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Abstract. 
We propose synchronal algorithm and cyclic algorithm based on the general iterative method for solving a hierarchical fixed point problem. Under suitable parameters, the iterative sequence converges strongly to a common fixed point of 
	
		
			

				𝑁
			

		
	
 nonexpansive mappings and also the unique solution of a variational inequality. The results
presented in this paper improve and extend the corresponding results reported recently by some authors. Furthermore, a numerical example is given to demonstrate the effectiveness of our iterative schemes.


1. Introduction
 Let 
	
		
			

				𝐻
			

		
	
 be a real Hilbert space with an inner product 
	
		
			
				⟨
				,
				⟩
			

		
	
 and its induced norm 
	
		
			
				‖
				⋅
				‖
			

		
	
. Let 
	
		
			

				𝐶
			

		
	
 be a nonempty, closed, and convex subset of 
	
		
			

				𝐻
			

		
	
.
Let 
	
		
			
				𝑇
				∶
				𝐶
				→
				𝐻
			

		
	
 be a nonlinear mapping; we denote the set of fixed points of 
	
		
			

				𝑇
			

		
	
 by 
	
		
			
				F
				i
				x
				(
				𝑇
				)
			

		
	
 (i.e., 
	
		
			
				F
				i
				x
				(
				𝑇
				)
				=
				{
				𝑥
				∈
				𝐶
				∶
				𝑇
				𝑥
				=
				𝑥
				}
			

		
	
). A mapping 
	
		
			
				𝑇
				∶
				𝐶
				→
				𝐻
			

		
	
 is called 
	
		
			

				𝑘
			

		
	
-Lipschitzian continuous if there exists a constant 
	
		
			
				𝑘
				>
				0
			

		
	
 such that
						
	
 		
 			
				(
				1
				)
			
 		
	

	
		
			
				‖
				𝑇
				𝑥
				−
				𝑇
				𝑦
				‖
				≤
				𝑘
				‖
				𝑥
				−
				𝑦
				‖
				,
				∀
				𝑥
				,
				𝑦
				∈
				𝐶
				.
			

		
	

					In particular, 
	
		
			

				𝑇
			

		
	
 is said to be a nonexpansive mapping if 
	
		
			
				𝑘
				=
				1
			

		
	
. A mapping 
	
		
			

				𝐵
			

		
	
 is called 
	
		
			

				𝜂
			

		
	
-strongly monotone on 
	
		
			

				𝐶
			

		
	
, if there exists a constant 
	
		
			
				𝜂
				>
				0
			

		
	
 such that
						
	
 		
 			
				(
				2
				)
			
 		
	

	
		
			
				⟨
				𝐵
				𝑥
				−
				𝐵
				𝑦
				,
				𝑥
				−
				𝑦
				⟩
				≥
				𝜂
				‖
				𝑥
				−
				𝑦
				‖
			

			

				2
			

			
				,
				∀
				𝑥
				,
				𝑦
				∈
				𝐶
				.
			

		
	

A variational inequality (short for VI) is formulated as finding a point 
	
		
			

				𝑥
			

			

				∗
			

			
				∈
				𝐶
			

		
	
 such that
						
	
 		
 			
				(
				3
				)
			
 		
	

	
		
			
				⟨
				𝐵
				𝑥
			

			

				∗
			

			
				,
				𝑥
				−
				𝑥
			

			

				∗
			

			
				⟩
				≥
				0
				,
				∀
				𝑥
				∈
				𝐶
				.
			

		
	

If 
	
		
			

				𝐵
			

		
	
 is a monotone operator, then VI (3) is known as a monotone variational inequality. If the set 
	
		
			

				𝐶
			

		
	
 is replaced by the set of 
	
		
			
				F
				i
				x
				(
				𝑇
				)
			

		
	
 of fixed points of a mapping 
	
		
			

				𝑇
			

		
	
, then the VI (3) is called a hierarchical variational inequality problem.
Many practical problems in applied sciences such as signal processing [1], beamforming [2], and power control [3] are formulated as the monotone variational inequality with a fixed point constrained. In recent years, several authors paid attention toward this kind of problem. Some methods have been proposed to solve the hierarchical fixed point problems and variational inequalities; see for instance [4–10] and the references therein.
In 2010, Tian [11] proposed a general iterative method and revealed the inner contact of the Yamada’s algorithm [12] and viscosity iterative algorithm; then he obtained the following result in a real Hilbert space. 
Theorem 1.  Let 
	
		
			

				𝑥
			

			

				𝑛
			

		
	
 be generated by algorithm 
	
		
			

				𝑥
			

			
				𝑛
				+
				1
			

			
				=
				𝛼
			

			

				𝑛
			

			
				𝛾
				𝑓
				(
				𝑥
			

			

				𝑛
			

			
				)
				+
				(
				𝐼
				−
				𝛼
			

			

				𝑛
			

			
				𝜇
				𝐴
				)
				𝑇
				𝑥
			

			

				𝑛
			

		
	
 with the sequence 
	
		
			
				{
				𝛼
			

			

				𝑛
			

			

				}
			

		
	
 of parameters satisfying conditions (C1)–(C3): (C1)
	
		
			

				𝛼
			

			

				𝑛
			

			
				→
				0
			

		
	
, (C2)
	
		
			

				∑
			

			
				∞
				𝑛
				=
				0
			

			

				𝛼
			

			

				𝑛
			

			
				=
				∞
			

		
	
, (C3) either 
	
		
			

				∑
			

			
				∞
				𝑛
				=
				1
			

			
				|
				𝛼
			

			
				𝑛
				+
				1
			

			
				−
				𝛼
			

			

				𝑛
			

			
				|
				<
				∞
			

		
	
 or 
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				(
				𝛼
			

			
				𝑛
				+
				1
			

			
				/
				𝛼
			

			

				𝑛
			

			
				)
				=
				1
			

		
	
.Then 
	
		
			

				𝑥
			

			

				𝑛
			

		
	
 converges strongly to a fixed point 
	
		
			

				∼
			

			

				𝑥
			

		
	
 of 
	
		
			

				𝑇
			

		
	
 which solves the variational inequality
							
	
 		
 			
				(
				4
				)
			
 		
	

	
		
			
				⟨
				(
				𝜇
				𝐴
				−
				𝛾
				𝑓
				)
			

			

				∼
			

			
				𝑥
				,
			

			

				∼
			

			
				𝑥
				−
				𝑧
				⟩
				≤
				0
				,
				∀
				𝑧
				∈
				F
				i
				x
				(
				𝑇
				)
				.
			

		
	

Recently, Yao et al. [10] investigated an iterative method for solving a hierarchical fixed point problem by 
						
	
 		
 			
				(
				5
				)
			
 		
	

	
		
			

				𝑦
			

			

				𝑛
			

			
				=
				𝛽
			

			

				𝑛
			

			
				𝑆
				𝑥
			

			

				𝑛
			

			
				+
				
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				=
				𝑃
			

			

				𝐶
			

			
				
				𝛼
			

			

				𝑛
			

			
				𝑓
				
				𝑥
			

			

				𝑛
			

			
				
				+
				
				1
				−
				𝛼
			

			

				𝑛
			

			
				
				𝑇
				𝑦
			

			

				𝑛
			

			
				
				,
			

		
	

					where 
	
		
			

				𝑆
			

		
	
, 
	
		
			

				𝑇
			

		
	
 are nonexpansive mapping with 
	
		
			
				F
				i
				x
				(
				𝑇
				)
				≠
				∅
			

		
	
 and 
	
		
			

				𝑓
			

		
	
 is a contraction; the sequence converges strongly to the unique solution of the variational inequality
						
	
 		
 			
				(
				6
				)
			
 		
	

	
		
			

				𝑥
			

			

				∗
			

			
				∈
				F
				i
				x
				(
				𝑇
				)
				,
				⟨
				(
				𝐼
				−
				𝑓
				)
				𝑥
			

			

				∗
			

			
				,
				𝑝
				−
				𝑥
			

			

				∗
			

			
				⟩
				≤
				0
				,
				∀
				𝑝
				∈
				F
				i
				x
				(
				𝑇
				)
				.
			

		
	

Very recently, on this basis, Wang and Xu [8] introduced a new modified iterative method for solving a hierarchical fixed point problem. To be more precise, they proposed the following algorithm: 
						
	
 		
 			
				(
				7
				)
			
 		
	

	
		
			

				𝑦
			

			

				𝑛
			

			
				=
				𝛽
			

			

				𝑛
			

			
				𝑆
				𝑥
			

			

				𝑛
			

			
				+
				
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				=
				𝑃
			

			

				𝐶
			

			
				
				𝛼
			

			

				𝑛
			

			
				𝜌
				𝑈
				𝑥
			

			

				𝑛
			

			
				+
				
				𝐼
				−
				𝛼
			

			

				𝑛
			

			
				
				𝜇
				𝐹
				𝑇
				𝑦
			

			

				𝑛
			

			
				
				,
			

		
	

					where 
	
		
			
				𝑆
				,
				𝑇
			

		
	
 are nonexpansive mappings with 
	
		
			
				F
				i
				x
				(
				𝑇
				)
				≠
				∅
			

		
	
, 
	
		
			

				𝑈
			

		
	
 is a Lipschitzian mapping, and 
	
		
			

				𝐹
			

		
	
 is a Lipschitzian and strongly monotone operator. They proved the sequence generated by the above algorithm converges strongly to the unique solution of the variational inequality
						
	
 		
 			
				(
				8
				)
			
 		
	

	
		
			
				⟨
				(
				𝜌
				𝑈
				−
				𝜇
				𝐹
				)
				𝑥
			

			

				∗
			

			
				,
				𝑝
				−
				𝑥
			

			

				∗
			

			
				⟩
				≤
				0
				,
				∀
				𝑝
				∈
				F
				i
				x
				(
				𝑇
				)
				.
			

		
	

On the other hand, Tian and Di [13] established a synchronal algorithm and a cyclic algorithm for fixed point problems and variational inequalities. In 2012, Ceng et al. [4] proposed an iterative method to solve a special form of VI (3), where the constraint set is the set of common fixed points of 
	
		
			

				𝑁
			

		
	
 nonexpansive mappings 
	
		
			

				𝑇
			

			

				1
			

			
				,
				𝑇
			

			

				2
			

			
				,
				…
				,
				𝑇
			

			

				𝑁
			

		
	
.
Motivated and inspired by the above works, in this paper, we combine the hybrid steepest descent algorithm and hierarchical variational inequalities to propose a synchronal algorithm and a cyclic algorithm involving finite family of nonexpansive mappings. Under certain assumptions, we will prove that the sequences converge strongly. Further an example will be given to demonstrate the effectiveness of our iterative schemes.


2. Preliminaries
 Recall that given a nonempty, closed and convex subset 
	
		
			

				𝐶
			

		
	
 of a real Hilbert space 
	
		
			

				𝐻
			

		
	
, for any 
	
		
			
				𝑥
				∈
				𝐻
			

		
	
, there exists a unique nearest point in 
	
		
			

				𝐶
			

		
	
, denoted by 
	
		
			

				𝑃
			

			

				𝐶
			

			

				𝑥
			

		
	
, such that
						
	
 		
 			
				(
				9
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
				−
				𝑃
			

			

				𝐶
			

			
				𝑥
				‖
				‖
				≤
				‖
				𝑥
				−
				𝑦
				‖
			

		
	

					for all 
	
		
			
				𝑦
				∈
				𝐶
			

		
	
. Such a 
	
		
			

				𝑃
			

			

				𝐶
			

		
	
 is called the metric (or the nearest point) projection of 
	
		
			

				𝐻
			

		
	
 onto 
	
		
			

				𝐶
			

		
	
. As we all know, 
	
		
			
				𝑦
				=
				𝑃
			

			

				𝐶
			

			

				𝑥
			

		
	
 if and only if there holds the relation
						
	
 		
 			
				(
				1
				0
				)
			
 		
	

	
		
			
				⟨
				𝑥
				−
				𝑦
				,
				𝑦
				−
				𝑧
				⟩
				≥
				0
				,
				∀
				𝑧
				∈
				𝐶
				.
			

