡
+

𝑘

∏

0<𝑡𝑗<𝑡

𝑒
(1+𝜃𝑖𝑘)𝑦

𝑖 (𝑡)

= ∏

0<𝑡𝑗≤𝑡𝑘

𝑒
(1+𝜃𝑖𝑘)𝑦

𝑖
(𝑡
𝑘
) ,

𝑁
𝑖
(𝑡
𝑘
) = ∏

0<𝑡𝑗<𝑡𝑘

𝑒
(1+𝜃𝑖𝑘)𝑦

𝑖
(𝑡
𝑘
) .

(7)

Thus

𝑁(𝑡
+

𝑘
) = 𝑒
(1+𝜃𝑖𝑘)𝑁(𝑡

𝑘
) , 𝑘 = 1, 2, . . . . (8)

It follows from (6)–(8) that (𝑁
𝑖
(𝑡), 𝑢
𝑖
(𝑡)) is a solution of (1).

(ii) Since𝑁
𝑖
(𝑡) = ∏

0<𝑡𝑘<𝑡
𝑒
(1+𝜃𝑖𝑘)𝑦

𝑖
(𝑡) is absolutely contin-

uous on every interval (𝑡
𝑘
, 𝑡
𝑘+1

], 𝑡 ̸= 𝑡
𝑘
, 𝑘 = 1, 2, . . ., and in

view of (8), it follows that for any 𝑘 = 1, 2, . . .,

𝑦
𝑖
(𝑡
+

𝑘
) = ∏

0<𝑡𝑗≤𝑡𝑘

(𝑒
(1+𝜃𝑖𝑘))

−1

𝑁
𝑖
(𝑡
+

𝑘
)

= ∏

0<𝑡𝑗<𝑡𝑘

(𝑒
(1+𝜃𝑖𝑘))

−1

𝑁
𝑖
(𝑡
𝑘
) = 𝑦
𝑖
(𝑡
𝑘
) ,

𝑦
𝑖
(𝑡
−

𝑘
) = ∏

0<𝑡𝑗<𝑡𝑘

(𝑒
(1+𝜃𝑖𝑘))

−1

𝑁
𝑖
(𝑡
−

𝑘
)

= ∏

0<𝑡𝑗≤𝑡
−

𝑘

(𝑒
(1+𝜃𝑖𝑘))

−1

𝑁
𝑖
(𝑡
−

𝑘
) = 𝑦
𝑖
(𝑡
𝑘
) ,

(9)

which implies that 𝑦
𝑖
(𝑡) is continuous on [−𝜏, +∞). It is

easy to prove that 𝑦
𝑖
(𝑡) is absolutely continuous on [−𝜏,

+∞). Similar to the proof of (i), we can check that (𝑦
𝑖
(𝑡),

𝑢
𝑖
(𝑡)) = (∏

0<𝑡𝑘<𝑡
(𝑒
(1+𝜃𝑖𝑘))

−1
𝑁
𝑖
(𝑡), 𝑢
𝑖
(𝑡)) are solutions of (4) on

[−𝜏, +∞). The proof of Lemma 4 is completed.

Lemma 5. (𝑦
𝑖
(𝑡), 𝑢
𝑖
(𝑡)) is a 𝜔-periodic solution of (4) if and

only if 𝑦
𝑖
(𝑡) is a 𝜔-periodic solution of the following system:

𝑑𝑦
𝑖 (𝑡)

𝑑𝑡

= 𝑦
𝑖 (𝑡)

[

[

𝑟
𝑖 (𝑡) −

𝑛

∑

𝑗=1

𝐴
𝑖𝑗 (𝑡) ln𝑦𝑗 (𝑡)

−

𝑛

∑

𝑗=1

𝐵
𝑖𝑗 (𝑡) ln𝑦𝑗 (𝑡 − 𝜏𝑖𝑗 (𝑡))

−

𝑛

∑

𝑗=1

𝐶
𝑖𝑗 (𝑡) ∫

𝑡

−∞

𝐾
𝑖𝑗 (𝑡 − 𝑠) ln𝑦𝑗 (𝑠) 𝑑𝑠

−

𝑛

∑

𝑗=1

𝐷
𝑖𝑗 (𝑡)

𝑑 ln𝑦
𝑗
(𝑡 − 𝛿

𝑖𝑗 (𝑡))

𝑑𝑡

− 𝑒
𝑖 (𝑡) (𝜙𝑖 ln𝑦𝑖) (𝑡)

−𝑓
𝑖 (𝑡) (𝜙𝑖 ln𝑦𝑖) (𝑡) (𝑡 − 𝜎𝑖 (𝑡))]

]

,

(10)

where

(𝜙
𝑖
ln𝑦
𝑖
) (𝑡)

:= ∫

𝑡+𝜔

𝑡

𝐺
𝑖 (𝑡, 𝑠)[𝛽

∗

𝑖
(𝑠) ln𝑦𝑖 (𝑠)+𝜗

∗

𝑖
(𝑠) ln𝑦𝑖 (𝑠−𝛾𝑖 (𝑠))]𝑑𝑠,

(11)

and 𝐺
𝑖
(𝑡, 𝑠) is defined by (3).

Proof. The proof of Lemma 5 is similar to that of Lemma 2.2
in [2], and we omit the details here.

Obviously, the existence, uniqueness, and global attractiv-
ity of positive periodic solution of system (1) is equivalent to
the existence, uniqueness, and global attractivity of periodic
solution of system (10).

Lemma 6. Assume that 𝑢(𝑡), 𝜏(𝑡) are all continuously dif-
ferentiable 𝜔-periodic functions and 𝑎(𝑡) is a nonnegative
continuous 𝜔-periodic function such that ∫𝜔

0
𝑎(𝑡)𝑑𝑡 > 0; then

∫

𝑡

−∞

𝑒
−∫
𝑡

𝑠
𝑎(𝜉)𝑑𝜉

𝑏 (𝑠) 𝑢
󸀠
(𝑠 − 𝜏 (𝑠)) 𝑑𝑠

= 𝑐 (𝑡) 𝑢 (𝑡 − 𝜏 (𝑡))

− ∫

𝑡

−∞

𝑒
−∫
𝑡

𝑠
𝑎(𝜉)𝑑𝜉

[𝑎 (𝑠) 𝑐 (𝑠) + 𝑐
󸀠
(𝑠)] 𝑢 (𝑠 − 𝜏 (𝑠)) 𝑑𝑠,

(12)

where 𝑐(𝑡) = 𝑏(𝑡)/(1 − 𝜏󸀠(𝑡)).



