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Exponential stability in mean square of stochastic delay recurrent neural networks is investigated in detail. By using Itô’s formula
and inequality techniques, the sufficient conditions to guarantee the exponential stability in mean square of an equilibrium are
given. Under the conditions which guarantee the stability of the analytical solution, the Euler-Maruyama scheme and the split-step
backward Euler scheme are proved to be mean-square stable. At last, an example is given to demonstrate our results.

1. Introduction

It is well known that neural networks have wide range of
applications in many fields, such as signal processing, pattern
recognition, associativememory, and optimization problems.
Stability is one of the main properties of neural networks,
which is preconditions in the designs and applications of
neural networks. Time delays are unavoidable in neural
networks systems, which is frequently the important source
of poor performance or instability. Thus, stability analysis
of neural networks with various delays has been extensively
investigated; see [1–10].

In real nervous systems, the synaptic transmission is a
noisy process brought on by random fluctuations from the
release of neurotransmitters and other probabilistic causes
[11]. Hence, noise should be taken into consideration in
modeling. Recently, some sufficient conditions for exponen-
tial stability of stochastic delay neural networks have been
presented in [12–18]. Similar to stochastic delay differential
equations, most of stochastic delay neural networks do not
have explicit solutions. Most of existing researches related to
the stability analysis of equilibrium point were focused on the
appropriate Lyapunov function or functional. However, there
is no very effective method to find such Lyapunov function
or functional. Thus it is very useful to establish numerical
methods for studying the properties of stochastic delay neural
networks.There aremany papers concerned with the stability

of numerical solutions for stochastic delay differential equa-
tions ([19–29] and references therein). But there has been a
few literatures about the exponential stability of numerical
methods for stochastic delay neural networks. To the best of
the authors knowledge, only [30–32] studied the exponential
stability of numerical methods for stochastic delay Hopfield
neural networks. The stability of numerical methods for
stochastic delay recurrent neural networks remains open,
which motivates this paper. The main aim of the paper is
to investigate the mean-square stability (MS stability) of the
Euler-Maruyama (EM) method and the split-step backward
Euler (SSBE) method for stochastic delay recurrent neural
networks.

The remainder of the paper is comprised of four sections.
Some notations and the conditions of stability to the analyti-
cal solution are given in Section 2.TheMS stability of the EM
method and the SSBE method is proved in Sections 3 and 4,
respectively. In Section 5, an example is provided to illustrate
the effectiveness of our theory.

2. Model Description and Analysis of
Analytical Solution

Throughout the paper, unless otherwise specified, we will
employ the following notations. Let (Ω,F, {F

𝑡
}
𝑡≥0

,P) be a
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complete probability space with a filtration {F
𝑡
}
𝑡≥0

satisfy-
ing the usual conditions (i.e., it is increasing and is right
continuous, while F

0
contains all P-null set) and E[⋅] the

expectation operator with respect to the probability measure.
Let | ⋅ | denote the Euclidean norm of a vector or the spectral
norm of a matrix. Let 𝜏 > 0 and 𝐶([−𝜏, 0]; 𝑅

𝑛) denote the
family of continuous functions 𝜑 from [−𝜏, 0] to 𝑅

𝑛 with
the norm ‖𝜑‖ = sup{|𝜑(𝜃)| : −𝜏 ≤ 𝜃 ≤ 0}. Denote by
C𝑏F0([−𝜏, 0]; 𝑅𝑛) the family of all bounded F

0
-measurable

𝐶([−𝜏, 0]; 𝑅𝑛) valued random variables. We assume 𝑊(𝑡) to
be a standard Brownian motion defined on the probability
space.