		
	

In the sequel, we will make use of the following lemmas in a real Hilbert space 
	
		
			

				𝐻
			

		
	
.
Lemma 2.  Let 
	
		
			

				𝐻
			

		
	
 be a real Hilbert space; the following inequalities hold: (i)
	
		
			
				‖
				𝑥
				+
				𝑦
				‖
			

			

				2
			

			
				≤
				‖
				𝑥
				‖
			

			

				2
			

			
				+
				2
				⟨
				𝑦
				,
				𝑥
				+
				𝑦
				⟩
			

		
	
, 
	
		
			
				∀
				𝑥
				,
				𝑦
				∈
				𝐻
			

		
	
, (ii)
	
		
			
				‖
				𝑡
				𝑥
				+
				(
				1
				−
				𝑡
				)
				𝑦
				‖
			

			

				2
			

			
				≤
				𝑡
				‖
				𝑥
				‖
			

			

				2
			

			
				+
				(
				1
				−
				𝑡
				)
				‖
				𝑦
				‖
			

			

				2
			

		
	
, 
	
		
			
				∀
				𝑡
				∈
				[
				0
				,
				1
				]
			

		
	
, 
	
		
			
				∀
				𝑥
				,
				𝑦
				∈
				𝐻
			

		
	
.
Lemma 3 (see [13]).  Let 
	
		
			
				𝐵
				∶
				𝐻
				→
				𝐻
			

		
	
 be a 
	
		
			

				𝑘
			

		
	
-Lipschitzian and 
	
		
			

				𝜂
			

		
	
-strongly monotone operator on a Hilbert space 
	
		
			

				𝐻
			

		
	
 with 
	
		
			
				𝑘
				>
				0
			

		
	
, 
	
		
			
				𝜂
				>
				0
			

		
	
, 
	
		
			
				0
				<
				𝜇
				<
				2
				𝜂
				/
				𝑘
			

			

				2
			

		
	
, and 
	
		
			
				0
				<
				𝑡
				<
				1
			

		
	
. Then 
	
		
			
				𝑆
				=
				(
				𝐼
				−
				𝑡
				𝜇
				𝐵
				)
				∶
				𝐻
				→
				𝐻
			

		
	
 is a contraction with contractive coefficient 
	
		
			
				1
				−
				𝑡
				𝜏
			

		
	
 and 
	
		
			
				𝜏
				=
				(
				1
				/
				2
				)
				𝜇
				(
				2
				𝜂
				−
				𝜇
				𝑘
			

			

				2
			

			

				)
			

		
	
. 
Lemma 4 (see [5]).  Let 
	
		
			
				𝑉
				∶
				𝐶
				→
				𝐻
			

		
	
 be an 
	
		
			

				𝑙
			

		
	
-Lipschitz mapping with coefficient 
	
		
			
				𝑙
				≥
				0
			

		
	
 and 
	
		
			
				𝐵
				∶
				𝐶
				→
				𝐻
			

		
	
 a 
	
		
			

				𝑘
			

		
	
-Lipschitzian continuous operator and 
	
		
			

				𝜂
			

		
	
-strongly monotone operator with 
	
		
			
				𝑘
				>
				0
			

		
	
, 
	
		
			
				𝜂
				>
				0
			

		
	
. Then for 
	
		
			
				0
				<
				𝛾
				<
				𝜇
				𝜂
				/
				𝑙
			

		
	
,
							
	
 		
 			
				(
				1
				1
				)
			
 		
	

	
		
			
				⟨
				𝑥
				−
				𝑦
				,
				(
				𝜇
				𝐵
				−
				𝛾
				𝑉
				)
				𝑥
				−
				(
				𝜇
				𝐵
				−
				𝛾
				𝑉
				)
				𝑦
				⟩
				≥
				(
				𝜇
				𝜂
				−
				𝛾
				𝑙
				)
				‖
				𝑥
				−
				𝑦
				‖
			

			

				2
			

			
				,
				𝑥
				,
				𝑦
				∈
				𝐻
				.
			

		
	

						That is, 
	
		
			
				𝜇
				𝐵
				−
				𝛾
				𝑉
			

		
	
 is strongly monotone with coefficient 
	
		
			
				𝜇
				𝜂
				−
				𝛾
				𝑙
			

		
	
.
Lemma 5 (see [9]).  Assume that 
	
		
			
				{
				𝑎
			

			

				𝑛
			

			

				}
			

		
	
 is a sequence of nonnegative real numbers such that
							
	
 		
 			
				(
				1
				2
				)
			
 		
	

	
		
			

				𝑎
			

			
				𝑛
				+
				1
			

			
				≤
				
				1
				−
				𝛾
			

			

				𝑛
			

			
				
				𝑎
			

			

				𝑛
			

			
				+
				𝛿
			

			

				𝑛
			

			

				,
			

		
	

						where 
	
		
			
				{
				𝛾
			

			

				𝑛
			

			

				}
			

		
	
 is a sequence in 
	
		
			
				(
				0
				,
				1
				)
			

		
	
 and 
	
		
			
				{
				𝛿
			

			

				𝑛
			

			

				}
			

		
	
 is a sequence such that (i)
	
		
			

				∑
			

			
				∞
				𝑛
				=
				1
			

			

				𝛾
			

			

				𝑛
			

			
				=
				∞
			

		
	
,(ii)
	
		
			
				l
				i
				m
				s
				u
				p
			

			
				𝑛
				→
				∞
			

			
				(
				𝛿
			

			

				𝑛
			

			
				/
				𝛾
			

			

				𝑛
			

			
				)
				≤
				0
			

		
	
 or 
	
		
			

				∑
			

			
				∞
				𝑛
				=
				1
			

			
				|
				𝛿
			

			

				𝑛
			

			
				|
				<
				∞
			

		
	
.Then, 
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			

				𝑎
			

			

				𝑛
			

			
				=
				0
			

		
	
.
Lemma 6 (see [14]).  Let 
	
		
			

				𝐻
			

		
	
 be a real Hilbert, and let 
	
		
			

				𝑇
			

			

				𝑖
			

			
				∶
				𝐻
				→
				𝐻
				(
				𝑖
				=
				1
				,
				2
				,
				…
				)
			

		
	
 be all nonexpansive mappings with 
	
		
			

				∩
			

			
				∞
				𝑖
				=
				1
			

			
				F
				i
				x
				(
				𝑇
			

			

				𝑖
			

			
				)
				≠
				∅
			

		
	
. Let 
	
		
			
				∑
				𝑇
				=
			

			
				∞
				𝑖
				=
				1
			

			

				𝜔
			

			

				𝑖
			

			

				𝑇
			

			

				𝑖
			

			
				(
				𝑖
				=
				1
				,
				2
				,
				…
				)
			

		
	
, where 
	
		
			
				{
				𝜔
			

			

				𝑖
			

			
				}
				⊂
				(
				0
				,
				1
				)
			

		
	
 such that 
	
		
			

				∑
			

			
				∞
				𝑖
				=
				1
			

			

				𝜔
			

			

				𝑖
			

			
				=
				1
			

		
	
. Then 
	
		
			

				𝑇
			

		
	
 is a nonexpansive mapping with 
	
		
			
				F
				i
				x
				(
				𝑇
				)
				=
				∩
			

			
				∞
				𝑖
				=
				1
			

			
				F
				i
				x
				(
				𝑇
			

			

				𝑖
			

			

				)
			

		
	
. 
Lemma 7 (see [13]).  Let 
	
		
			

				𝐻
			

		
	
 be a Hilbert space, and let 
	
		
			

				𝐶
			

		
	
 be a nonempty closed convex subset of 
	
		
			

				𝐻
			

		
	
 and 
	
		
			
				𝑇
				∶
				𝐶
				→
				𝐶
			

		
	
 a nonexpansive mapping with 
	
		
			
				F
				i
				x
				(
				𝑇
				)
				≠
				∅
			

		
	
. If 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 is a sequence in 
	
		
			

				𝐶
			

		
	
 weakly converging to 
	
		
			

				𝑥
			

		
	
 and if 
	
		
			
				{
				(
				𝐼
				−
				𝑇
				)
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 converges strongly to 
	
		
			

				𝑦
			

		
	
, then 
	
		
			
				(
				𝐼
				−
				𝑇
				)
				𝑥
				=
				𝑦
			

		
	
.
We adopt the following notations:(1)
	
		
			

				𝑥
			

			

				𝑛
			

			
				⇀
				𝑥
			

		
	
 stands for the weak convergence of 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 to 
	
		
			

				𝑥
			

		
	
,(2)
	
		
			

				𝑥
			

			

				𝑛
			

			
				→
				𝑥
			

		
	
 stands for the strong convergence of 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 to 
	
		
			

				𝑥
			

		
	
. 
3. Synchronal Algorithm
Throughout the rest of this paper, we always assume that 
	
		
			
				𝑉
				∶
				𝐶
				→
				𝐻
			

		
	
 is an 
	
		
			

				𝑙
			

		
	
-Lipschitzian mapping with coefficient 
	
		
			
				𝑙
				≥
				0
			

		
	
 and 
	
		
			
				𝐵
				∶
				𝐶
				→
				𝐻
			

		
	
 is a 
	
		
			

				𝑘
			

		
	
-Lipschitzian continuous operator and 
	
		
			

				𝜂
			

		
	
-strongly monotone with 
	
		
			
				𝑘
				>
				0
			

		
	
, 
	
		
			
				𝜂
				>
				0
			

		
	
. Let 
	
		
			
				𝑁
				≥
				1
			

		
	
 be an integer. Let, for each 
	
		
			
				1
				≤
				𝑖
				≤
				𝑁
			

		
	
, 
	
		
			

				𝑇
			

			

				𝑖
			

			
				∶
				𝐶
				→
				𝐶
			

		
	
 be a nonexpansive mapping and 
	
		
			
				𝑆
				∶
				𝐶
				→
				𝐶
			

		
	
 also nonexpansive. Assume that 
	
		
			
				0
				<
				𝜇
				<
				2
				𝜂
				/
				𝑘
			

			

				2
			

		
	
 and 
	
		
			
				0
				<
				𝛾
				<
				𝜇
				(
				𝜂
				−
				𝜇
				𝑘
			

			

				2
			

			
				/
				2
				)
				/
				𝛼
				=
				𝜏
				/
				𝑙
			

		
	
.
Define a mapping 
	
		
			

				𝑈
			

			

				𝑛
			

			
				=
				𝛽
			

			

				𝑛
			

			
				𝑆
				+
				(
				1
				−
				𝛽
			

			

				𝑛
			

			
				)
				𝐼
			

		
	
. Since 
	
		
			

				𝑆
			

		
	
 is nonexpansive, it is easy to get that 
	
		
			

				𝑈
			

			

				𝑛
			

		
	
 is also nonexpansive. Consider the following mapping 
	
		
			

				𝐺
			

			

				𝑛
			

		
	
 on 
	
		
			

				𝐶
			

		
	
 defined by 
						
	
 		
 			
				(
				1
				3
				)
			
 		
	

	
		
			

				𝐺
			

			

				𝑛
			

			
				𝑥
				=
				𝑃
			

			

				𝐶
			

			
				
				𝛼
			

			

				𝑛
			

			
				
				𝛾
				𝑉
				(
				𝑥
				)
				+
				𝐼
				−
				𝛼
			

			

				𝑛
			

			
				
				𝜇
				𝐵
				𝑇
				𝑈
			

			

				𝑛
			

			
				𝑥
				
				,
				∀
				𝑥
				∈
				𝐶
				,
				𝑛
				∈
				ℕ
				,
			

		
	

					where 
	
		
			

				𝛼
			

			

				𝑛
			

			
				∈
				(
				0
				,
				1
				)
			

		
	
, 
	
		
			
				∑
				𝑇
				=
			

			
				𝑁
				𝑖
				=
				1
			

			

				𝜔
			

			

				𝑖
			

			

				𝑇
			

			

				𝑖
			

		
	
 with 
	
		
			

				𝜔
			

			

				𝑖
			

			
				>
				0
			

		
	
, and 
	
		
			

				∑
			

			
				𝑁
				𝑖
				=
				1
			

			

				𝜔
			

			

				𝑖
			

			
				=
				1
			

		
	
. By Lemmas 2 and 3, we obtain
						
	
 		
 			
				(
				1
				4
				)
			
 		
	

	
		
			
				‖
				‖
				𝐺
			

			

				𝑛
			

			
				𝑥
				−
				𝐺
			

			

				𝑛
			

			
				𝑦
				‖
				‖
				≤
				𝛼
			

			

				𝑛
			

			
				+
				
				𝛾
				‖
				𝑉
				𝑥
				−
				𝑉
				𝑦
				‖
				1
				−
				𝛼
			

			

				𝑛
			

			
				𝜏
				
				‖
				‖
				𝑇
				𝑈
			

			

				𝑛
			

			
				𝑥
				−
				𝑇
				𝑈
			

			

				𝑛
			

			
				𝑦
				‖
				‖
				≤
				𝛼
			

			

				𝑛
			

			
				
				𝛾
				𝑙
				‖
				𝑥
				−
				𝑦
				‖
				+
				1
				−
				𝛼
			

			

				𝑛
			

			
				𝜏
				
				=
				
				‖
				𝑥
				−
				𝑦
				‖
				1
				−
				𝛼
			

			

				𝑛
			

			
				
				(
				𝜏
				−
				𝛾
				𝑙
				)
				‖
				𝑥
				−
				𝑦
				‖
				.
			

		
	

Since 
	
		
			
				0
				<
				1
				−
				𝛼
			

			

				𝑛
			

			
				(
				𝜏
				−
				𝛾
				𝑙
				)
				<
				1
			

		
	
, it follows that 
	
		
			

				𝐺
			

			

				𝑛
			

		
	
 is a contraction. Therefore, by the Banach contraction principle, 
	
		
			

				𝐺
			

			

				𝑛
			

		
	
 has a unique fixed point 
	
		
			

				𝑥
			

			
				𝑉
				𝑛
			

			
				∈
				𝐶
			

		
	
 such that
						
	
 		
 			
				(
				1
				5
				)
			
 		
	

	
		
			

				𝑥
			

			
				𝑉
				𝑛
			

			
				=
				𝑃
			

			

				𝐶
			

			
				
				𝛼
			

			

				𝑛
			

			
				
				𝑥
				𝛾
				𝑉
			

			
				𝑉
				𝑛
			

			
				
				+
				
				𝐼
				−
				𝛼
			

			

				𝑛
			

			
				
				𝜇
				𝐵
				𝑇
				𝑈
			

			

				𝑛
			

			

				𝑥
			

			
				𝑉
				𝑛
			

			
				
				.
			

		
	

For simplicity, we will write 
	
		
			

				𝑥
			

			

				𝑛
			

		
	
 for 
	
		
			

				𝑥
			

			
				𝑉
				𝑛
			

		
	
 provided that no confusion occurs. Next we prove that the sequence 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 converges strongly to a point 
	
		
			

				𝑥
			

			

				∗
			

			
				∈
				Ω
				=
				∩
			

			
				𝑁
				𝑖
				=
				1
			

			
				F
				i
				x
				(
				𝑇
			

			

				𝑖
			

			

				)
			

		
	
 which solves the variational inequality
						
	
 		
 			
				(
				1
				6
				)
			
 		
	

	
		
			
				⟨
				(
				𝛾
				𝑉
				−
				𝜇
				𝐵
				)
				𝑥
			

			

				∗
			

			
				,
				𝑝
				−
				𝑥
			

			

				∗
			

			
				⟩
				≤
				0
				,
				∀
				𝑝
				∈
				Ω
				.
			