Abstract and Applied Analysis 5

Proof. As

∫

𝑡

−∞

𝑒
−∫
𝑡

𝑠
𝑎(𝜉)𝑑𝜉

𝑏 (𝑠) 𝑢
󸀠
(𝑠 − 𝜏 (𝑠)) 𝑑𝑠

= ∫

𝑡

−∞

𝑒
−∫
𝑡

𝑠
𝑎(𝜉)𝑑𝜉

𝑐 (𝑠) 𝑑𝑢 (𝑠 − 𝜏 (𝑠))

= 𝑒
−∫
𝑡

𝑠
𝑎(𝜉)𝑑𝜉

𝑐 (𝑠) 𝑢 (𝑠 − 𝜏 (𝑠))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑡

−∞

− ∫

𝑡

−∞

𝑢 (𝑠 − 𝜏 (𝑠)) 𝑑 (𝑒
−∫
𝑡

𝑠
𝑎(𝜉)𝑑𝜉

𝑐 (𝑠))

= 𝑒
−∫
𝑡

𝑠
𝑎(𝜉)𝑑𝜉

𝑐 (𝑠) 𝑢 (𝑠 − 𝜏 (𝑠))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑡

−∞

− ∫

𝑡

−∞

𝑢 (𝑠 − 𝜏 (𝑠)) [𝑎 (𝑠) 𝑐 (𝑠) + 𝑐
󸀠
(𝑠)] 𝑒
−∫
𝑡

𝑠
𝑎(𝜉)𝑑𝜉

𝑑𝑠.

(13)

Denote 𝑚 = 𝑒
−∫
𝜔

0
𝑎(𝑡)𝑑𝑡; then from 𝑎(𝑡) ≥ 0, ∫𝜔

0
𝑎(𝑡)𝑑𝑡 > 0, it

follows that𝑚 < 1. Also, when 𝑡 ≥ 𝑠without loss of generality,
we may assume that 𝑠 + 𝑛𝜔 ≤ 𝑡 ≤ 𝑠 + (𝑛 + 1)𝜔; thus

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑒
−∫
𝑡

𝑠
𝑎(𝜉)𝑑𝜉

𝑐 (𝑠) 𝑢 (𝑠 − 𝜏 (𝑠))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑒
−∫
𝑡

𝑠
𝑎(𝜉)𝑑𝜉

‖𝑐‖‖𝑢‖

= 𝑒
−∑
𝑛−1

𝑗=1
∫
𝑠+(𝑗+1)𝜔

𝑠+𝑗𝜔
𝑎(𝜉)𝑑𝜉−∫

𝑡

𝑠+𝑛𝜔
𝑎(𝜉)𝑑𝜉

‖𝑐‖‖𝑢‖

= 𝑚
𝑛
𝑒
−∫
𝑡

𝑠+𝑛𝜔
𝑎(𝜉)𝑑𝜉

‖𝑐‖‖𝑢‖

≤ 𝑚
𝑛
‖𝑐‖‖𝑢‖ .

(14)

Therefore,

lim
𝑠→−∞

𝑒
−∫
𝑡

𝑠
𝑎(𝜉)𝑑𝜉

𝑐 (𝑠) 𝑢 (𝑠 − 𝜏 (𝑠)) = 0, (15)

and so from (13)–(15) it follows that

∫

𝑡

−∞

𝑒
−∫
𝑡

𝑠
𝑎(𝜉)𝑑𝜉

𝑏 (𝑠) 𝑢
󸀠
(𝑠 − 𝜏 (𝑠)) 𝑑𝑠

= 𝑐 (𝑡) 𝑢 (𝑡 − 𝜏 (𝑡))

− ∫

𝑡

−∞

𝑒
−∫
𝑡

𝑠
𝑎(𝜉)𝑑𝜉

[𝑎 (𝑠) 𝑐 (𝑠) + 𝑐
󸀠
(𝑠)] 𝑢 (𝑠 − 𝜏 (𝑠)) 𝑑𝑠.

(16)

The proof Lemma 6 is complete.

3. Main Theorem

In this section, by using contraction principle and some
inequality techniques, several conditions on the existence,
uniqueness, and global attractivity of periodic solution for
system (1) are presented.

Let 𝑦
𝑖
(𝑡) = 𝑒

ℎ𝑖𝑥𝑖(𝑡); the system (10) can be reduced to

𝑑𝑥
𝑖

𝑑𝑡
= −𝐴

𝑖𝑖 (𝑡) 𝑥𝑖 (𝑡) − ℎ
−1

𝑖

𝑛

∑

𝑗=1,𝑗 ̸= 𝑖

ℎ
𝑗
𝐴
𝑖𝑗 (𝑡) 𝑥𝑗 (𝑡)

− ℎ
−1

𝑖

𝑛

∑

𝑗=1

ℎ
𝑗
𝐵
𝑖𝑗 (𝑡) 𝑥𝑗 (𝑡 − 𝜏𝑖𝑗 (𝑡))

− ℎ
−1

𝑖

𝑛

∑

𝑗=1

ℎ
𝑗
𝐶
𝑖𝑗 (𝑡) ∫

𝑡

−∞

𝐾
𝑖𝑗 (𝑡 − 𝑠) 𝑥𝑗 (𝑠) 𝑑𝑠

− ℎ
−1

𝑖

𝑛

∑

𝑗=1

ℎ
𝑗
𝐷
𝑖𝑗 (𝑡) (1 − 𝛿

󸀠

𝑖𝑗
(𝑡)) 𝑥
󸀠

𝑗
(𝑡 − 𝛿

𝑖𝑗 (𝑡))

− 𝑒
𝑖 (𝑡) (𝜙𝑖𝑥𝑖) (𝑡) − 𝑓𝑖 (𝑡) (𝜙𝑖𝑥𝑖) (𝑡 − 𝜎𝑖 (𝑡)) + ℎ

−1

𝑖
𝑟
𝑖 (𝑡) ,

(17)

where ℎ
𝑖
> 0 (𝑖 = 1, 2, . . . , 𝑛) are 𝑛 positive real numbers.

Obviously, the existence, uniqueness, and global attractiv-
ity of positive periodic solution of system (10) is equivalent to
the existence, uniqueness, and global attractivity of periodic
solution of system (17).

For the rest of this paper, we will devote ourselves to study
the existence, uniqueness, and global attractivity of periodic
solution of (17). We denote

Γ
1

𝑖
(𝑡) := 𝑒𝑖 (𝑡) (𝜙𝑖1) (𝑡) , Γ

2

𝑖
(𝑡) := 𝑓𝑖 (𝑡) (𝜙𝑖1) (𝑡 − 𝜎𝑖 (𝑡)) ,

Δ
𝑖 (𝑡) := ℎ

−1

𝑖

𝑛

∑

𝑗=1,𝑗 ̸= 𝑖

ℎ
𝑗
𝐴
𝑖𝑗 (𝑡)

+ ℎ
−1

𝑖

𝑛

∑

𝑗=1

ℎ
𝑗
[𝐵
𝑖𝑗 (𝑡) + 𝐶𝑖𝑗 (𝑡)

+ (𝐴
𝑖𝑖 (𝑠)𝐷𝑖𝑗 (𝑡) +

󵄨󵄨󵄨󵄨󵄨
𝐷
󸀠

𝑖𝑗
(𝑡)
󵄨󵄨󵄨󵄨󵄨
)]

+ Γ
1

𝑖
(𝑡) + Γ

2

𝑖
(𝑡) , 𝑖 = 1, 2, . . . , 𝑛.

(18)

Our first result on the global existence of a periodic solution
of system (1) is stated in the following theorem.