		
	

					By the property of the projection, we can get 
	
		
			

				𝑥
			

			

				∗
			

			
				=
				𝑃
			

			

				Ω
			

			
				(
				𝐼
				−
				𝜇
				𝐵
				+
				𝛾
				𝑉
				)
				𝑥
			

			

				∗
			

		
	
 equivalently.
Theorem 8.  Let 
	
		
			

				𝐶
			

		
	
 be a nonempty, closed, and convex subset of a real Hilbert space 
	
		
			

				𝐻
			

		
	
 and 
	
		
			
				𝑉
				∶
				𝐶
				→
				𝐻
			

		
	
 an 
	
		
			

				𝑙
			

		
	
-Lipschitzian mapping with 
	
		
			
				𝑙
				≥
				0
			

		
	
. Let 
	
		
			
				𝑁
				≥
				1
			

		
	
 be an integer. Let, for each 
	
		
			
				1
				≤
				𝑖
				≤
				𝑁
			

		
	
, 
	
		
			

				𝑇
			

			

				𝑖
			

			
				∶
				𝐶
				→
				𝐶
			

		
	
 be a nonexpansive mapping and let 
	
		
			
				𝑆
				∶
				𝐶
				→
				𝐶
			

		
	
 be also nonexpansive. Assume the set 
	
		
			
				⋂
				Ω
				=
			

			
				𝑁
				𝑖
				=
				1
			

			
				F
				i
				x
				(
				𝑇
			

			

				𝑖
			

			
				)
				≠
				∅
			

		
	
. Let 
	
		
			
				𝐵
				∶
				𝐶
				→
				𝐻
			

		
	
 be a 
	
		
			

				𝑘
			

		
	
-Lipschitzian continuous operator and 
	
		
			

				𝜂
			

		
	
-strongly monotone with 
	
		
			
				𝑘
				>
				0
			

		
	
, 
	
		
			
				𝜂
				>
				0
			

		
	
, 
	
		
			
				0
				<
				𝜇
				<
				2
				𝜂
				/
				𝑘
			

			

				2
			

		
	
 and 
	
		
			
				0
				<
				𝛾
				<
				𝜇
				(
				𝜂
				−
				𝜇
				𝑘
			

			

				2
			

			
				/
				2
				)
				/
				𝑙
				=
				𝜏
				/
				𝑙
			

		
	
. Given 
	
		
			

				𝑥
			

			

				1
			

			
				∈
				𝐶
			

		
	
, let 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 be the sequence generated by the following algorithm: 
							
	
 		
 			
				(
				1
				7
				)
			
 		
	

	
		
			

				𝑦
			

			

				𝑛
			

			
				=
				𝛽
			

			

				𝑛
			

			
				𝑆
				𝑥
			

			

				𝑛
			

			
				+
				
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				=
				𝑃
			

			

				𝐶
			

			
				
				𝛼
			

			

				𝑛
			

			
				𝛾
				𝑉
				𝑥
			

			

				𝑛
			

			
				+
				
				𝐼
				−
				𝜇
				𝛼
			

			

				𝑛
			

			
				𝐵
				
				𝑇
				𝑦
			

			

				𝑛
			

			
				
				.
			

		
	

						If 
	
		
			
				{
				𝛼
			

			

				𝑛
			

			

				}
			

		
	
 and 
	
		
			
				{
				𝛽
			

			

				𝑛
			

			

				}
			

		
	
 satisfy the following properties: (i)
	
		
			
				{
				𝛼
			

			

				𝑛
			

			
				}
				⊂
				(
				0
				,
				1
				)
			

		
	
, 
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			

				𝛼
			

			

				𝑛
			

			
				=
				0
			

		
	
 and 
	
		
			

				∑
			

			
				∞
				𝑛
				=
				1
			

			

				𝛼
			

			

				𝑛
			

			
				=
				∞
			

		
	
,(ii)
	
		
			
				{
				𝛽
			

			

				𝑛
			

			
				}
				⊂
				[
				0
				,
				1
				)
			

		
	
, 
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				(
				𝛽
			

			

				𝑛
			

			
				/
				𝛼
			

			

				𝑛
			

			
				)
				=
				0
			

		
	
, (iii)
	
		
			

				∑
			

			
				∞
				𝑛
				=
				1
			

			
				|
				𝛼
			

			
				𝑛
				+
				1
			

			
				−
				𝛼
			

			

				𝑛
			

			
				|
				<
				∞
			

		
	
 and 
	
		
			

				∑
			

			
				∞
				𝑛
				=
				1
			

			
				|
				𝛽
			

			
				𝑛
				+
				1
			

			
				−
				𝛽
			

			

				𝑛
			

			
				|
				<
				∞
			

		
	
.  Then, 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 converges strongly to 
	
		
			

				𝑥
			

			

				∗
			

			
				∈
				Ω
			

		
	
, which solves the variational inequality (16). 
Proof. The proof is divided into several steps.Step  1. Show first that 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 is bounded.Take any 
	
		
			
				𝑝
				∈
				Ω
			

		
	
; we have
							
	
 		
 			
				(
				1
				8
				)
			
 		
	

	
		
			
				‖
				‖
				𝑦
			

			

				𝑛
			

			
				‖
				‖
				=
				‖
				‖
				𝛽
				−
				𝑝
			

			

				𝑛
			

			
				
				𝑆
				𝑥
			

			

				𝑛
			

			
				
				+
				
				−
				𝑝
				1
				−
				𝛽
			

			

				𝑛
			

			
				𝑥
				
				
			

			

				𝑛
			

			
				
				‖
				‖
				−
				𝑝
				≤
				𝛽
			

			

				𝑛
			

			
				‖
				‖
				𝑆
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑆
				𝑝
				+
				𝛽
			

			

				𝑛
			

			
				+
				
				‖
				𝑆
				𝑝
				−
				𝑝
				‖
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				≤
				‖
				‖
				𝑥
				−
				𝑝
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
				+
				𝛽
			

			

				𝑛
			

			
				‖
				𝑆
				𝑝
				−
				𝑝
				‖
				.
			

		
	
Further we get 
							
	
 		
 			
				(
				1
				9
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				‖
				‖
				=
				‖
				‖
				𝑃
				−
				𝑝
			

			

				𝐶
			

			
				
				𝛼
			

			

				𝑛
			

			
				𝛾
				𝑉
				𝑥
			

			

				𝑛
			

			
				+
				
				𝐼
				−
				𝜇
				𝛼
			

			

				𝑛
			

			
				𝐵
				
				𝑇
				𝑦
			

			

				𝑛
			

			
				
				−
				𝑃
			

			

				𝐶
			

			
				𝑝
				‖
				‖
				≤
				‖
				‖
				𝛼
			

			

				𝑛
			

			
				
				𝛾
				𝑉
				𝑥
			

			

				𝑛
			

			
				
				+
				
				−
				𝜇
				𝐵
				𝑝
				𝐼
				−
				𝜇
				𝛼
			

			

				𝑛
			

			
				𝐵
				
				𝑇
				𝑦
			

			

				𝑛
			

			
				−
				
				𝐼
				−
				𝜇
				𝛼
			

			

				𝑛
			

			
				𝐵
				
				𝑝
				‖
				‖
				≤
				𝛼
			

			

				𝑛
			

			
				
				‖
				‖
				𝛾
				𝑉
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				
				+
				
				−
				𝛾
				𝑉
				𝑝
				+
				‖
				𝛾
				𝑉
				𝑝
				−
				𝜇
				𝐵
				𝑝
				‖
				1
				−
				𝛼
			

			

				𝑛
			

			
				𝜏
				
				‖
				‖
				𝑇
				𝑦
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
				≤
				𝛼
			

			

				𝑛
			

			
				‖
				‖
				𝑥
				𝑙
				𝛾
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
				+
				𝛼
			

			

				𝑛
			

			
				+
				
				‖
				𝛾
				𝑉
				𝑝
				−
				𝜇
				𝐵
				𝑝
				‖
				1
				−
				𝛼
			

			

				𝑛
			

			
				𝜏
				
				‖
				‖
				𝑦
			

			

				𝑛
			

			
				‖
				‖
				=
				
				−
				𝑝
				1
				−
				𝛼
			

			

				𝑛
			

			
				
				‖
				‖
				𝑥
				(
				𝜏
				−
				𝑙
				𝛾
				)
			

			

				𝑛
			

			
				‖
				‖
				−
				𝑝
				+
				𝛼
			

			

				𝑛
			

			
				(
				𝜏
				−
				𝑙
				𝛾
				)
				‖
				𝛾
				𝑉
				𝑝
				−
				𝜇
				𝐵
				𝑝
				‖
				+
				‖
				𝑆
				𝑝
				−
				𝑝
				‖
			

			
				
			
			
				
				‖
				‖
				𝑥
				𝜏
				−
				𝑙
				𝛾
				≤
				m
				a
				x
			

			

				𝑛
			

			
				‖
				‖
				,
				−
				𝑝
				‖
				𝛾
				𝑉
				𝑝
				−
				𝜇
				𝐵
				𝑝
				‖
				+
				‖
				𝑆
				𝑝
				−
				𝑝
				‖
			

			
				
			
			
				
				.
				𝜏
				−
				𝑙
				𝛾
			

		
	
By induction, we obtain 
	
		
			
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑝
				‖
				≤
				m
				a
				x
				{
				‖
				𝑥
			

			

				1
			

			
				−
				𝑝
				‖
				,
				(
				‖
				𝛾
				𝑉
				𝑝
				−
				𝜇
				𝐵
				𝑝
				‖
				+
				‖
				𝑆
				𝑝
				−
				𝑝
				‖
				)
				/
				(
				𝜏
				−
				𝑙
				𝛾
				)
				}
			

		
	
, 
	
		
			
				𝑛
				≥
				1
			

		
	
. Hence, 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 is bounded, so is 
	
		
			
				{
				𝑦
			

			

				𝑛
			

			

				}
			

		
	
. It follows from the Lipschitz continuity of 
	
		
			

				𝐵
			

		
	
 and 
	
		
			

				𝑉
			

		
	
 that 
	
		
			
				{
				𝐵
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
, 
	
		
			
				{
				𝐵
				𝑢
			

			

				𝑛
			

			

				}
			

		
	
, and 
	
		
			
				{
				𝑉
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 are also bounded. From the nonexpansivity of 
	
		
			

				𝑇
			

		
	
 and 
	
		
			

				𝑆
			

		
	
, it follows that 
	
		
			
				{
				𝑇
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
, 
	
		
			
				{
				𝑆
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
, and 
	
		
			
				{
				𝐵
				𝑇
				𝑦
			

			

				𝑛
			

			

				}
			

		
	
 are also bounded.Step  2. Show that
							
	
 		
 			
				(
				2
				0
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				=
				0
				.
			

		
	
By (17), we have 
							
	
 		
 			
				(
				2
				1
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				=
				‖
				‖
				𝑃
			

			

				𝐶
			

			
				
				𝛼
			

			

				𝑛
			

			
				𝛾
				𝑉
				𝑥
			

			

				𝑛
			

			
				+
				
				𝐼
				−
				𝜇
				𝛼
			

			

				𝑛
			

			
				𝐵
				
				𝑇
				𝑦
			

			

				𝑛
			

			
				
				−
				𝑃
			

			

				𝐶
			

			
				
				𝛼
			

			
				𝑛
				−
				1
			

			
				𝛾
				𝑉
				𝑥
			

			
				𝑛
				−
				1
			

			
				+
				
				𝐼
				−
				𝜇
				𝛼
			

			
				𝑛
				−
				1
			

			
				𝐵
				
				𝑇
				𝑦
			

			
				𝑛
				−
				1
			

			
				
				‖
				‖
				≤
				‖
				‖
				𝛼
			

			

				𝑛
			

			
				𝛾
				𝑉
				𝑥
			

			

				𝑛
			

			
				+
				
				𝐼
				−
				𝜇
				𝛼
			

			

				𝑛
			

			
				𝐵
				
				𝑇
				𝑦
			

			

				𝑛
			

			
				−
				
				𝛼
			

			
				𝑛
				−
				1
			

			
				𝛾
				𝑉
				𝑥
			

			
				𝑛
				−
				1
			

			
				+
				
				𝐼
				−
				𝜇
				𝛼
			

			
				𝑛
				−
				1
			

			
				𝐵
				
				𝑇
				𝑦
			

			
				𝑛
				−
				1
			

			
				
				‖
				‖
				≤
				𝛼
			

			

				𝑛
			

			
				𝛾
				‖
				‖
				𝑉
				𝑥
			

			

				𝑛
			

			
				−
				𝑉
				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				+
				‖
				‖
				
				𝐼
				−
				𝜇
				𝛼
			

			

				𝑛
			

			
				𝐵
				
				𝑇
				𝑦
			

			

				𝑛
			

			
				−
				
				𝐼
				−
				𝜇
				𝛼
			

			

				𝑛
			

			
				𝐵
				
				𝑇
				𝑦
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				+
				‖
				‖
				
				𝐼
				−
				𝜇
				𝛼
			

			

				𝑛
			

			
				𝐵
				
				𝑇
				𝑦
			

			
				𝑛
				−
				1
			

			
				−
				
				𝐼
				−
				𝜇
				𝛼
			

			
				𝑛
				−
				1
			

			
				𝐵
				
				𝑇
				𝑦
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				+
				|
				|
				𝛼
			

			

				𝑛
			

			
				−
				𝛼
			

			
				𝑛
				−
				1
			

			
				|
				|
				𝛾
				‖
				‖
				𝑉
				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				≤
				𝛼
			

			

				𝑛
			

			
				‖
				‖
				𝑥
				𝛾
				𝑙
			

			

				𝑛
			

			
				−
				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				+
				|
				|
				𝛼
			

			

				𝑛
			

			
				−
				𝛼
			

			
				𝑛
				−
				1
			

			
				|
				|
				
				‖
				‖
				𝛾
				𝑙
				𝑉
				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				‖
				‖
				+
				𝜇
				𝐵
				𝑇
				𝑦
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				
				+
				
				1
				−
				𝛼
			

			

				𝑛
			

			
				𝜏
				
				‖
				‖
				𝑦
			

			

				𝑛
			

			
				−
				𝑦
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				.
			

		
	
Observe that
							
	
 		
 			
				(
				2
				2
				)
			
 		
	

	
		
			
				‖
				‖
				𝑦
			

			

				𝑛
			

			
				−
				𝑦
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				=
				‖
				‖
				𝛽
			

			

				𝑛
			

			
				𝑆
				𝑥
			

			

				𝑛
			

			
				+
				
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				𝛽
			

			
				𝑛
				−
				1
			

			
				𝑆
				𝑥
			

			
				𝑛
				−
				1
			

			
				−
				
				1
				−
				𝛽
			

			
				𝑛
				−
				1
			

			
				
				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				≤
				‖
				‖
				𝛽
			

			

				𝑛
			

			
				𝑆
				𝑥
			

			

				𝑛
			

			
				−
				𝛽
			

			

				𝑛
			

			
				𝑆
				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				+
				‖
				‖
				
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				+
				‖
				‖
				𝛽
			

			

				𝑛
			

			
				𝑆
				𝑥
			

			
				𝑛
				−
				1
			

			
				−
				𝛽
			

			
				𝑛
				−
				1
			

			
				𝑆
				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				+
				‖
				‖
				
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				𝑥
			

			
				𝑛
				−
				1
			

			
				−
				
				1
				−
				𝛽
			

			
				𝑛
				−
				1
			

			
				
				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				≤
				𝛽
			

			

				𝑛
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				+
				
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				+
				|
				|
				𝛽
			

			

				𝑛
			

			
				−
				𝛽
			

			
				𝑛
				−
				1
			

			
				|
				|
				‖
				‖
				𝑆
				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				+
				|
				|
				𝛽
			

			

				𝑛
			

			
				−
				𝛽
			

			
				𝑛
				−
				1
			

			
				|
				|
				‖
				‖
				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				=
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				+
				|
				|
				𝛽
			

			

				𝑛
			

			
				−
				𝛽
			

			
				𝑛
				−
				1
			

			
				|
				|
				
				‖
				‖
				𝑆
				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				+
				‖
				‖
				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				
				.
			

		
	
Together with (21) and (22), we get 
							
	
 		
 			
				(
				2
				3
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				≤
				𝛼
			

			

				𝑛
			

			
				‖
				‖
				𝑥
				𝛾
				𝑙
			

			

				𝑛
			

			
				−
				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				+
				|
				|
				𝛼
			

			

				𝑛
			

			
				−
				𝛼
			

			
				𝑛
				−
				1
			

			
				|
				|
				
				‖
				‖
				𝛾
				𝑙
				𝑉
				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				‖
				‖
				+
				𝜇
				𝐵
				𝑇
				𝑦
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				
				+
				
				1
				−
				𝛼
			

			

				𝑛
			

			
				𝜏
				
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				+
				|
				|
				𝛽
			

			

				𝑛
			

			
				−
				𝛽
			

			
				𝑛
				−
				1
			

			
				|
				|
				
				‖
				‖
				𝑆
				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				+
				‖
				‖
				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				
				=
				
				1
				−
				𝛼
			

			

				𝑛
			

			
				(
				
				‖
				‖
				𝑥
				𝜏
				−
				𝛾
				𝑙
				)
			

			

				𝑛
			

			
				−
				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				+
				|
				|
				𝛼
			

			

				𝑛
			

			
				−
				𝛼
			

			
				𝑛
				−
				1
			

			
				|
				|
				
				‖
				‖
				𝛾
				𝑙
				𝑉
				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				‖
				‖
				+
				𝜇
				𝐵
				𝑇
				𝑦
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				
				+
				|
				|
				𝛽
			

			

				𝑛
			

			
				−
				𝛽
			

			
				𝑛
				−
				1
			

			
				|
				|
				
				‖
				‖
				𝑆
				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				+
				‖
				‖
				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				
				≤
				
				1
				−
				𝛼
			

			

				𝑛
			

			
				
				‖
				‖
				𝑥
				(
				𝜏
				−
				𝛾
				𝑙
				)
			

			

				𝑛
			

			
				−
				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				‖
				+
				
				|
				|
				𝛼
			

			

				𝑛
			

			
				−
				𝛼
			

			
				𝑛
				−
				1
			

			
				|
				|
				+
				|
				|
				𝛽
			

			

				𝑛
			

			
				−
				𝛽
			

			
				𝑛
				−
				1
			

			
				|
				|
				
				𝑀
			

			

				1
			

			

				,
			

		
	

						where 
	
		
			

				𝑀
			

			

				1
			

			
				=
				s
				u
				p
			

			

				𝑛
			

			
				{
				‖
				𝛾
				𝑙
				𝑉
				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				+
				𝜇
				‖
				𝐵
				𝑇
				𝑦
			

			
				𝑛
				−
				1
			

			
				‖
				+
				‖
				𝑆
				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				+
				‖
				𝑥
			

			
				𝑛
				−
				1
			

			
				‖
				}
			

		
	
.By Lemma 5, we obtain
							
	
 		
 			
				(
				2
				4
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				⟶
				0
				.
			

		
	
Step  3. Show that 
							
	
 		
 			
				(
				2
				5
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑇
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				⟶
				0
				.
			

		
	
Observe that 
							
	
 		
 			
				(
				2
				6
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑇
				𝑦
			

			

				𝑛
			

			
				‖
				‖
				=
				‖
				‖
				𝑃
			

			

				𝐶
			

			
				
				𝛼
			

			

				𝑛
			

			
				𝛾
				𝑉
				𝑥
			

			

				𝑛
			

			
				+
				
				𝐼
				−
				𝜇
				𝛼
			

			

				𝑛
			

			
				𝐵
				𝑇
				𝑦
			

			

				𝑛
			

			
				
				
				−
				𝑃
			

			

				𝐶
			

			
				𝑇
				𝑦
			

			

				𝑛
			

			
				‖
				‖
				≤
				𝛼
			

			

				𝑛
			

			
				‖
				‖
				𝛾
				𝑉
				𝑥
			

			

				𝑛
			

			
				−
				𝜇
				𝐵
				𝑇
				𝑦
			

			

				𝑛
			

			
				‖
				‖
				⟶
				0
				.
			

		
	

						From condition (i) and (ii), we obtain
							
	
 		
 			
				(
				2
				7
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑇
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				≤
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑇
				𝑦
			

			

				𝑛
			

			
				‖
				‖
				+
				‖
				‖
				𝑇
				𝑦
			

			

				𝑛
			

			
				−
				𝑇
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				≤
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑇
				𝑦
			

			

				𝑛
			

			
				‖
				‖
				+
				‖
				‖
				𝑦
			

			

				𝑛
			

			
				−
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				=
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑇
				𝑦
			

			

				𝑛
			

			
				‖
				‖
				+
				𝛽
			

			

				𝑛
			

			
				‖
				‖
				𝑆
				𝑥
			

			

				𝑛
			

			
				−
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				⟶
				0
				.
			

		
	
Step  4. Show that
							
	
 		
 			
				(
				2
				8
				)
			
 		
	

	
		
			
				l
				i
				m
				s
				u
				p
			

			
				𝑛
				→
				∞
			

			
				⟨
				(
				𝛾
				𝑉
				−
				𝜇
				𝐵
				)
				𝑥
			

			

				∗
			

			
				,
				𝑥
			

			

				𝑛
			

			
				−
				𝑥
			

			

				∗
			

			
				⟩
				≤
				0
				,
			

		
	

						where 
	
		
			

				𝑥
			

			

				∗
			

			
				=
				𝑃
			

			

				Ω
			

			
				(
				𝐼
				−
				𝜇
				𝐵
				+
				𝛾
				𝑉
				)
				𝑥
			

			

				∗
			

		
	
 is a unique solution of the variational inequality (16).Indeed, take a subsequence 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				𝑗
			

			

				}
			

		
	
 of 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 such that
							
	
 		
 			
				(
				2
				9
				)
			
 		
	

	
		
			
				l
				i
				m
				s
				u
				p
			

			
				𝑛
				→
				∞
			

			
				⟨
				(
				𝛾
				𝑉
				−
				𝜇
				𝐵
				)
				𝑥
			

			

				∗
			

			
				,
				𝑥
			

			

				𝑛
			

			
				−
				𝑥
			

			

				∗
			

			
				⟩
				=
				l
				i
				m
			

			
				𝑗
				→
				∞
			

			
				⟨
				(
				𝛾
				𝑉
				−
				𝜇
				𝐵
				)
				𝑥
			

			

				∗
			

			
				,
				𝑥
			

			

				𝑛
			

			

				𝑗
			

			
				−
				𝑥
			

			

				∗
			

			
				⟩
				.
			

		
	
Since 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				𝑗
			

			

				}
			

		
	
 is bounded, there exists a subsequence 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			
				𝑗
				𝑘
			

			

				}
			

		
	
 of 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				𝑗
			

			

				}
			

		
	
 which converges weakly to 
	
		
			
				̂
				𝑥
			

		
	
. Without loss of generality, we can assume 
	
		
			

				𝑥
			

			

				𝑛
			

			

				𝑗
			

			
				⇀
				̂
				𝑥
			

		
	
 and
							
	
 		
 			
				(
				3
				0
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			

				𝑛
			

			

				𝑗
			

			
				−
				𝑇
				𝑥
			

			

				𝑛
			

			

				𝑗
			

			
				‖
				‖
				⟶
				0
				.
			

		
	
By Lemma 7, we have 
	
		
			
				̂
				𝑥
				=
				𝑇
				̂
				𝑥
			

		
	
. From Lemma 6, we get 
							
	
 		
 			
				(
				3
				1
				)
			
 		
	

	
		
			
				̂
				𝑥
				∈
				F
				i
				x
				(
				𝑇
				)
				=
			

			

				𝑁
			

			

				
			

			
				𝑖
				=
				1
			

			
				
				𝑇
				F
				i
				x
			

			

				𝑖
			

			
				
				.
			

		
	
Since 
	
		
			

				𝑥
			

			

				∗
			

			
				=
				𝑃
			

			

				Ω
			

			
				(
				𝐼
				−
				𝜇
				𝐵
				+
				𝛾
				𝑉
				)
				𝑥
			

			

				∗
			

		
	
, it follows that
							
	
 		
 			
				(
				3
				2
				)
			
 		
	

	
		
			
				l
				i
				m
				s
				u
				p
			

			
				𝑛
				→
				∞
			

			
				⟨
				(
				𝛾
				𝑉
				−
				𝜇
				𝐵
				)
				𝑥
			

			

				∗
			

			
				,
				𝑥
			

			

				𝑛
			

			
				−
				𝑥
			

			

				∗
			

			
				⟩
				=
				l
				i
				m
			

			
				𝑗
				→
				∞
			

			
				
				(
				𝛾
				𝑉
				−
				𝜇
				𝐵
				)
				𝑥
			

			

				∗
			

			
				,
				𝑥
			

			

				𝑛
			

			

				𝑗
			

			
				−
				𝑥
			

			

				∗
			

			
				
				=
				⟨
				(
				𝛾
				𝑉
				−
				𝜇
				𝐵
				)
				𝑥
			

			

				∗
			

			
				,
				̂
				𝑥
				−
				𝑥
			

			

				∗
			

			
				⟩
				≤
				0
				.
			

		
	
Step  5. Show that
							
	
 		
 			
				(
				3
				3
				)
			
 		
	

	
		
			

				𝑥
			

			

				𝑛
			

			
				⟶
				𝑥
			

			

				∗
			

			

				.
			

		
	
Denote 
	
		
			

				𝑧
			

			

				𝑛
			

			
				=
				𝛼
			

			

				𝑛
			

			
				𝛾
				𝑉
				𝑥
			

			

				𝑛
			

			
				+
				(
				𝐼
				−
				𝜇
				𝛼
			

			

				𝑛
			

			
				𝐵
				)
				𝑇
				𝑦
			

			

				𝑛
			

		
	
, then 
	
		
			

				𝑥
			

			
				𝑛
				+
				1
			

			
				=
				𝑃
			

			

				𝐶
			

			

				𝑧
			

			

				𝑛
			

		
	
. From (17), we have
							
	
 		
 			
				(
				3
				4
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				∗
			

			
				‖
				‖
			

			

				2
			

			
				=
				‖
				‖
				𝑃
			

			

				𝐶
			

			

				𝑧
			

			

				𝑛
			

			
				−
				𝑥
			

			

				∗
			

			
				‖
				‖
			

			

				2
			

			
				=
				⟨
				𝑃
			

			

				𝐶
			

			

				𝑧
			

			

				𝑛
			

			
				−
				𝑧
			

			

				𝑛
			

			
				,
				𝑃
			

			

				𝐶
			

			

				𝑧
			

			

				𝑛
			

			
				−
				𝑥
			

			

				∗
			

			
				⟩
				+
				
				𝑧
			

			

				𝑛
			

			
				−
				𝑥
			

			

				∗
			

			
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				∗
			

			
				
				≤
				
				𝑧
			

			

				𝑛
			

			
				−
				𝑥
			

			

				∗
			

			
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				∗
			

			
				
				=
				
				
				𝐼
				−
				𝜇
				𝛼
			

			

				𝑛
			

			
				𝐵
				
				𝑇
				𝑦
			

			

				𝑛
			

			
				−
				
				𝐼
				−
				𝜇
				𝛼
			

			

				𝑛
			

			
				𝐵
				
				𝑇
				𝑥
			

			

				∗
			

			
				+
				𝛼
			

			

				𝑛
			

			
				
				𝛾
				𝑉
				𝑥
			

			

				𝑛
			

			
				−
				𝜇
				𝐵
				𝑥
			

			

				∗
			

			
				
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				∗
			

			
				
				≤
				
				1
				−
				𝛼
			

			

				𝑛
			

			
				𝜏
				
				‖
				‖
				𝑦
			

			

				𝑛
			

			
				−
				𝑥
			

			

				∗
			

			
				‖
				‖
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				∗
			

			
				‖
				‖
				+
				𝛼
			

			