Theorem 7. In addition to (𝐻
1
)–(𝐻
3
), assume further that

there exist positive constants ℎ
𝑖
(𝑖 = 1, 2, . . . , 𝑛) and a positive

constant𝑀 < 1 such that

(𝐻
4
) sup
𝑡∈[0,𝜔]

max
𝑖∈[1,𝑛]

{∑
𝑛

𝑗=1
(ℎ
𝑗
/ℎ
𝑖
)𝐷
𝑖𝑗
(𝑡)+∫

𝑡

−∞
exp{−∫𝑡

𝑠
𝐴
𝑖𝑖

(𝜉)𝑑𝜉}Δ
𝑖
(𝑠)𝑑𝑠} ≤ 𝑀.

Then, system (1) has a unique 𝜔-periodic solution with strictly
positive components, where Δ

𝑖
(𝑡) is defined by (18).

Proof. From the above analysis, to finish the proof of
Theorem 7, it is enough to prove under the conditions of
Theorem 7 that system (17) has a unique 𝜔-periodic solution.
Let

Ω = {𝑢 (𝑡) | 𝑢 ∈ 𝐶 (𝑅
𝑛
, 𝑅) , 𝑢 (𝑡 + 𝜔) = 𝑢 (𝑡)} ; (19)
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under the norm ‖𝑢‖ = max
1≤𝑖≤𝑛

max
𝑡∈[0,𝜔]

{|𝑢
𝑖
(𝑡)|}, Ω is a

Banach space. For any 𝑢(𝑡) = (𝑢
1
(𝑡), . . . , 𝑢

𝑛
(𝑡))
𝑇
∈ Ω, we con-

sider the periodic solution 𝑥
𝑢
(𝑡) of periodic differential equa-

tion

𝑑𝑥
𝑖

𝑑𝑡
= −𝐴
𝑖𝑖 (𝑡) 𝑥𝑖 (𝑡) − ℎ

−1

𝑖

𝑛

∑

𝑗=1,𝑗 ̸= 𝑖

ℎ
𝑗
𝐴
𝑖𝑗 (𝑡) 𝑢𝑗 (𝑡)

− ℎ
−1

𝑖

𝑛

∑

𝑗=1

ℎ
𝑗
𝐵
𝑖𝑗 (𝑡) 𝑢𝑗 (𝑡 − 𝜏𝑖𝑗 (𝑡))

− ℎ
−1

𝑖

𝑛

∑

𝑗=1

ℎ
𝑗
𝐶
𝑖𝑗 (𝑡) ∫

𝑡

−∞

𝐾
𝑖𝑗 (𝑡 − 𝑠) 𝑢𝑗 (𝑠) 𝑑𝑠

− ℎ
−1

𝑖

𝑛

∑

𝑗=1

ℎ
𝑗
𝐷
𝑖𝑗 (𝑡) (1 − 𝛿

󸀠

𝑖𝑗
(𝑡)) 𝑢
󸀠

𝑗
(𝑡 − 𝛿

𝑖𝑗 (𝑡))

− 𝑒
𝑖 (𝑡) (𝜙𝑖𝑢𝑖) (𝑡) − 𝑓𝑖 (𝑡) (𝜙𝑖𝑢𝑖) (𝑡) (𝑡 − 𝜎𝑖 (𝑡))

+ ℎ
−1

𝑖
𝑟
𝑖 (𝑡) , 𝑖 = 1, 2, . . . , 𝑛.

(20)

Since 𝐴
𝑖𝑖
(𝑡) > 0, we know that the linear system of system

(20)

𝑑𝑥
𝑖

𝑑𝑡
= −𝐴

𝑖𝑖 (𝑡) 𝑥𝑖 (𝑡) , 𝑖 = 1, 2, . . . , 𝑛 (21)

admits exponential dichotomies on 𝑅, and so system (20) has
a unique periodic solution 𝑥

𝑢
(𝑡), which can be expressed as

𝑥
𝑢 (𝑡) = (𝑥1𝑢 (𝑡) , . . . , 𝑥𝑛𝑢 (𝑡))

𝑇

= (∫

𝑡

−∞

exp{−∫
𝑡

𝑠

𝐴
11 (𝜉) 𝑑𝜉}𝐹1𝑢 (𝑠) 𝑑𝑠, . . . ,

∫

𝑡

−∞

exp{−∫
𝑡

𝑠

𝐴
𝑛𝑛 (𝜉) 𝑑𝜉}𝐹𝑛𝑢 (𝑠) 𝑑𝑠)

𝑇

,

(22)

where

𝐹
𝑖𝑢 (𝑡) = −ℎ

−1

𝑖

𝑛

∑

𝑗=1,𝑗 ̸= 𝑖

ℎ
𝑗
𝐴
𝑖𝑗 (𝑡) 𝑥𝑗 (𝑡)

− ℎ
−1

𝑖

𝑛

∑

𝑗=1

ℎ
𝑗
𝐵
𝑖𝑗 (𝑡) 𝑥𝑗 (𝑡 − 𝜏𝑖𝑗 (𝑡))

− ℎ
−1

𝑖

𝑛

∑

𝑗=1

ℎ
𝑗
𝐶
𝑖𝑗 (𝑡) ∫

𝑡

−∞

𝐾
𝑖𝑗 (𝑡 − 𝑠) 𝑥𝑗 (𝑠) 𝑑𝑠

− ℎ
−1

𝑖

𝑛

∑

𝑗=1

ℎ
𝑗
𝐷
𝑖𝑗 (𝑡) (1 − 𝛿

󸀠

𝑖𝑗
(𝑡)) 𝑥
󸀠

𝑗
(𝑡 − 𝛿

𝑖𝑗 (𝑡))

− 𝑒
𝑖 (𝑡) (𝜙𝑖𝑥𝑖) (𝑡) − 𝑓𝑖 (𝑡) (𝜙𝑖𝑥𝑖) (𝑡) (𝑡 − 𝜎𝑖 (𝑡))

+ ℎ
−1

𝑖
𝑟
𝑖 (𝑡) ;

(23)

its proof is similar to that ofTheorem 1 in [18]; here we omit it.

Now, by using Lemma 6, 𝑥
𝑖𝑢
(𝑡) can also be expressed as

𝑥
𝑖𝑢 (𝑡) = −

𝑛

∑

𝑗=1

ℎ
𝑗

ℎ
𝑖

𝐷
𝑖𝑗 (𝑡) 𝑢𝑗 (𝑡 − 𝛿𝑖𝑗 (𝑡))

+ ∫

𝑡

−∞

exp{−∫
𝑡

𝑠

𝐴
𝑖𝑖 (𝜉) 𝑑𝜉}𝐺𝑖𝑢 (𝑠) 𝑑𝑠,

𝑖 = 1, 2, . . . , 𝑛,

(24)

where

𝐺
𝑖𝑢 (𝑡) = −ℎ

−1

𝑖

𝑛

∑

𝑗=1,𝑗 ̸= 𝑖

ℎ
𝑗
𝐴
𝑖𝑗 (𝑡) 𝑢𝑗 (𝑡)

− ℎ
−1

𝑖

𝑛

∑

𝑗=1

ℎ
𝑗
𝐵
𝑖𝑗 (𝑡) 𝑢𝑗 (𝑡 − 𝜏𝑖𝑗 (𝑡))

− ℎ
−1

𝑖

𝑛

∑

𝑗=1

ℎ
𝑗
× 𝐶
𝑖𝑗 (𝑡) ∫

𝑡

−∞

𝐾
𝑖𝑗 (𝑡 − 𝑠) 𝑢𝑗 (𝑠) 𝑑𝑠

+ ℎ
−1

𝑖

𝑛

∑

𝑗=1

ℎ
𝑗
(𝐴
𝑖𝑖 (𝑠)𝐷𝑖𝑗 (𝑡) + 𝐷

󸀠

𝑖𝑗
(𝑡)) 𝑢𝑗 (𝑡 − 𝛿𝑖𝑗 (𝑡))

+ 𝑒
𝑖 (𝑡) (𝜙𝑖𝑢𝑖) (𝑡) − 𝑓𝑖 (𝑡) (𝜙𝑖𝑢𝑖) (𝑡) (𝑡 − 𝜎𝑖 (𝑡))

+ ℎ
−1

𝑖
𝑟
𝑖 (𝑡) .

(25)
Now we define mapping 𝑇 : Ω → Ω, 𝑇𝑢(𝑡) = 𝑥

𝑢
(𝑡).

Following this we will prove that 𝑇 is a contraction mapping;
that is, there exists a constant 𝛽 ∈ (0, 1), such that ‖𝑇𝑢 −
𝑇V‖ ≤ 𝛽‖𝑢 − V‖, for all 𝑢, V ∈ Ω. In fact, for any 𝑢(𝑡) =

(𝑢
1
(𝑡), . . . , 𝑢

𝑛
(𝑡))
𝑇 and V(𝑡) = (V

1
(𝑡), . . . , V

𝑛
(𝑡))
𝑇, we have

󵄩󵄩󵄩󵄩𝐺𝑖𝑢 (𝑡) − 𝐺𝑖V (𝑡)
󵄩󵄩󵄩󵄩

≤ ℎ
−1

𝑖

𝑛

∑

𝑗=1,𝑗 ̸= 𝑖

ℎ
𝑗
𝐴
𝑖𝑗 (𝑡)

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗 (𝑡) − V

𝑗 (𝑡)
󵄨󵄨󵄨󵄨󵄨

+ ℎ
−1

𝑖

𝑛

∑

𝑗=1

ℎ
𝑗
[𝐵
𝑖𝑗 (𝑡)

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗
(𝑡 − 𝜏
𝑖𝑗 (𝑡)) − V

𝑗
(𝑡 − 𝜏
𝑖𝑗 (𝑡))

󵄨󵄨󵄨󵄨󵄨

+ 𝐶
𝑖𝑗 (𝑡) ∫

𝑡

−∞

𝐾
𝑖𝑗 (𝑡 − 𝑠)

󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗 (𝑠) − V

𝑗 (𝑠)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑠

+ (𝐴
𝑖𝑖 (𝑠)𝐷𝑖𝑗 (𝑡) + 𝐷

󸀠

𝑖𝑗
(𝑡))

×
󵄨󵄨󵄨󵄨󵄨
𝑢
𝑗
(𝑡 − 𝛿

𝑖𝑗 (𝑡)) − V
𝑗
(𝑡 − 𝛿

𝑖𝑗 (𝑡))
󵄨󵄨󵄨󵄨󵄨
]

+ 𝑒
𝑖 (𝑡) (𝜙𝑖1) ‖𝑢 − V‖ + 𝑓𝑖 (𝑡) (𝜙𝑖2) (𝑡 − 𝜎𝑖 (𝑡)) ‖𝑢 − V‖

≤
{

{

{

ℎ
−1

𝑖

𝑛

∑

𝑗=1,𝑗 ̸= 𝑖

ℎ
𝑗
𝐴
𝑖𝑗 (𝑡)

+ ℎ
−1

𝑖

𝑛

∑

𝑗=1

ℎ
𝑗
[𝐵
𝑖𝑗 (𝑡) + 𝐶𝑖𝑗 (𝑡)

+ (𝐴
𝑖𝑖 (𝑠)𝐷𝑖𝑗 (𝑡) +

󵄨󵄨󵄨󵄨󵄨
𝐷
󸀠

𝑖𝑗
(𝑡)
󵄨󵄨󵄨󵄨󵄨
)]

+Γ
1

𝑖
(𝑡) + Γ

2

𝑖
(𝑡)
}

}

}

‖𝑢 − V‖ = Δ 𝑖 (𝑡) ‖𝑢 − V‖ .

(26)
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Hence,

‖𝑇𝑢 − 𝑇V‖

= sup
𝑡∈[0,𝜔]

max
{

{

{

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑗=1

ℎ
𝑗

ℎ
1

𝐷
1𝑗 (𝑡)

× [𝑢
𝑗
(𝑡 − 𝛿

1𝑗 (𝑡)) − V
𝑗
(𝑡 − 𝛿

1𝑗 (𝑡))]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ ∫

𝑡

−∞

exp{−∫
𝑡

𝑠

𝐴
11 (𝜉) 𝑑𝜉}

×
󵄨󵄨󵄨󵄨𝐺1𝑢 (𝑠) − 𝐺1V (𝑠)

󵄨󵄨󵄨󵄨 𝑑𝑠, . . . ,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑛

∑

𝑗=1

ℎ
𝑗

ℎ
𝑛

𝐷
𝑛𝑗 (𝑡)

× [𝑢
𝑗
(𝑡 − 𝛿

𝑛𝑗 (𝑡)) − V
𝑗
(𝑡 − 𝛿

𝑛𝑗 (𝑡))]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ ∫

𝑡

−∞

exp{−∫
𝑡

𝑠

𝐴
𝑛𝑛 (𝜉) 𝑑𝜉}

×
󵄨󵄨󵄨󵄨𝐺𝑛𝑢 (𝑠) − 𝐺𝑛V (𝑠)

󵄨󵄨󵄨󵄨 𝑑𝑠
}

}

}

≤ sup
𝑡∈[0,𝜔]

max
{

{

{

[

[

𝑛

∑

𝑗=1

ℎ
𝑗

ℎ
1

𝐷
1𝑗 (𝑡)

+∫

𝑡

−∞

exp{−∫
𝑡

𝑠

𝐴
11 (𝜉) 𝑑𝜉}Δ 1 (𝑠) 𝑑𝑠

]

]

× ‖𝑢 − V‖ , . . . ,

[

[

𝑛

∑

𝑗=1

ℎ
𝑗

ℎ
𝑛

𝐷
𝑛𝑗 (𝑡)

+∫

𝑡

−∞

exp{−∫
𝑡

𝑠

𝐴
𝑛𝑛 (𝜉) 𝑑𝜉}Δ 𝑛 (𝑠) 𝑑𝑠

]

]

× ‖𝑢 − V‖
}

}

}

.

(27)

It follows from (𝐻
4
) that ‖𝑇𝑢 − 𝑇V‖ ≤ ‖𝑢 − V‖ for all 𝑢, V ∈ Ω.