				𝑛
			

			
				
				𝛾
				𝑉
				𝑥
			

			

				𝑛
			

			
				−
				𝛾
				𝑉
				𝑥
			

			

				∗
			

			
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				∗
			

			
				
				+
				𝛼
			

			

				𝑛
			

			
				
				𝛾
				𝑉
				𝑥
			

			

				∗
			

			
				−
				𝜇
				𝐵
				𝑥
			

			

				∗
			

			
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				∗
			

			
				
				≤
				
				1
				−
				𝛼
			

			

				𝑛
			

			
				𝜏
				‖
				‖
				𝑥
				
				
			

			

				𝑛
			

			
				−
				𝑥
			

			

				∗
			

			
				‖
				‖
				+
				𝛽
			

			

				𝑛
			

			
				‖
				𝑆
				𝑥
			

			

				∗
			

			
				−
				𝑥
			

			

				∗
			

			
				‖
				
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				∗
			

			
				‖
				‖
				+
				𝛼
			

			

				𝑛
			

			
				‖
				‖
				𝑥
				𝛾
				𝑙
			

			

				𝑛
			

			
				−
				𝑥
			

			

				∗
			

			
				‖
				‖
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				∗
			

			
				‖
				‖
				+
				𝛼
			

			

				𝑛
			

			
				
				𝛾
				𝑉
				𝑥
			

			

				∗
			

			
				−
				𝜇
				𝐵
				𝑥
			

			

				∗
			

			
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				∗
			

			
				
				≤
				1
				−
				𝛼
			

			

				𝑛
			

			
				(
				𝜏
				−
				𝛾
				𝑙
				)
			

			
				
			
			
				2
				
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑥
			

			

				∗
			

			
				‖
				‖
			

			

				2
			

			
				+
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				∗
			

			
				‖
				‖
			

			

				2
			

			
				
				+
				𝛽
			

			

				𝑛
			

			
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				∗
			

			
				‖
				‖
				‖
				𝑆
				𝑥
			

			

				∗
			

			
				−
				𝑥
			

			

				∗
			

			
				‖
				+
				𝛼
			

			

				𝑛
			

			
				⟨
				𝛾
				𝑉
				𝑥
			

			

				∗
			

			
				−
				𝜇
				𝐵
				𝑥
			

			

				∗
			

			
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				∗
			

			
				⟩
				.
			

		
	
This implies that
							
	
 		
 			
				(
				3
				5
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				∗
			

			
				‖
				‖
			

			

				2
			

			
				≤
				1
				−
				𝛼
			

			

				𝑛
			

			
				(
				𝜏
				−
				𝛾
				𝑙
				)
			

			
				
			
			
				1
				+
				𝛼
			

			

				𝑛
			

			
				‖
				‖
				𝑥
				(
				𝜏
				−
				𝑙
				𝛾
				)
			

			

				𝑛
			

			
				−
				𝑥
			

			

				∗
			

			
				‖
				‖
			

			

				2
			

			
				+
				2
			

			
				
			
			
				1
				+
				𝛼
			

			

				𝑛
			

			
				×
				
				𝛽
				(
				𝜏
				−
				𝛾
				𝑙
				)
			

			

				𝑛
			

			
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				∗
			

			
				‖
				‖
				‖
				𝑆
				𝑥
			

			

				∗
			

			
				−
				𝑥
			

			

				∗
			

			
				‖
				+
				𝛼
			

			

				𝑛
			

			
				
				𝛾
				𝑉
				𝑥
			

			

				∗
			

			
				−
				𝜇
				𝐵
				𝑥
			

			

				∗
			

			
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				∗
			

			
				≤
				
				
				
				1
				−
				𝛼
			

			

				𝑛
			

			
				
				‖
				‖
				𝑥
				(
				𝜏
				−
				𝛾
				𝑙
				)
			

			

				𝑛
			

			
				−
				𝑥
			

			

				∗
			

			
				‖
				‖
			

			

				2
			

			
				+
				2
				𝛽
			

			

				𝑛
			

			

				𝑀
			

			

				2
			

			
				+
				2
				𝛼
			

			

				𝑛
			

			
				⟨
				𝛾
				𝑉
				𝑥
			

			

				∗
			

			
				−
				𝜇
				𝐵
				𝑥
			

			

				∗
			

			
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				∗
			

			
				⟩
				,
			

		
	

						where 
	
		
			

				𝑀
			

			

				2
			

			
				=
				s
				u
				p
			

			

				𝑛
			

			
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				∗
			

			
				‖
				‖
				𝑆
				𝑥
			

			

				∗
			

			
				−
				𝑥
			

			

				∗
			

			

				‖
			

		
	
, 
	
		
			
				𝑛
				≥
				1
			

		
	
. Put 
	
		
			

				𝛾
			

			

				𝑛
			

			
				=
				𝛼
			

			

				𝑛
			

			
				(
				𝜏
				−
				𝑙
				𝛾
				)
			

		
	
, 
	
		
			

				𝛿
			

			

				𝑛
			

			
				=
				2
				𝛽
			

			

				𝑛
			

			

				𝑀
			

			

				2
			

			

				+
			

		
	
 
	
		
			
				2
				𝛼
			

			

				𝑛
			

			
				⟨
				𝛾
				𝑉
				𝑥
			

			

				∗
			

			
				−
				𝜇
				𝐵
				𝑥
			

			

				∗
			

			
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				∗
			

			

				⟩
			

		
	
. It is easy to see that 
	
		
			
				l
				i
				m
				s
				u
				p
			

			
				𝑛
				→
				∞
			

			

				𝛿
			

			

				𝑛
			

			
				/
				𝛾
			

			

				𝑛
			

			
				≤
				0
			

		
	
. Hence by Lemma 5, the sequence 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 converges strongly to 
	
		
			

				𝑥
			

			

				∗
			

		
	
. 
Remark 9. Let 
	
		
			
				𝑁
				=
				1
			

		
	
 in Theorem 8; we can get Theorem 3.1 of [8]. 
Remark 10. Let 
	
		
			
				𝑁
				=
				1
			

		
	
, 
	
		
			
				𝛾
				=
				1
			

		
	
, 
	
		
			
				𝜇
				=
				1
			

		
	
, 
	
		
			
				𝐵
				=
				𝐼
			

		
	
 and 
	
		
			

				𝑉
			

		
	
, be a contraction in Theorem 8; it is easy to get the theorem of  [10]. 
4.  Cyclic Algorithm
 In this section, we consider the cyclic algorithm of 
	
		
			

				𝑁
			

		
	
 nonexpansive mappings 
	
		
			

				𝑇
			

			

				1
			

			
				,
				𝑇
			

			

				2
			

			
				,
				…
				,
				𝑇
			

			

				𝑁
			

		
	
. Similarly, we can get that the mapping 
	
		
			

				𝐺
			

			

				𝑛
			

		
	
 on 
	
		
			

				𝐶
			

		
	
 defined by 
						
	
 		
 			
				(
				3
				6
				)
			
 		
	

	
		
			

				𝐺
			

			

				𝑛
			

			
				𝑥
				=
				𝑃
			

			

				𝐶
			

			
				
				𝛼
			

			

				𝑛
			

			
				
				𝛾
				𝑉
				(
				𝑥
				)
				+
				𝐼
				−
				𝛼
			

			

				𝑛
			

			
				
				𝑇
				𝜇
				𝐵
			

			
				[
				𝑛
				]
			

			

				𝑈
			

			

				𝑛
			

			
				𝑥
				
				,
				∀
				𝑥
				∈
				𝐶
				,
				𝑛
				∈
				ℕ
				,
			

		
	

					is a contraction, where 
	
		
			

				𝑇
			

			
				[
				𝑛
				]
			

			
				=
				𝑇
			

			

				𝑖
			

		
	
 with 
	
		
			
				𝑖
				=
				𝑛
				(
				m
				o
				d
				)
				𝑁
			

		
	
 taking values in 
	
		
			
				{
				1
				,
				2
				,
				…
				,
				𝑁
				}
			

		
	
.
Theorem 11.  Let 
	
		
			

				𝐶
			

		
	
 be a nonempty, closed, and convex subset of a real Hilbert space 
	
		
			

				𝐻
			

		
	
, and let 
	
		
			
				𝑉
				∶
				𝐶
				→
				𝐻
			

		
	
 be an 
	
		
			

				𝑙
			

		
	
-Lipschitzian mapping with 
	
		
			
				𝑙
				≥
				0
			

		
	
. Let 
	
		
			
				𝑁
				≥
				1
			

		
	
 be an integer. Let, for each 
	
		
			
				1
				≤
				𝑖
				≤
				𝑁
			

		
	
, 
	
		
			

				𝑇
			

			

				𝑖
			

			
				∶
				𝐶
				→
				𝐶
			

		
	
 be a nonexpansive mapping and let 
	
		
			
				𝑆
				∶
				𝐶
				→
				𝐶
			

		
	
 be also nonexpansive. Assume the set 
	
		
			
				⋂
				Ω
				=
			

			
				𝑁
				𝑖
				=
				1
			

			
				F
				i
				x
				(
				𝑇
			

			

				𝑖
			

			
				)
				≠
				∅
			

		
	
. Let 
	
		
			
				𝐵
				∶
				𝐶
				→
				𝐻
			

		
	
 be a 
	
		
			

				𝑘
			

		
	
-Lipschitzian continuous operator and 
	
		
			

				𝜂
			

		
	
-strongly monotone with 
	
		
			
				𝑘
				>
				0
			

		
	
, 
	
		
			
				𝜂
				>
				0
			

		
	
, 
	
		
			
				0
				<
				𝜇
				<
				2
				𝜂
				/
				𝑘
			

			

				2
			

		
	
, and 
	
		
			
				0
				<
				𝛾
				<
				𝜇
				(
				𝜂
				−
				𝜇
				𝑘
			

			

				2
			

			
				/
				2
				)
				/
				𝑙
				=
				𝜏
				/
				𝑙
			

		
	
. Given 
	
		
			

				𝑥
			

			

				1
			

			
				∈
				𝐶
			

		
	
, let 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 be the sequence generated by the following algorithm:
							
	
 		
 			
				(
				3
				7
				)
			
 		
	

	
		
			

				𝑦
			

			

				𝑛
			

			
				=
				𝛽
			

			

				𝑛
			

			
				𝑆
				𝑥
			

			

				𝑛
			

			
				+
				
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				=
				𝑃
			

			

				𝐶
			

			
				
				𝛼
			

			

				𝑛
			

			
				𝛾
				𝑉
				𝑥
			

			

				𝑛
			

			
				+
				
				𝐼
				−
				𝜇
				𝛼
			

			

				𝑛
			

			
				𝐵
				
				𝑇
			

			
				[
				𝑛
				]
			

			

				𝑦
			

			

				𝑛
			

			
				
				.
			

		
	

						If 
	
		
			
				{
				𝛼
			

			

				𝑛
			

			

				}
			

		
	
 and 
	
		
			
				{
				𝛽
			

			

				𝑛
			

			

				}
			

		
	
 satisfy the following properties: (i)
	
		
			
				{
				𝛼
			

			

				𝑛
			

			
				}
				⊂
				(
				0
				,
				1
				)
			

		
	
, 
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			

				𝛼
			

			

				𝑛
			

			
				=
				0
			

		
	
 and 
	
		
			

				∑
			

			
				∞
				𝑛
				=
				1
			

			

				𝛼
			

			

				𝑛
			

			
				=
				∞
			

		
	
, (ii)
	
		
			
				{
				𝛽
			

			

				𝑛
			

			
				}
				⊂
				[
				0
				,
				1
				)
			

		
	
, 
	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				(
				𝛽
			

			

				𝑛
			

			
				/
				𝛼
			

			

				𝑛
			

			
				)
				=
				0
			

		
	
,(iii)
	
		
			

				∑
			

			
				∞
				𝑛
				=
				1
			

			
				|
				𝛼
			

			
				𝑛
				+
				1
			

			
				−
				𝛼
			

			

				𝑛
			

			
				|
				<
				∞
			

		
	
 and 
	
		
			

				∑
			

			
				∞
				𝑛
				=
				1
			

			
				|
				𝛽
			

			
				𝑛
				+
				1
			

			
				−
				𝛽
			

			

				𝑛
			

			
				|
				<
				∞
			

		
	
. Assume in addition that 
							
	
 		
 			
				(
				3
				8
				)
			
 		
	

	
		
			

				𝑁
			

			

				
			

			
				𝑖
				=
				1
			

			
				
				𝑇
				F
				i
				x
			

			

				𝑖
			

			
				
				
				𝑇
				=
				F
				i
				x
			

			

				𝑁
			

			

				𝑇
			

			
				𝑁
				−
				1
			

			
				⋯
				𝑇
			

			

				2
			

			

				𝑇
			

			

				1
			

			
				
				
				𝑇
				=
				F
				i
				x
			

			

				1
			

			

				𝑇
			

			

				𝑁
			

			

				𝑇
			

			
				𝑁
				−
				1
			

			
				⋯
				𝑇
			

			

				2
			

			
				
				
				𝑇
				=
				⋯
				=
				F
				i
				x
			

			

				2
			

			

				𝑇
			

			

				1
			

			

				𝑇
			

			

				𝑁
			

			
				⋯
				𝑇
			

			

				3
			

			
				
				.
			

		
	

						Then, 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 converges strongly to 
	
		
			

				𝑥
			

			

				∗
			

			
				∈
				Ω
			

		
	
, which solves the variational inequality (16). 
Proof. The proof is divided into several steps.Step  1. Show first that 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 is bounded.The proof of Step 1 is similar to that of Theorem 8.Step  2. Show that
							
	
 		
 			
				(
				3
				9
				)
			
 		
	

	
		
			
				l
				i
				m
			

			
				𝑛
				→
				∞
			

			
				‖
				‖
				𝑥
			

			
				𝑛
				+
				𝑁
			

			
				−
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				=
				0
				.
			