That is, 𝑇 is a contraction mapping. Hence, there exists a
unique fixed point 𝑥∗(𝑡) = (𝑥

∗

1
(𝑡), . . . , 𝑥

∗

𝑛
(𝑡))
𝑇
∈ Ω; that is,

𝑇𝑥
∗
(𝑡) = 𝑥

∗
(𝑡). Therefore, 𝑥∗(𝑡) is the unique periodic

solution of system (17). It follows from (1), (4), (10), and (17)
that (𝑁∗(𝑡), 𝑢∗(𝑡))𝑇 = (𝑁∗

1
(𝑡), . . . , 𝑁

∗

𝑛
(𝑡), 𝑢
∗

1
(𝑡), . . . , 𝑢

∗

𝑛
(𝑡))
𝑇 is

the unique positive periodic solution of system (1). The proof
of Theorem 7 is completed.

Our next theorem is concerned with the global stability
of periodic solution for system (1).

Theorem8. In addition to (𝐻
1
)–(𝐻
4
), suppose further that the

following condition holds:

(H
5
) exp{− ∫𝑡

0
𝐴
𝑖𝑖
(𝜉)𝑑𝜉} → 0, as 𝑡 → +∞, 𝑖 = 1, 2, . . . , 𝑛.

Then system (1) has a unique periodic solution which is globally
attractive.

Proof. Let𝑁∗(𝑡) = (𝑁
∗

1
(𝑡),𝑁

∗

2
(𝑡), . . . , 𝑁

∗

𝑛
(𝑡))
𝑇 be the unique

positive periodic solution of system (1), whose existence and
uniqueness are guaranteed by Theorem 7, and let 𝑁(𝑡) =

(𝑁
1
(𝑡),𝑁
2
(𝑡), . . . , 𝑁

𝑛
(𝑡))
𝑇 be any other solution of system

(1). Let 𝑁∗
𝑖
(𝑡) = exp{∏

0<𝑡𝑘<𝑡
ℎ
𝑖
(1 + 𝑝

𝑖𝑘
)𝑥
∗

𝑖
(𝑡)}, 𝑁

𝑖
(𝑡) =

exp{∏
0<𝑡𝑘<𝑡

× ℎ
𝑖
(1 + 𝑝

𝑖𝑘
)𝑥
𝑖
(𝑡)}; then, similar to (17), we have

𝑑𝑥
∗

𝑖

𝑑𝑡
= −𝐴

𝑖𝑖 (𝑡) 𝑥
∗

𝑖
(𝑡) − ℎ

−1

𝑖

𝑛

∑

𝑗=1,𝑗 ̸= 𝑖

ℎ
𝑗
𝐴
𝑖𝑗 (𝑡) 𝑥

∗

𝑗
(𝑡)

− ℎ
−1

𝑖

𝑛

∑

𝑗=1

ℎ
𝑗
𝐵
𝑖𝑗 (𝑡) 𝑥

∗

𝑗
(𝑡 − 𝜏
𝑖𝑗 (𝑡))

− ℎ
−1

𝑖

𝑛

∑

𝑗=1

ℎ
𝑗
𝐶
𝑖𝑗 (𝑡) ∫

𝑡

−∞

𝐾
𝑖𝑗 (𝑡 − 𝑠) 𝑥

∗

𝑗
(𝑠) 𝑑𝑠

− ℎ
−1

𝑖

𝑛

∑

𝑗=1

ℎ
𝑗
𝐷
𝑖𝑗 (𝑡) (1 − 𝛿

󸀠

𝑖𝑗
(𝑡)) 𝑥
󸀠∗

𝑗
(𝑡 − 𝛿

𝑖𝑗 (𝑡))

− 𝑒
𝑖 (𝑡) (𝜙𝑖𝑥

∗

𝑖
) (𝑡) − 𝑓𝑖 (𝑡) (𝜙𝑖𝑥

∗

𝑖
) (𝑡 − 𝜎

𝑖 (𝑡))

+ ℎ
−1

𝑖
𝑟
𝑖 (𝑡) ,

𝑑𝑥
𝑖

𝑑𝑡
= −𝐴

𝑖𝑖 (𝑡) 𝑥𝑖 (𝑡) − ℎ
−1

𝑖

𝑛

∑

𝑗=1,𝑗 ̸= 𝑖

ℎ
𝑗
𝐴
𝑖𝑗 (𝑡) 𝑥𝑗 (𝑡)

− ℎ
−1

𝑖

𝑛

∑

𝑗=1

ℎ
𝑗
𝐵
𝑖𝑗 (𝑡) 𝑥𝑗 (𝑡 − 𝜏𝑖𝑗 (𝑡))

− ℎ
−1

𝑖

𝑛

∑

𝑗=1

ℎ
𝑗
𝐶
𝑖𝑗 (𝑡) ∫

𝑡

−∞

𝐾
𝑖𝑗 (𝑡 − 𝑠) 𝑥𝑗 (𝑠) 𝑑𝑠

− ℎ
−1

𝑖

𝑛

∑

𝑗=1

ℎ
𝑗
𝐷
𝑖𝑗 (𝑡) (1 − 𝛿

󸀠

𝑖𝑗
(𝑡)) 𝑥
󸀠

𝑗
(𝑡 − 𝛿

𝑖𝑗 (𝑡))

− 𝑒
𝑖 (𝑡) (𝜙𝑖𝑥𝑖) (𝑡) − 𝑓𝑖 (𝑡) (𝜙𝑖𝑥𝑖) (𝑡 − 𝜎𝑖 (𝑡)) + ℎ

−1

𝑖
𝑟
𝑖 (𝑡) .

(28)

Let 𝑥∗
𝑖
(𝑡) − 𝑥

𝑖
(𝑡) = 𝑤

𝑖
(𝑡); then

𝑑𝑤
𝑖

𝑑𝑡
= −𝐴

𝑖𝑖 (𝑡) 𝑤𝑖 (𝑡) − ℎ
−1

𝑖

𝑛

∑

𝑗=1,𝑗 ̸= 𝑖

ℎ
𝑗
𝐴
𝑖𝑗 (𝑡) 𝑤𝑗 (𝑡)

− ℎ
−1

𝑖

𝑛

∑

𝑗=1

ℎ
𝑗
𝐵
𝑖𝑗 (𝑡) 𝑤𝑗 (𝑡 − 𝜏𝑖𝑗 (𝑡))

− ℎ
−1

𝑖

𝑛

∑

𝑗=1

ℎ
𝑗
𝐶
𝑖𝑗 (𝑡) ∫

𝑡

−∞

𝐾
𝑖𝑗 (𝑡 − 𝑠) 𝑤𝑗 (𝑠) 𝑑𝑠

− ℎ
−1

𝑖

𝑛

∑

𝑗=1

ℎ
𝑗
𝐷
𝑖𝑗 (𝑡) (1 − 𝛿

󸀠

𝑖𝑗
(𝑡)) 𝑤

󸀠

𝑗
(𝑡 − 𝛿

𝑖𝑗 (𝑡))

− 𝑒
𝑖 (𝑡) (𝜙𝑖𝑤𝑖) (𝑡) − 𝑓𝑖 (𝑡) (𝜙𝑖𝑤𝑖) (𝑡 − 𝜎𝑖 (𝑡)) .

(29)
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Multiply both sides of (29) with exp{∫𝑡
0
𝐴
𝑖𝑖
(𝜉)𝑑𝜉}, and then

integrate from 0 to 𝑡 to obtain

∫

𝑡

0

[𝑤
𝑖 (𝑢) exp{∫

𝑢

0

𝐴
𝑖𝑖 (𝜉) 𝑑𝜉}]

󸀠

𝑑𝑢

= −∫

𝑡

0

[

[

ℎ
−1

𝑖

𝑛

∑

𝑗=1,𝑗 ̸= 𝑖

ℎ
𝑗
𝐴
𝑖𝑗 (𝑢) 𝑤𝑗 (𝑢)

+ ℎ
−1

𝑖

𝑛

∑

𝑗=1

ℎ
𝑗
𝐵
𝑖𝑗 (𝑢) 𝑤𝑗 (𝑢 − 𝜏𝑖𝑗 (𝑢))

+ ℎ
−1

𝑖

𝑛

∑

𝑗=1

ℎ
𝑗
𝐶
𝑖𝑗 (𝑢) ∫

𝑡

−∞

𝐾
𝑖𝑗 (𝑢 − 𝑠) 𝑤𝑗 (𝑠) 𝑑𝑠

+ ℎ
−1

𝑖

𝑛

∑

𝑗=1

ℎ
𝑗
𝐷
𝑖𝑗 (𝑢) (1 − 𝛿

󸀠

𝑖𝑗
(𝑢))𝑤

󸀠

𝑗
(𝑢 − 𝛿

𝑖𝑗 (𝑢))

+𝑒
𝑖 (𝑢) (𝜙𝑖𝑤𝑖) (𝑢) + 𝑓𝑖 (𝑢) (𝜙𝑖𝑤𝑖) (𝑢 − 𝜎𝑖 (𝑡))

]

]

× exp{∫
𝑢

0

𝐴
𝑖𝑖 (𝜉) 𝑑𝜉} 𝑑𝑢, 𝑖 = 1, 2, . . . , 𝑛;

(30)

then

𝑤
𝑖 (𝑡) = 𝑤𝑖 (0) exp{−∫

𝑡

0

𝐴
𝑖𝑖 (𝜉) 𝑑𝜉}

− ∫

𝑡

0

[

[

ℎ
−1

𝑖

𝑛

∑

𝑗=1,𝑗 ̸= 𝑖

ℎ
𝑗
𝐴
𝑖𝑗 (𝑢) 𝑤𝑗 (𝑢)

+ ℎ
−1

𝑖

𝑛

∑

𝑗=1

ℎ
𝑗
𝐵
𝑖𝑗 (𝑢) 𝑤𝑗 (𝑢 − 𝜏𝑖𝑗 (𝑢))

+ ℎ
−1

𝑖

𝑛

∑

𝑗=1

ℎ
𝑗
𝐶
𝑖𝑗 (𝑢)

× ∫

𝑡

−∞

𝐾
𝑖𝑗 (𝑢 − 𝑠) 𝑤𝑗 (𝑠) 𝑑𝑠

+ ℎ
−1

𝑖

𝑛

∑

𝑗=1

ℎ
𝑗
𝐷
𝑖𝑗 (𝑢) (1 − 𝛿

󸀠

𝑖𝑗
(𝑢))

× 𝑤
󸀠

𝑗
(𝑢 − 𝛿

𝑖𝑗 (𝑢))

+ 𝑒
𝑖 (𝑢) (𝜙𝑖𝑤𝑖) (𝑢)

+𝑓
𝑖 (𝑢) (𝜙𝑖𝑤𝑖) (𝑢 − 𝜎𝑖 (𝑡))

]

]

× exp{−∫
𝑡

𝑢

𝐴
𝑖𝑖 (𝜉) 𝑑𝜉} 𝑑𝑢, 𝑖 = 1, 2, . . . , 𝑛.

(31)

Let𝐷
0𝑖𝑗
(𝑡) = 𝐷

𝑖𝑗
(𝑡)(1 − 𝛿

󸀠

𝑖𝑗
(𝑡)); we see that

∫

𝑡

0

𝐷
0𝑖𝑗 (𝑢) 𝑤

󸀠

𝑗
(𝑢 − 𝛿

𝑖𝑗 (𝑢)) exp{−∫
𝑡

𝑢

𝐴
𝑖𝑖 (𝜉) 𝑑𝜉} 𝑑𝑢

= ∫

𝑡

0

𝐷
0𝑖𝑗 (𝑢) 𝑤

󸀠

𝑗
(𝑢 − 𝛿

𝑖𝑗 (𝑢)) (1 − 𝛿
󸀠

𝑖𝑗
(𝑢))

1 − 𝛿
𝑖𝑗 (𝑢)

× exp{−∫
𝑡

𝑢

𝐴
𝑖𝑖 (𝜉) 𝑑𝜉} 𝑑𝑢

= ∫

𝑡

0

[

[

𝐷
0𝑖𝑗 (𝑢) exp {− ∫

𝑡

𝑢
𝐴
𝑖𝑖 (𝜉) 𝑑𝜉}

1 − 𝛿󸀠
𝑖𝑗
(𝑢)

]

]

× [𝑤
󸀠

𝑗
(𝑢 − 𝛿

𝑖𝑗 (𝑢)) (1 − 𝛿
󸀠

𝑖𝑗
(𝑢))] 𝑑𝑢

= [
𝐷
0𝑖𝑗 (𝑡)

1 − 𝛿󸀠
𝑖𝑗
(𝑡)
𝑤
𝑗
(𝑡 − 𝛿

𝑖𝑗 (𝑡))

−
𝐷
0𝑖𝑗 (0)

1 − 𝛿󸀠
𝑖𝑗
(0)

𝑤
𝑗
(−𝛿
𝑖𝑗 (0)) exp{−∫

𝑡

0

𝐴
𝑖𝑖 (𝜉) 𝑑𝜉}]

− ∫

𝑡

0

(𝐴
𝑖𝑖 (𝑢)𝐷𝑖𝑗 (𝑢) + 𝐷

󸀠

𝑖𝑗
(𝑢))

× exp{−∫
𝑡

𝑢

𝐴
𝑖𝑖 (𝜉) 𝑑𝜉}𝑤𝑗 (𝑢 − 𝛿𝑖𝑗 (𝑢)) 𝑑𝑢

= [𝐷
𝑖𝑗 (𝑡) 𝑤𝑗 (𝑡 − 𝛿𝑖𝑗 (𝑡))

−𝐷
𝑖𝑗 (0) 𝑤𝑗 (−𝛿𝑖𝑗 (0)) exp{−∫

𝑡

0

𝐴
𝑖𝑖 (𝜉) 𝑑𝜉}]

− ∫

𝑡

0

(𝐴
𝑖𝑖 (𝑢)𝐷𝑖𝑗 (𝑢) + 𝐷

󸀠

𝑖𝑗
(𝑢))

× exp{−∫
𝑡

𝑢

𝐴
𝑖𝑖 (𝜉) 𝑑𝜉}𝑤𝑗 (𝑢 − 𝛿𝑖𝑗 (𝑢)) 𝑑𝑢.