		
	
By (37), we have 
							
	
 		
 			
				(
				4
				0
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			
				𝑛
				+
				𝑁
				+
				1
			

			
				−
				𝑥
			

			
				𝑛
				+
				1
			

			
				‖
				‖
				≤
				‖
				‖
				𝛼
			

			
				𝑛
				+
				𝑁
			

			
				𝛾
				𝑉
				𝑥
			

			
				𝑛
				+
				𝑁
			

			
				+
				
				𝐼
				−
				𝜇
				𝛼
			

			
				𝑛
				+
				𝑁
			

			
				𝐵
				
				𝑇
			

			
				[
				𝑛
				]
			

			

				𝑦
			

			
				𝑛
				+
				𝑁
			

			
				−
				𝛼
			

			

				𝑛
			

			
				𝛾
				𝑉
				𝑥
			

			

				𝑛
			

			
				−
				
				𝐼
				−
				𝜇
				𝛼
			

			

				𝑛
			

			
				𝐵
				
				𝑇
			

			
				[
				𝑛
				]
			

			

				𝑦
			

			

				𝑛
			

			
				‖
				‖
				≤
				𝛼
			

			
				𝑛
				+
				𝑁
			

			
				𝛾
				‖
				‖
				𝑉
				𝑥
			

			
				𝑛
				+
				𝑁
			

			
				−
				𝑉
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				+
				‖
				‖
				
				𝐼
				−
				𝜇
				𝛼
			

			
				𝑛
				+
				𝑁
			

			
				𝐵
				
				𝑇
			

			
				[
				𝑛
				]
			

			

				𝑦
			

			
				𝑛
				+
				𝑁
			

			
				−
				
				𝐼
				−
				𝜇
				𝛼
			

			
				𝑛
				+
				𝑁
			

			
				𝐵
				
				𝑇
			

			
				[
				𝑛
				]
			

			

				𝑦
			

			

				𝑛
			

			
				‖
				‖
				+
				‖
				‖
				
				𝐼
				−
				𝜇
				𝛼
			

			
				𝑛
				+
				𝑁
			

			
				𝐵
				
				𝑇
			

			
				[
				𝑛
				]
			

			

				𝑦
			

			

				𝑛
			

			
				−
				
				𝐼
				−
				𝜇
				𝛼
			

			

				𝑛
			

			
				𝐵
				
				𝑇
			

			
				[
				𝑛
				]
			

			

				𝑦
			

			

				𝑛
			

			
				‖
				‖
				+
				|
				|
				𝛼
			

			
				𝑛
				+
				𝑁
			

			
				−
				𝛼
			

			

				𝑛
			

			
				|
				|
				𝛾
				‖
				‖
				𝑉
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				≤
				𝛼
			

			
				𝑛
				+
				𝑁
			

			
				‖
				‖
				𝑥
				𝛾
				𝑙
			

			
				𝑛
				+
				𝑁
			

			
				−
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				+
				
				1
				−
				𝛼
			

			
				𝑛
				+
				𝑁
			

			
				𝜏
				
				‖
				‖
				𝑦
			

			
				𝑛
				+
				𝑁
			

			
				−
				𝑦
			

			

				𝑛
			

			
				‖
				‖
				+
				|
				|
				𝛼
			

			
				𝑛
				+
				𝑁
			

			
				−
				𝛼
			

			

				𝑛
			

			
				|
				|
				
				‖
				‖
				𝛾
				𝑙
				𝑉
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				‖
				‖
				+
				𝜇
				𝐵
				𝑇
			

			
				[
				𝑛
				]
			

			

				𝑦
			

			

				𝑛
			

			
				‖
				‖
				
				.
			

		
	
Observe that
							
	
 		
 			
				(
				4
				1
				)
			
 		
	

	
		
			
				‖
				‖
				𝑦
			

			
				𝑛
				+
				𝑁
			

			
				−
				𝑦
			

			

				𝑛
			

			
				‖
				‖
				=
				‖
				‖
				𝛽
			

			
				𝑛
				+
				𝑁
			

			
				𝑆
				𝑥
			

			
				𝑛
				+
				𝑁
			

			
				+
				
				1
				−
				𝛽
			

			
				𝑛
				+
				𝑁
			

			
				
				𝑥
			

			
				𝑛
				+
				𝑁
			

			
				−
				𝛽
			

			

				𝑛
			

			
				𝑆
				𝑥
			

			

				𝑛
			

			
				−
				
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				≤
				‖
				‖
				𝛽
			

			
				𝑛
				+
				𝑁
			

			
				𝑆
				𝑥
			

			
				𝑛
				+
				𝑁
			

			
				−
				𝛽
			

			
				𝑛
				+
				𝑁
			

			
				𝑆
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				+
				‖
				‖
				
				1
				−
				𝛽
			

			
				𝑛
				+
				𝑁
			

			
				
				𝑥
			

			
				𝑛
				+
				𝑁
			

			
				−
				
				1
				−
				𝛽
			

			
				𝑛
				+
				𝑁
			

			
				
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				+
				‖
				‖
				𝛽
			

			
				𝑛
				+
				𝑁
			

			
				𝑆
				𝑥
			

			

				𝑛
			

			
				−
				𝛽
			

			

				𝑛
			

			
				𝑆
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				+
				‖
				‖
				
				1
				−
				𝛽
			

			
				𝑛
				+
				𝑁
			

			
				
				𝑥
			

			

				𝑛
			

			
				−
				
				1
				−
				𝛽
			

			

				𝑛
			

			
				
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				≤
				𝛽
			

			
				𝑛
				+
				𝑁
			

			
				‖
				‖
				𝑥
			

			
				𝑛
				+
				𝑁
			

			
				−
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				+
				
				1
				−
				𝛽
			

			
				𝑛
				+
				𝑁
			

			
				
				‖
				‖
				𝑥
			

			
				𝑛
				+
				𝑁
			

			
				−
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				+
				|
				|
				𝛽
			

			
				𝑛
				+
				𝑁
			

			
				−
				𝛽
			

			

				𝑛
			

			
				|
				|
				‖
				‖
				𝑆
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				+
				|
				|
				𝛽
			

			
				𝑛
				+
				𝑁
			

			
				−
				𝛽
			

			

				𝑛
			

			
				|
				|
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				=
				‖
				‖
				𝑥
			

			
				𝑛
				+
				𝑁
			

			
				−
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				+
				|
				|
				𝛽
			

			
				𝑛
				+
				𝑁
			

			
				−
				𝛽
			

			

				𝑛
			

			
				|
				|
				
				‖
				‖
				𝑆
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				+
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				
				.
			

		
	
Together with (40) and (41), we have 
							
	
 		
 			
				(
				4
				2
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			
				𝑛
				+
				𝑁
				+
				1
			

			
				−
				𝑥
			

			
				𝑛
				+
				1
			

			
				‖
				‖
				≤
				𝛼
			

			
				𝑛
				+
				𝑁
			

			
				‖
				‖
				𝑥
				𝛾
				𝑙
			

			
				𝑛
				+
				𝑁
			

			
				−
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				+
				|
				|
				𝛼
			

			
				𝑛
				+
				𝑁
			

			
				−
				𝛼
			

			

				𝑛
			

			
				|
				|
				
				‖
				‖
				𝛾
				𝑙
				𝑉
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				‖
				‖
				+
				𝜇
				𝐵
				𝑇
			

			
				[
				𝑛
				]
			

			

				𝑦
			

			

				𝑛
			

			
				‖
				‖
				
				+
				
				1
				−
				𝛼
			

			
				𝑛
				+
				𝑁
			

			
				𝜏
				
				‖
				‖
				𝑥
			

			
				𝑛
				+
				𝑁
			

			
				−
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				+
				|
				|
				𝛽
			

			
				𝑛
				+
				𝑁
			

			
				−
				𝛽
			

			

				𝑛
			

			
				|
				|
				
				‖
				‖
				𝑆
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				+
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				
				=
				
				1
				−
				𝛼
			

			
				𝑛
				+
				𝑁
			

			
				(
				
				‖
				‖
				𝑥
				𝜏
				−
				𝛾
				𝑙
				)
			

			
				𝑛
				+
				𝑁
			

			
				−
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				+
				|
				|
				𝛼
			

			
				𝑛
				+
				𝑁
			

			
				−
				𝛼
			

			

				𝑛
			

			
				|
				|
				
				‖
				‖
				𝛾
				𝑙
				𝑉
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				‖
				‖
				+
				𝜇
				𝐵
				𝑇
			

			
				[
				𝑛
				]
			

			

				𝑦
			

			

				𝑛
			

			
				‖
				‖
				
				+
				|
				|
				𝛽
			

			
				𝑛
				+
				𝑁
			

			
				−
				𝛽
			

			

				𝑛
			

			
				|
				|
				
				‖
				‖
				𝑆
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				+
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				
				≤
				
				1
				−
				𝛼
			

			
				𝑛
				+
				𝑁
			

			
				
				‖
				‖
				𝑥
				(
				𝜏
				−
				𝛾
				𝑙
				)
			

			
				𝑛
				+
				𝑁
			

			
				−
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				+
				
				|
				|
				𝛼
			

			
				𝑛
				+
				𝑁
			

			
				−
				𝛼
			

			

				𝑛
			

			
				|
				|
				+
				|
				|
				𝛽
			

			
				𝑛
				+
				𝑁
			

			
				−
				𝛽
			

			

				𝑛
			

			
				|
				|
				
				𝑀
			

			

				3
			

			

				,
			

		
	

						where 
	
		
			

				𝑀
			

			

				3
			

			
				=
				s
				u
				p
			

			

				𝑛
			

			
				{
				‖
				𝛾
				𝑙
				𝑉
				𝑥
			

			

				𝑛
			

			
				‖
				+
				𝜇
				‖
				𝐵
				𝑇
			

			
				[
				𝑛
				]
			

			

				𝑦
			

			

				𝑛
			

			
				‖
				+
				‖
				𝑆
				𝑥
			

			

				𝑛
			

			
				‖
				+
				‖
				𝑥
			

			

				𝑛
			

			
				‖
				}
			

		
	
.By Lemma 5, we get
							
	
 		
 			
				(
				4
				3
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			
				𝑛
				+
				𝑁
			

			
				−
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				⟶
				0
				.
			

		
	
Step  3. Show that
							
	
 		
 			
				(
				4
				4
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑇
			

			
				[
				𝑛
				+
				𝑁
				−
				1
				]
			

			

				𝑇
			

			
				[
				𝑛
				+
				𝑁
				−
				2
				]
			

			
				⋯
				𝑇
			

			
				[
				𝑛
				]
			

			

				𝑥
			

			

				𝑛
			

			
				‖
				‖
				⟶
				0
				.
			

		
	
Observe that
							
	
 		
 			
				(
				4
				5
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑇
			

			
				[
				𝑛
				]
			

			

				𝑦
			

			

				𝑛
			

			
				‖
				‖
				=
				‖
				‖
				𝑃
			

			

				𝐶
			

			
				
				𝛼
			

			

				𝑛
			

			
				𝛾
				𝑉
				𝑥
			

			

				𝑛
			

			
				+
				
				𝐼
				−
				𝜇
				𝛼
			

			

				𝑛
			

			
				
				𝐵
				𝑇
			

			
				[
				𝑛
				]
			

			

				𝑦
			

			

				𝑛
			

			
				
				−
				𝑃
			

			

				𝐶
			

			

				𝑇
			

			
				[
				𝑛
				]
			

			

				𝑦
			

			

				𝑛
			

			
				‖
				‖
				≤
				𝛼
			

			

				𝑛
			

			
				‖
				‖
				𝛾
				𝑉
				𝑥
			

			

				𝑛
			

			
				−
				𝜇
				𝐵
				𝑇
			

			
				[
				𝑛
				]
			

			

				𝑦
			

			

				𝑛
			

			
				‖
				‖
				⟶
				0
				.
			

		
	
From conditions (i) and (ii) of Theorem 11, we obtain
							
	
 		
 			
				(
				4
				6
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑇
			

			
				[
				𝑛
				]
			

			

				𝑥
			

			

				𝑛
			

			
				‖
				‖
				≤
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑇
			

			
				[
				𝑛
				]
			

			

				𝑦
			

			

				𝑛
			

			
				‖
				‖
				+
				‖
				‖
				𝑇
			

			
				[
				𝑛
				]
			

			

				𝑦
			

			

				𝑛
			

			
				−
				𝑇
			

			
				[
				𝑛
				]
			

			

				𝑥
			

			

				𝑛
			

			
				‖
				‖
				≤
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑇
			

			
				[
				𝑛
				]
			

			

				𝑦
			

			

				𝑛
			

			
				‖
				‖
				+
				‖
				‖
				𝑦
			

			

				𝑛
			

			
				−
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				=
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑇
			

			
				[
				𝑛
				]
			

			

				𝑦
			

			

				𝑛
			

			
				‖
				‖
				+
				𝛽
			

			

				𝑛
			

			
				‖
				‖
				𝑆
				𝑥
			

			

				𝑛
			

			
				−
				𝑥
			

			

				𝑛
			

			
				‖
				‖
				⟶
				0
				.
			

		
	
Recursively,
							
	
 		
 			
				(
				4
				7
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			
				𝑛
				+
				𝑁
			

			
				−
				𝑇
			

			
				[
				𝑛
				+
				𝑁
				−
				1
				]
			

			

				𝑥
			

			
				𝑛
				+
				𝑁
				−
				1
			

			
				‖
				‖
				‖
				‖
				𝑥
				⟶
				0
				,
			

			
				𝑛
				+
				𝑁
				−
				1
			

			
				−
				𝑇
			

			
				[
				𝑛
				+
				𝑁
				−
				2
				]
			

			

				𝑥
			

			
				𝑛
				+
				𝑁
				−
				2
			

			
				‖
				‖
				⟶
				0
				.
			