(32)

Substituting (32) into (31), we get

𝑤
𝑖 (𝑡)

= [

[

𝑤
𝑖 (0) + ℎ

−1

𝑖

𝑛

∑

𝑗=1

ℎ
𝑗
𝐷
𝑖𝑗 (0) 𝑤𝑗 (−𝛿𝑖𝑗 (0))

]

]

× exp{−∫
𝑡

0

𝐴
𝑖𝑖 (𝜉) 𝑑𝜉}

+ ∫

𝑡

0

{

{

{

ℎ
−1

𝑖

𝑛

∑

𝑗=1

ℎ
𝑗
[ (𝐴
𝑖𝑖 (𝑢)𝐷𝑖𝑗 (𝑢)

+ 𝐷
󸀠

𝑖𝑗
(𝑢))𝑤𝑗 (𝑢 − 𝛿𝑖𝑗 (𝑢))

− 𝐵
𝑖𝑗 (𝑢) 𝑤𝑗 (𝑢 − 𝜏𝑖𝑗 (𝑢))

−𝐶
𝑖𝑗 (𝑢) ∫

𝑡

−∞

𝐾
𝑖𝑗 (𝑢 − 𝑠) 𝑤𝑗 (𝑠) 𝑑𝑠]
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− ℎ
−1

𝑖

𝑛

∑

𝑗=1,𝑗 ̸= 𝑖

ℎ
𝑗
𝐴
𝑖𝑗 (𝑢) 𝑤𝑗 (𝑢)

−𝑒
𝑖 (𝑢) (𝜙𝑖𝑤𝑖) (𝑢) − 𝑓𝑖 (𝑢) (𝜙𝑖𝑤𝑖) (𝑢 − 𝜎𝑖 (𝑡))

}

}

}

× exp{−∫
𝑡

𝑢

𝐴
𝑖𝑖 (𝜉) 𝑑𝜉} 𝑑𝑢

+ ℎ
−1

𝑖

𝑛

∑

𝑗=1

ℎ
𝑗
𝐷
𝑖𝑗 (𝑡) 𝑤𝑗 (𝑡 − 𝛿𝑖𝑗 (𝑡)) ;

(33)
therefore, we have
‖𝑤‖

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑤
𝑖 (0) + ℎ

−1

𝑖

𝑛

∑

𝑗=1

ℎ
𝑗
𝐷
𝑖𝑗 (0) 𝑤𝑗 (−𝛿𝑖𝑗 (0))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

× exp{−∫
𝑡

0

𝐴
𝑖𝑖 (𝜉) 𝑑𝜉}

+
{

{

{

∫

𝑡

0

{

{

{

ℎ
−1

𝑖

𝑛

∑

𝑗=1

ℎ
𝑗
[(𝐴
𝑖𝑖 (𝑢)𝐷𝑖𝑗 (𝑢) +

󵄨󵄨󵄨󵄨󵄨
𝐷
󸀠

𝑖𝑗
(𝑢)

󵄨󵄨󵄨󵄨󵄨
)

×
󵄨󵄨󵄨󵄨󵄨
𝐵
𝑖𝑗 (𝑢)

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
𝐶
𝑖𝑗 (𝑢)

󵄨󵄨󵄨󵄨󵄨
]

+ℎ
−1

𝑖

𝑛

∑

𝑗=1,𝑗 ̸= 𝑖

ℎ
𝑗

󵄨󵄨󵄨󵄨󵄨
𝐴
𝑖𝑗 (𝑢)

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
Γ
1

𝑖
(𝑢)

󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
Γ
2

𝑖
(𝑢)

󵄨󵄨󵄨󵄨󵄨

}

}

}

× exp{−∫
𝑡

𝑢

𝐴
𝑖𝑖 (𝜉) 𝑑𝜉} 𝑑𝑢

+ ℎ
−1

𝑖

𝑛

∑

𝑗=1

ℎ
𝑗

󵄨󵄨󵄨󵄨󵄨
𝐷
𝑖𝑗 (𝑡)

󵄨󵄨󵄨󵄨󵄨

}

}

}

‖𝑤‖

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑤
𝑖 (0) + ℎ

−1

𝑖

𝑛

∑

𝑗=1

ℎ
𝑗
𝐷
𝑖𝑗 (0) 𝑤𝑗 (−𝛿𝑖𝑗 (0))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

× exp{−∫
𝑡

𝑢

𝐴
𝑖𝑖 (𝜉) 𝑑𝜉}

+ [

[

𝑛

∑

𝑗=1

ℎ
𝑗

ℎ
𝑖

𝐷
𝑖𝑗 (𝑡)

+∫

𝑡

0

exp{−∫
𝑡

𝑢

𝐴
𝑖𝑖 (𝜉) 𝑑𝜉}Δ 𝑖 (𝑢) 𝑑𝑢

]

]

‖𝑤‖ ,

(34)
where Δ

𝑖
(𝑡) is defined by (18). From (𝐻

4
), we have

‖𝑤‖

≤

󵄨󵄨󵄨󵄨󵄨
𝑤
𝑖 (0)+ℎ

−1

𝑖
∑
𝑛

𝑗=1
ℎ
𝑗
𝐷
𝑖𝑗 (0)𝑤𝑗 (−𝛿𝑖𝑗 (0))

󵄨󵄨󵄨󵄨󵄨
exp {−∫𝑡

0
𝐴
𝑖𝑖 (𝜉) 𝑑𝜉}

1−ℎ
−1

𝑖
∑
𝑛

𝑗=1
ℎ
𝑗

󵄨󵄨󵄨󵄨󵄨
𝐷
𝑖𝑗 (𝑡)

󵄨󵄨󵄨󵄨󵄨
−∫
𝑡

0
Δ
𝑖 (𝑢) exp {−∫

𝑡

𝑢
𝐴
𝑖𝑖 (𝜉) 𝑑𝜉} 𝑑𝑢

≤

󵄨󵄨󵄨󵄨󵄨
𝑤
𝑖 (0)+ℎ

−1

𝑖
∑
𝑛

𝑗=1
ℎ
𝑗
𝐷
𝑖𝑗 (0)𝑤𝑗 (−𝛿𝑖𝑗 (0))

󵄨󵄨󵄨󵄨󵄨
exp {−∫𝑡

0
𝐴
𝑖𝑖 (𝜉) 𝑑𝜉}

1 −𝑀
.