		
	
Since every 
	
		
			

				𝑇
			

			
				[
				𝑛
				]
			

		
	
 is nonexpansive, it is easy to get
							
	
 		
 			
				(
				4
				8
				)
			
 		
	

	
		
			
				‖
				‖
				𝑇
			

			
				[
				𝑛
				+
				𝑁
				−
				1
				]
			

			

				𝑥
			

			
				𝑛
				+
				𝑁
				−
				1
			

			
				−
				𝑇
			

			
				[
				𝑛
				+
				𝑁
				−
				1
				]
			

			

				𝑇
			

			
				[
				𝑛
				+
				𝑁
				−
				2
				]
			

			

				𝑥
			

			
				𝑛
				+
				𝑁
				−
				2
			

			
				‖
				‖
				⟶
				0
				.
			

		
	
Similarly, we obtain
							
	
 		
 			
				(
				4
				9
				)
			
 		
	

	
		
			
				‖
				‖
				𝑇
			

			
				[
				𝑛
				+
				𝑁
				−
				1
				]
			

			

				𝑇
			

			
				[
				𝑛
				+
				𝑁
				−
				2
				]
			

			

				𝑥
			

			
				𝑛
				+
				𝑁
				−
				2
			

			
				−
				𝑇
			

			
				[
				𝑛
				+
				𝑁
				−
				1
				]
			

			

				𝑇
			

			
				[
				𝑛
				+
				𝑁
				−
				2
				]
			

			

				𝑇
			

			
				[
				𝑛
				+
				𝑁
				−
				3
				]
			

			

				𝑥
			

			
				𝑛
				+
				𝑁
				−
				3
			

			
				‖
				‖
				⋮
				‖
				‖
				𝑇
				⟶
				0
			

			
				[
				𝑛
				+
				𝑁
				−
				1
				]
			

			

				𝑇
			

			
				[
				𝑛
				+
				𝑁
				−
				2
				]
			

			
				⋯
				𝑇
			

			
				[
				𝑛
				+
				1
				]
			

			

				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑇
			

			
				[
				𝑛
				+
				𝑁
				−
				1
				]
			

			

				𝑇
			

			
				[
				𝑛
				+
				𝑁
				−
				2
				]
			

			
				⋯
				𝑇
			

			
				[
				𝑛
				]
			

			

				𝑥
			

			

				𝑛
			

			
				‖
				‖
				⟶
				0
				.
			

		
	
Thus we get
							
	
 		
 			
				(
				5
				0
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			
				𝑛
				+
				𝑁
			

			
				−
				𝑇
			

			
				[
				𝑛
				+
				𝑁
				−
				1
				]
			

			
				⋯
				𝑇
			

			
				[
				𝑛
				]
			

			

				𝑥
			

			

				𝑛
			

			
				‖
				‖
				≤
				‖
				‖
				𝑥
			

			
				𝑛
				+
				𝑁
			

			
				−
				𝑇
			

			
				[
				𝑛
				+
				𝑁
				−
				1
				]
			

			

				𝑥
			

			
				𝑛
				+
				𝑁
				−
				1
			

			
				‖
				‖
				+
				‖
				‖
				𝑇
			

			
				[
				𝑛
				+
				𝑁
				−
				1
				]
			

			

				𝑥
			

			
				𝑛
				+
				𝑁
				−
				1
			

			
				−
				𝑇
			

			
				[
				𝑛
				+
				𝑁
				−
				1
				]
			

			

				𝑇
			

			
				[
				𝑛
				+
				𝑁
				−
				2
				]
			

			

				𝑥
			

			
				𝑛
				+
				𝑁
				−
				2
			

			
				‖
				‖
				‖
				‖
				𝑇
				+
				⋯
				+
			

			
				[
				𝑛
				+
				𝑁
				−
				1
				]
			

			

				𝑇
			

			
				[
				𝑛
				+
				𝑁
				−
				2
				]
			

			
				⋯
				𝑇
			

			
				[
				𝑛
				+
				1
				]
			

			

				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑇
			

			
				[
				𝑛
				+
				𝑁
				−
				1
				]
			

			
				⋯
				𝑇
			

			
				[
				𝑛
				]
			

			

				𝑥
			

			

				𝑛
			

			
				‖
				‖
				⟶
				0
				.
			

		
	
Since
							
	
 		
 			
				(
				5
				1
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑇
			

			
				[
				𝑛
				+
				𝑁
				−
				1
				]
			

			

				𝑇
			

			
				[
				𝑛
				+
				𝑁
				−
				2
				]
			

			
				⋯
				𝑇
			

			
				[
				𝑛
				]
			

			

				𝑥
			

			

				𝑛
			

			
				‖
				‖
				≤
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑥
			

			
				𝑛
				+
				𝑁
			

			
				‖
				‖
				+
				‖
				‖
				𝑥
			

			
				𝑛
				+
				𝑁
			

			
				−
				𝑇
			

			
				[
				𝑛
				+
				𝑁
				−
				1
				]
			

			
				⋯
				𝑇
			

			
				[
				𝑛
				]
			

			

				𝑥
			

			

				𝑛
			

			
				‖
				‖
				,
			

		
	

						we obtain (44).Step  4. Show that
							
	
 		
 			
				(
				5
				2
				)
			
 		
	

	
		
			
				l
				i
				m
				s
				u
				p
			

			
				𝑛
				→
				∞
			

			
				⟨
				(
				𝛾
				𝑉
				−
				𝜇
				𝐵
				)
				𝑥
			

			

				∗
			

			
				,
				𝑥
			

			

				𝑛
			

			
				−
				𝑥
			

			

				∗
			

			
				⟩
				≤
				0
				,
			

		
	

						where 
	
		
			

				𝑥
			

			

				∗
			

			
				=
				𝑃
			

			

				Ω
			

			
				(
				𝐼
				−
				𝜇
				𝐵
				+
				𝛾
				𝑉
				)
				𝑥
			

			

				∗
			

		
	
 is a unique solution of the variational inequality (16).Indeed, take a subsequence 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				𝑗
			

			

				}
			

		
	
 of 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 such that
							
	
 		
 			
				(
				5
				3
				)
			
 		
	

	
		
			
				l
				i
				m
				s
				u
				p
			

			
				𝑛
				→
				∞
			

			
				⟨
				(
				𝛾
				𝑉
				−
				𝜇
				𝐵
				)
				𝑥
			

			

				∗
			

			
				,
				𝑥
			

			

				𝑛
			

			
				−
				𝑥
			

			

				∗
			

			
				⟩
				=
				l
				i
				m
			

			
				𝑗
				→
				∞
			

			
				⟨
				(
				𝛾
				𝑉
				−
				𝜇
				𝐵
				)
				𝑥
			

			

				∗
			

			
				,
				𝑥
			

			

				𝑛
			

			

				𝑗
			

			
				−
				𝑥
			

			

				∗
			

			
				⟩
				.
			

		
	
Since 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				𝑗
			

			

				}
			

		
	
 is bounded, there exists a subsequence 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			
				𝑗
				𝑘
			

			

				}
			

		
	
 of 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				𝑗
			

			

				}
			

		
	
 which converges weakly to 
	
		
			
				̂
				𝑥
			

		
	
. Without loss of generality, we can assume 
	
		
			

				𝑥
			

			

				𝑛
			

			

				𝑗
			

			
				⇀
				̂
				𝑥
			

		
	
 and 
							
	
 		
 			
				(
				5
				4
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			

				𝑛
			

			

				𝑗
			

			
				−
				𝑇
			

			
				[
				𝑛
			

			

				𝑗
			

			
				+
				𝑁
				−
				1
				]
			

			

				𝑇
			

			
				[
				𝑛
			

			

				𝑗
			

			
				+
				𝑁
				−
				2
				]
			

			
				⋯
				𝑇
			

			
				[
				𝑛
			

			

				𝑗
			

			

				]
			

			

				𝑥
			

			

				𝑛
			

			

				𝑗
			

			
				‖
				‖
				⟶
				0
				.
			

		
	
Notice that, for each 
	
		
			

				𝑛
			

			

				𝑗
			

		
	
, 
	
		
			

				𝑇
			

			
				[
				𝑛
			

			

				𝑗
			

			
				+
				𝑁
				−
				1
				]
			

			

				𝑇
			

			
				[
				𝑛
			

			

				𝑗
			

			
				+
				𝑁
				−
				2
				]
			

			
				⋯
				𝑇
			

			
				[
				𝑛
			

			

				𝑗
			

			

				]
			

		
	
 is some permutation of the mappings 
	
		
			

				𝑇
			

			

				1
			

			

				𝑇
			

			

				2
			

			
				⋯
				𝑇
			

			

				𝑁
			

		
	
. Since 
	
		
			

				𝑇
			

			

				1
			

			

				𝑇
			

			

				2
			

			
				⋯
				𝑇
			

			

				𝑁
			

		
	
 are finite, all the finite permutations are 
	
		
			
				𝑁
				!
			

		
	
; there must be some permutation that appears infinite times. Without loss of generality, we can assume this permutation is 
	
		
			

				𝑇
			

			

				𝑁
			

			

				𝑇
			

			
				𝑁
				−
				1
			

			
				⋯
				𝑇
			

			

				1
			

		
	
. We obtain
							
	
 		
 			
				(
				5
				5
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			

				𝑛
			

			

				𝑗
			

			
				−
				𝑇
			

			

				𝑁
			

			

				𝑇
			

			
				𝑁
				−
				1
			

			
				⋯
				𝑇
			

			

				1
			

			

				𝑥
			

			

				𝑛
			

			

				𝑗
			

			
				‖
				‖
				⟶
				0
				.
			

		
	
Obviously, 
	
		
			

				𝑇
			

			

				𝑁
			

			

				𝑇
			

			
				𝑁
				−
				1
			

			
				⋯
				𝑇
			

			

				1
			

		
	
 is nonexpansive. By Lemma 7, we have 
	
		
			
				̂
				𝑥
				=
				𝑇
			

			

				𝑁
			

			

				𝑇
			

			
				𝑁
				−
				1
			

			
				⋯
				𝑇
			

			

				1
			

			
				̂
				𝑥
			

		
	
. Further by the assumption in Theorem 11, we get
							
	
 		
 			
				(
				5
				6
				)
			
 		
	

	
		
			
				
				𝑇
				̂
				𝑥
				∈
				F
				i
				x
			

			

				𝑁
			

			

				𝑇
			

			
				𝑁
				−
				1
			

			
				⋯
				𝑇
			

			

				1
			

			
				
				=
			

			

				𝑁
			

			

				
			

			
				𝑖
				=
				1
			

			
				
				𝑇
				F
				i
				x
			

			

				𝑖
			

			
				
				.
			

		
	
Since 
	
		
			

				𝑥
			

			

				∗
			

			
				=
				𝑃
			

			

				Ω
			

			
				(
				𝐼
				−
				𝜇
				𝐵
				+
				𝛾
				𝑉
				)
				𝑥
			

			

				∗
			

		
	
, it follows that
							
	
 		
 			
				(
				5
				7
				)
			
 		
	

	
		
			
				l
				i
				m
				s
				u
				p
			

			
				𝑛
				→
				∞
			

			
				⟨
				(
				𝛾
				𝑉
				−
				𝜇
				𝐵
				)
				𝑥
			

			

				∗
			

			
				,
				𝑥
			

			

				𝑛
			

			
				−
				𝑥
			

			

				∗
			

			
				⟩
				=
				l
				i
				m
			

			
				𝑗
				→
				∞
			

			
				
				(
				𝛾
				𝑉
				−
				𝜇
				𝐵
				)
				𝑥
			

			

				∗
			

			
				,
				𝑥
			

			

				𝑛
			

			

				𝑗
			

			
				−
				𝑥
			

			

				∗
			

			
				
				=
				⟨
				(
				𝛾
				𝑉
				−
				𝜇
				𝐵
				)
				𝑥
			

			

				∗
			

			
				,
				̂
				𝑥
				−
				𝑥
			

			

				∗
			

			
				⟩
				≤
				0
				.
			

		
	
Step  5. Show that
							
	
 		
 			
				(
				5
				8
				)
			
 		
	

	
		
			

				𝑥
			

			

				𝑛
			

			
				⟶
				𝑥
			

			

				∗
			

			

				.
			