(35)

From (𝐻
5
), we have

‖𝑤‖ = max
𝑖∈[0,𝑛]

󵄨󵄨󵄨󵄨𝑤𝑖 (𝑡)
󵄨󵄨󵄨󵄨

= max
𝑖∈[0,𝑛]

󵄨󵄨󵄨󵄨𝑥
∗

𝑖
(𝑡) − 𝑥𝑖 (𝑡)

󵄨󵄨󵄨󵄨 = 0, as 𝑡 󳨀→ +∞;

(36)

thus, 𝑥
𝑖
(𝑡) → 𝑥

∗

𝑖
(𝑡), as 𝑡 → +∞, 𝑖 = 1, 2, . . . , 𝑛. Hence,

the positive 𝜔-periodic solution of (17) is globally attractive;
accordingly, 𝑁

𝑖
(𝑡) = exp{∏

0<𝑡𝑘<𝑡
ℎ
𝑖
(1 + 𝑝

𝑖𝑘
)𝑥
𝑖
(𝑡)} →

exp{∏
0<𝑡𝑘<𝑡

ℎ
𝑖
(1 + 𝑝

𝑖𝑘
)𝑥
∗

𝑖
(𝑡)} = 𝑁

∗

𝑖
(𝑡), 𝑢
𝑖
(𝑡) = (𝜙

𝑖
ln𝑁
𝑖
)(𝑡) →

(𝜙
𝑖
ln𝑁∗
𝑖
)(𝑡) = 𝑢

∗

𝑖
(𝑡) as 𝑡 → +∞, 𝑖 = 1, 2, . . . , 𝑛, and by

Definition 2, the positive𝜔-periodic solution of (1) is globally
attractive. The proof of Theorem 8 is completed.

Remark 9. If 𝑒
𝑖
(𝑡) = 𝑓

𝑖
(𝑡) = 𝛼

𝑖
(𝑡) = 𝛽

𝑖
(𝑡) = 𝜗

𝑖
(𝑡) = 0, 𝜃

𝑖𝑘
+1 =

0, 𝑖 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . ., then system (1) is studied by
[3]. Hence, Theorems 7 and 8 generalize the corresponding
results in [3].

Remark 10. If 𝜃
𝑖𝑘
+ 1 = 0, 𝑖 = 1, 2, . . . , 𝑛, 𝑘 = 1, 2, . . ., then

system (1) is studied by [4]. Hence Theorems 7 and 8 also
generalize the corresponding results in [4].

4. Example

Consider the following impulsive model:

𝑑𝑁 (𝑡)

𝑑𝑡

= 𝑁 (𝑡) [𝑟 (𝑡) − 𝑎 (𝑡) ln𝑁(𝑡) − 𝑏 (𝑡) ln𝑁(𝑡 − 𝜏 (𝑡))

− 𝑐 (𝑡) ∫

𝑡

−∞

𝐾 (𝑡 − 𝑠) ln𝑁(𝑠) 𝑑𝑠

− 𝑑 (𝑡)
𝑑 ln𝑁(𝑡 − 𝛿 (𝑡))

𝑑𝑡
− 𝑒 (𝑡) 𝑢 (𝑡)

−𝑓 (𝑡) 𝑢 (𝑡 − 𝜎 (𝑡))] , 𝑡 ̸= 𝑡
𝑘
,

𝑑𝑢 (𝑡)

𝑑𝑡
= −𝛼 (𝑡) 𝑢 (𝑡) + 𝛽 (𝑡) ln𝑁(𝑡)

+ 𝜃 (𝑡) ln𝑁(𝑡 − 𝛾 (𝑡)) , 𝑡 ≥ 0,

𝑁 (𝑡
+

𝑘
) = 𝑒
(1+𝑝𝑘)𝑁(𝑡

𝑘
) , 𝑘 = 1, 2, . . . ,

(37)

where 𝑟(𝑡), 𝑎(𝑡), 𝑏(𝑡), 𝑐(𝑡), 𝑑(𝑡), 𝑒(𝑡), 𝑓(𝑡), 𝛿(𝑡) ∈ 𝐶
2
(𝑅, 𝑅),

𝜎(𝑡), 𝛾(𝑡), 𝛼(𝑡), 𝛽(𝑡), 𝜃(𝑡) are all nonnegative 𝜔-periodic con-
tinuous functions with ∫𝜔

0
𝑟(𝑡) > 0, 𝑎(𝑡) > 0, 𝛿󸀠(𝑡) < 1 and 𝑝

𝑘

is a real sequence, and∏
0<𝑡𝑘<𝑡

(1+𝑝
𝑘
) is a positive𝜔-periodic

function with 𝑘 = 1, 2, . . .. Furthermore, ∫∞
0
𝐾(𝑠)𝑑𝑠 = 1,

∫
+∞

0
𝑠𝐾(𝑠)𝑑𝑠 < +∞.
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We denote

𝐴 (𝑡) = 𝑎 (𝑡) ∏

0<𝑡𝑘<𝑡

(1 + 𝑝
𝑘
) ,

𝐵 (𝑡) = 𝑏 (𝑡) ∏

0<𝑡𝑘<𝑡−𝜏(𝑡)

(1 + 𝑝
𝑘
) ,

𝐶 (𝑡) = 𝑐 (𝑡) ∏

0<𝑡𝑘<𝑡

(1 + 𝑝
𝑘
) ,

𝐷 (𝑡) = 𝑑 (𝑡) ∏

0<𝑡𝑘<𝑡−𝛿(𝑡))

(1 + 𝑝
𝑘
) ,

𝐷
0 (𝑡) = 𝐷 (𝑡) (1 − 𝛿

󸀠
(𝑡)) ,

𝛽
∗
(𝑡) = 𝛽 (𝑡) ∏

0<𝑡𝑘<𝑡

(1 + 𝑝
𝑘
)

𝜃
∗
(𝑡) = 𝜃 (𝑡) ∏

0<𝑡𝑘<𝑡−𝛾(𝑡)

(1 + 𝑝
𝑘
) ,

Γ
1
(𝑡) := 𝑒 (𝑡) (𝜙1) (𝑡) ,

Γ
2
(𝑡) := 𝑓 (𝑡) (𝜙1) (𝑡 − 𝜎 (𝑡)) ,

Δ (𝑡) := 𝐵 (𝑡) + 𝐶 (𝑡) + 𝐴 (𝑡)𝐷 (𝑡) +
󵄨󵄨󵄨󵄨󵄨
𝐷
󸀠
(𝑡)
󵄨󵄨󵄨󵄨󵄨
+ Γ
1
(𝑡) + Γ

2
(𝑡) .

(38)

Similar toTheorems 7 and 8, we can get the following results.

Corollary 11. In addition to conditions (𝐻
1
)–(𝐻
3
), assume

further that there exists a positive constant𝑀 < 1 such that

(𝐻
6
) 𝐷(𝑡) + ∫𝑡

−∞
exp{− ∫𝑡

𝑠
𝐴(𝜉)𝑑𝜉}Δ(𝑠)𝑑𝑠 ≤ 𝑀.

Then, (37) has a unique 𝜔-periodic solution with strictly posi-
tive components, where Δ(𝑡) is defined by (38).

Corollary 12. In addition to conditions (𝐻
1
)–(𝐻
3
) and (𝐻

6
),

suppose further that the following condition holds:

(𝐻
7
) exp{− ∫𝑡

0
𝐴(𝜉)𝑑𝜉} → 0, as 𝑡 → +∞.

Then, system (37) has a unique periodic solution which is glo-
bally attractive.

Remark 13. The results in the work show that by means of
appropriate impulsive perturbations and feedback control we
can control the dynamics of these equations.
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