		
	
Denote 
	
		
			

				𝑧
			

			

				𝑛
			

			
				=
				𝛼
			

			

				𝑛
			

			
				𝛾
				𝑉
				𝑥
			

			

				𝑛
			

			
				+
				(
				𝐼
				−
				𝜇
				𝛼
			

			

				𝑛
			

			
				𝐵
				)
				𝑇
			

			
				[
				𝑛
				]
			

			

				𝑦
			

			

				𝑛
			

		
	
; then 
	
		
			

				𝑥
			

			
				𝑛
				+
				1
			

			
				=
				𝑃
			

			

				𝐶
			

			

				𝑧
			

			

				𝑛
			

		
	
. From (37), we have
							
	
 		
 			
				(
				5
				9
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				∗
			

			
				‖
				‖
			

			

				2
			

			
				=
				‖
				‖
				𝑃
			

			

				𝐶
			

			

				𝑧
			

			

				𝑛
			

			
				−
				𝑥
			

			

				∗
			

			
				‖
				‖
			

			

				2
			

			
				=
				⟨
				𝑃
			

			

				𝐶
			

			

				𝑧
			

			

				𝑛
			

			
				−
				𝑧
			

			

				𝑛
			

			
				,
				𝑃
			

			

				𝐶
			

			

				𝑧
			

			

				𝑛
			

			
				−
				𝑥
			

			

				∗
			

			
				⟩
				+
				
				𝑧
			

			

				𝑛
			

			
				−
				𝑥
			

			

				∗
			

			
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				∗
			

			
				
				≤
				
				𝑧
			

			

				𝑛
			

			
				−
				𝑥
			

			

				∗
			

			
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				∗
			

			
				
				=
				
				
				𝐼
				−
				𝜇
				𝛼
			

			

				𝑛
			

			
				𝐵
				
				𝑇
			

			
				[
				𝑛
				]
			

			

				𝑦
			

			

				𝑛
			

			
				−
				
				𝐼
				−
				𝜇
				𝛼
			

			

				𝑛
			

			
				𝐵
				
				𝑇
			

			
				[
				𝑛
				]
			

			

				𝑥
			

			

				∗
			

			
				+
				𝛼
			

			

				𝑛
			

			
				
				𝛾
				𝑉
				𝑥
			

			

				𝑛
			

			
				−
				𝜇
				𝐵
				𝑥
			

			

				∗
			

			
				
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				∗
			

			
				
				≤
				
				1
				−
				𝛼
			

			

				𝑛
			

			
				𝜏
				
				‖
				‖
				𝑦
			

			

				𝑛
			

			
				−
				𝑥
			

			

				∗
			

			
				‖
				‖
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				∗
			

			
				‖
				‖
				+
				𝛼
			

			

				𝑛
			

			
				
				𝛾
				𝑉
				𝑥
			

			

				𝑛
			

			
				−
				𝛾
				𝑉
				𝑥
			

			

				∗
			

			
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				∗
			

			
				
				+
				𝛼
			

			

				𝑛
			

			
				
				𝛾
				𝑉
				𝑥
			

			

				∗
			

			
				−
				𝜇
				𝐵
				𝑥
			

			

				∗
			

			
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				∗
			

			
				
				≤
				
				1
				−
				𝛼
			

			

				𝑛
			

			
				𝜏
				‖
				‖
				𝑥
				
				
			

			

				𝑛
			

			
				−
				𝑥
			

			

				∗
			

			
				‖
				‖
				+
				𝛽
			

			

				𝑛
			

			
				‖
				𝑆
				𝑥
			

			

				∗
			

			
				−
				𝑥
			

			

				∗
			

			
				‖
				
				×
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				∗
			

			
				‖
				‖
				+
				𝛼
			

			

				𝑛
			

			
				‖
				‖
				𝑥
				𝛾
				𝑙
			

			

				𝑛
			

			
				−
				𝑥
			

			

				∗
			

			
				‖
				‖
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				∗
			

			
				‖
				‖
				+
				𝛼
			

			

				𝑛
			

			
				
				𝛾
				𝑉
				𝑥
			

			

				∗
			

			
				−
				𝜇
				𝐵
				𝑥
			

			

				∗
			

			
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				∗
			

			
				
				≤
				1
				−
				𝛼
			

			

				𝑛
			

			
				(
				𝜏
				−
				𝛾
				𝑙
				)
			

			
				
			
			
				2
				
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑥
			

			

				∗
			

			
				‖
				‖
			

			

				2
			

			
				+
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				∗
			

			
				‖
				‖
			

			

				2
			

			
				
				+
				𝛽
			

			

				𝑛
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑥
			

			

				∗
			

			
				‖
				‖
				‖
				𝑆
				𝑥
			

			

				∗
			

			
				−
				𝑥
			

			

				∗
			

			
				‖
				+
				𝛼
			

			

				𝑛
			

			
				⟨
				𝛾
				𝑉
				𝑥
			

			

				∗
			

			
				−
				𝜇
				𝐵
				𝑥
			

			

				∗
			

			
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				∗
			

			
				⟩
				.
			

		
	
This implies that
							
	
 		
 			
				(
				6
				0
				)
			
 		
	

	
		
			
				‖
				‖
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				∗
			

			
				‖
				‖
			

			

				2
			

			
				≤
				1
				−
				𝛼
			

			

				𝑛
			

			
				(
				𝜏
				−
				𝛾
				𝑙
				)
			

			
				
			
			
				1
				+
				𝛼
			

			

				𝑛
			

			
				‖
				‖
				𝑥
				(
				𝜏
				−
				𝛾
				𝑙
				)
			

			

				𝑛
			

			
				−
				𝑥
			

			

				∗
			

			
				‖
				‖
			

			

				2
			

			
				+
				2
			

			
				
			
			
				1
				+
				𝛼
			

			

				𝑛
			

			
				×
				
				𝛽
				(
				𝜏
				−
				𝛾
				𝑙
				)
			

			

				𝑛
			

			
				‖
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑥
			

			

				∗
			

			
				‖
				‖
				‖
				𝑆
				𝑥
			

			

				∗
			

			
				−
				𝑥
			

			

				∗
			

			
				‖
				+
				𝛼
			

			

				𝑛
			

			
				⟨
				𝛾
				𝑉
				𝑥
			

			

				∗
			

			
				−
				𝜇
				𝐵
				𝑥
			

			

				∗
			

			
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				∗
			

			
				⟩
				
				≤
				
				1
				−
				𝛼
			

			

				𝑛
			

			
				
				‖
				‖
				𝑥
				(
				𝜏
				−
				𝛾
				𝑙
				)
			

			

				𝑛
			

			
				−
				𝑥
			

			

				∗
			

			
				‖
				‖
			

			

				2
			

			
				+
				2
				𝛽
			

			

				𝑛
			

			

				𝑀
			

			

				1
			

			
				+
				2
				𝛼
			

			

				𝑛
			

			
				⟨
				𝛾
				𝑉
				𝑥
			

			

				∗
			

			
				−
				𝜇
				𝐵
				𝑥
			

			

				∗
			

			
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				∗
			

			
				⟩
				,
			

		
	

						where 
	
		
			

				𝑀
			

			

				1
			

			
				=
				s
				u
				p
			

			

				𝑛
			

			
				‖
				𝑥
			

			

				𝑛
			

			
				−
				𝑥
			

			

				∗
			

			
				‖
				‖
				𝑆
				𝑥
			

			

				∗
			

			
				−
				𝑥
			

			

				∗
			

			

				‖
			

		
	
, 
	
		
			
				𝑛
				≥
				1
			

		
	
. Put 
	
		
			

				𝛾
			

			

				𝑛
			

			
				=
				𝛼
			

			

				𝑛
			

			
				(
				𝜏
				−
				𝑙
				𝛾
				)
			

		
	
, 
	
		
			

				𝛿
			

			

				𝑛
			

			
				=
				2
				𝛽
			

			

				𝑛
			

			

				𝑀
			

			

				1
			

			

				+
			

		
	
 
	
		
			
				2
				𝛼
			

			

				𝑛
			

			
				⟨
				𝛾
				𝑉
				𝑥
			

			

				∗
			

			
				−
				𝜇
				𝐵
				𝑥
			

			

				∗
			

			
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				−
				𝑥
			

			

				∗
			

			

				⟩
			

		
	
. It is easy to see that 
	
		
			
				l
				i
				m
				s
				u
				p
			

			
				𝑛
				→
				∞
			

			

				𝛿
			

			

				𝑛
			

			
				/
				𝛾
			

			

				𝑛
			

			
				≤
				0
			

		
	
. Hence, by Lemma 6, the sequence 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 converges strongly to 
	
		
			

				𝑥
			

			

				∗
			

		
	
. 
5. Numerical Result
 In this section, we consider the following simple example to demonstrate the effectiveness, realization, and convergence of the algorithms in Theorems 8 and 11.
Example 12. Let 
	
		
			
				𝐻
				=
				ℝ
			

		
	
, 
	
		
			
				𝐶
				=
				[
				1
				/
				4
				,
				+
				∞
				)
			

		
	
. Define 
	
		
			

				𝑇
			

			

				1
			

			
				√
				∶
				𝑥
				↦
			

			
				
			
			

				𝑥
			

		
	
, 
	
		
			

				𝑇
			

			

				2
			

			
				∶
				𝑥
				↦
				𝑥
				+
				𝜋
				/
				4
				−
				a
				r
				c
				t
				a
				n
				𝑥
			

		
	
, 
	
		
			
				𝑆
				∶
				𝑥
				↦
				s
				i
				n
				𝑥
			

		
	
. Take 
	
		
			
				𝐵
				=
				𝐼
			

		
	
 with Lipschitz constant 
	
		
			
				𝑘
				=
				1
			

		
	
 and strongly monotone constant 
	
		
			
				𝜂
				=
				1
			

		
	
, 
	
		
			
				𝑉
				𝑥
				=
				2
				𝑥
			

		
	
, 
	
		
			
				∀
				𝑥
				∈
				𝐻
			

		
	
, with Lipschitz coefficient 
	
		
			
				𝑙
				=
				2
			

		
	
. Give the parameters 
	
		
			

				𝛼
			

			

				𝑛
			

			
				=
				1
				/
				2
				𝑛
			

		
	
; 
	
		
			

				𝛽
			

			

				𝑛
			

			
				=
				1
				/
				𝑛
			

			

				2
			

		
	
 for every 
	
		
			
				𝑛
				≥
				1
			

		
	
; fix 
	
		
			
				𝜇
				=
				1
			

		
	
 and 
	
		
			
				𝛾
				=
				1
				/
				4
			

		
	
. Then by Theorems 8 and 11, respectively, the sequence 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			

				}
			

		
	
 is generated by
							
	
 		
 			
				(
				6
				1
				)
			
 			
				(
				6
				2
				)
			
 		
	

	
		
			

				𝑦
			

			

				𝑛
			

			
				=
				1
			

			
				
			
			

				𝑛
			

			

				2
			

			
				
				𝑥
				s
				i
				n
			

			

				𝑛
			

			
				
				+
				
				1
				1
				−
			

			
				
			
			

				𝑛
			

			

				2
			

			
				
				𝑥
			

			

				𝑛
			

			
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				=
				𝑃
			

			

				𝐶
			

			
				
				1
			

			
				
			
			
				𝑥
				4
				𝑛
			

			

				𝑛
			

			
				+
				
				1
				1
				−
			

			
				
			
			
				
				2
				𝑛
				𝑇
				𝑦
			

			

				𝑛
			

			
				
				,
				𝑦
			

			

				𝑛
			

			
				=
				1
			

			
				
			
			

				𝑛
			

			

				2
			

			
				
				𝑥
				s
				i
				n
			

			

				𝑛
			

			
				
				+
				
				1
				1
				−
			

			
				
			
			

				𝑛
			

			

				2
			

			
				
				𝑥
			

			

				𝑛
			

			
				,
				𝑥
			

			
				𝑛
				+
				1
			

			
				=
				𝑃
			

			

				𝐶
			

			
				
				1
			

			
				
			
			
				𝑥
				4
				𝑛
			

			

				𝑛
			

			
				+
				
				1
				1
				−
			

			
				
			
			
				
				𝑇
				2
				𝑛
			

			
				[
				𝑛
				]
			

			

				𝑦
			

			

				𝑛
			

			
				
				.
			

		
	

						As 
	
		
			
				𝑛
				→
				∞
			

		
	
, we have 
	
		
			
				{
				𝑥
			

			

				𝑛
			

			
				}
				→
				𝑥
			

			

				∗
			

			
				=
				1
			

		
	
. 
 Let 
	
		
			

				𝜔
			

			

				𝑖
			

			
				=
				1
				/
				2
			

		
	
, 
	
		
			
				𝑖
				=
				1
				,
				2
			

		
	
; then we have 
	
		
			
				√
				𝑇
				𝑥
				=
				(
				1
				/
				2
				)
				(
			

			
				
			
			
				𝑥
				+
				𝑥
				+
				𝜋
				/
				4
				−
				a
				r
				c
				t
				a
				n
				𝑥
				)
			

		
	
, 
	
		
			

				𝑇
			

			
				[
				𝑛
				]
			

			
				√
				𝑥
				=
			

			
				
			
			

				𝑥
			

		
	
 if 
	
		
			

				𝑛
			

		
	
 is odd and 
	
		
			

				𝑇
			

			
				[
				𝑛
				]
			

			
				𝑥
				=
				𝑥
				+
				𝜋
				/
				4
				−
				a
				r
				c
				t
				a
				n
				𝑥
			

		
	
 if 
	
		
			

				𝑛
			

		
	
 is even. Put 
	
		
			

				𝑧
			

			

				𝑛
			

			
				=
				(
				1
				/
				4
				𝑛
				)
				𝑥
			

			

				𝑛
			

			
				+
				(
				1
				−
				1
				/
				2
				𝑛
				)
				𝑇
				𝑦
			

			

				𝑛
			

		
	
; then (61) is equivalent to
						
	
 		
 			
				(
				6
				3
				)
			
 		
	

	
		
			

				𝑥
			

			
				𝑛
				+
				1
			

			
				=
				⎧
				⎪
				⎨
				⎪
				⎩
				𝑧
			

			

				𝑛
			

			
				,
				i
				f
				𝑧
			

			

				𝑛
			

			
				1
				∈
				𝐶
				,
			

			
				
			
			
				4
				,
				i
				f
				𝑧
			

			

				𝑛
			

			
				
			
			
				∈
				𝐶
				.
			

		
	

					Using the same method to treat (62), we can get similar equation as the above formula.
Now we turn to numerical simulation using the algorithms (17) and (37), respectively. Take the initial guess 
	
		
			

				𝑥
			

			

				1
			

			
				=
				2
			

		
	
; using software Matlab R2012, we obtain the numerical experiment results in Tables 1 and 2.
Table 1: 
	
		
			

				𝑥
			

			

				1
			

			
				=
				2
			

		
	
. 
	

	
	
		
			

				𝑛
			

		
	
 (iterative number)	
	
		
			

				𝑥
			

			

				𝑛
			

		
	
 (iterative point)	Errors (
	
		
			

				𝑛
			

		
	
)
	

	50	0.9901	9.9 × 10−3
	500	0.9990	9.9852 × 10−4
	2000	0.9999	9.9985 × 10−5
	



Table 2: 
	
		
			

				𝑥
			

			

				1
			

			
				=
				2
			

		
	
.
	

	
	
		
			

				𝑛
			

		
	
 (iterative number)	
	
		
			

				𝑥
			

			

				𝑛
			

		
	
 (iterative point)	Errors (
	
		
			

				𝑛
			

		
	
)
	

	50	0.9902	9.8 × 10−3
	500	0.9990	9.9814 × 10−4
	2000	0.9999	9.9981 × 10−5
	



From the computer programming point of view, the algorithms are easier to implement in this paper.
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