Consider the stochastic delay recurrent neural networks
of the form

d𝑥
𝑖
(𝑡) = [

[

−𝑐
𝑖
𝑥
𝑖
(𝑡) +

𝑛

∑
𝑗=1

𝑎
𝑖𝑗
𝑓
𝑗
(𝑥
𝑗
(𝑡))

+

𝑛

∑
𝑗=1

𝑏
𝑖𝑗
𝑔
𝑗
(𝑥
𝑗
(𝑡 − 𝜏
𝑗
))]

]

d𝑡

+

𝑛

∑
𝑗=1

𝜎
𝑖𝑗
(𝑡, 𝑥
𝑗
(𝑡) , 𝑥
𝑗
(𝑡 − 𝜏
𝑗
)) d𝑊

𝑗
(𝑡) , 𝑡 ≥ 0,

𝑥
𝑖
(𝑡) = 𝜉

𝑖
(𝑡) , −𝜏

𝑖
≤ 𝑡 ≤ 0.

(1)

Model (1) can be rewritten in the following matrix-vector
form:

d𝑥 (𝑡) = [−𝐶𝑥 (𝑡) + 𝐴𝑓 (𝑥 (𝑡)) + 𝐵𝑔 (𝑥
𝜏
(𝑡))] d𝑡

+ 𝜎 (𝑡, 𝑥 (𝑡) , 𝑥
𝜏
(𝑡)) d𝑊(𝑡) , 𝑡 ≥ 0,

𝑥 (𝑡) = 𝜉 (𝑡) , −𝜏 ≤ 𝑡 ≤ 0,

(2)

where 𝑥(𝑡) = (𝑥
1
(𝑡), . . . , 𝑥

𝑛
(𝑡))
𝑇

∈ 𝑅𝑛 is the state vector
associated with the neurons; 𝐶 = diag(𝑐

1
, 𝑐
2
, . . . , 𝑐

𝑛
) > 0 with

𝑐
𝑖
> 0 represents the rate with which neuron 𝑖 will reset its

potential to the resting state in isolation when disconnected
from the network and the external stochastic perturbation;
𝐴 = (𝑎

𝑖𝑗
)
𝑛×𝑛

and 𝐵 = (𝑏
𝑖𝑗
)
𝑛×𝑛

denote the connection
weight matrix and the delayed connection weight matrix,
respectively; 𝑓

𝑗
and 𝑔

𝑗
are activation functions, 𝑓(𝑥(𝑡)) =

(𝑓
1
(𝑥
1
(𝑡)), 𝑓

2
(𝑥
2
(𝑡)), . . . , 𝑓

𝑛
(𝑥
𝑛
(𝑡)))
𝑇

∈ 𝑅𝑛, 𝑔(𝑥
𝜏
(𝑡)) =

(𝑔
1
(𝑥
1
(𝑡 − 𝜏

1
)), 𝑔
2
(𝑥
2
(𝑡 − 𝜏

2
)), . . . , 𝑔

𝑛
(𝑥
𝑛
(𝑡 − 𝜏

𝑛
)))
𝑇

∈ 𝑅𝑛,
where 𝜏

𝑗
> 0 is the transmission delay; 𝜏 = max

1≤𝑖≤𝑛
𝜏
𝑖
,

𝜉(𝑡) = (𝜉
1
(𝑡), . . . , 𝜉

𝑛
(𝑡))
𝑇

∈ C𝑏F0([−𝜏, 0]; 𝑅𝑛). Moreover,
𝑊(𝑡) = (𝑊

1
(𝑡),𝑊

2
(𝑡), . . . ,𝑊

𝑛
(𝑡))
𝑇 is an 𝑛-dimensional

Brown motion defined on the complete probability space
(Ω,F, {F

𝑡
}
𝑡≥0

,P), and𝜎 : 𝑅+×𝑅𝑛×𝑅𝑛 → 𝑅𝑛×𝑛,𝜎 = (𝜎
𝑖𝑗
)
𝑛×𝑛

,
is the diffusion coefficient matrix.

To obtain our results, we impose the following standing
hypotheses.

(H1) 𝑓(0) ≡ 0, 𝑔(0) ≡ 0, and 𝜎(𝑡, 0, 0) ≡ 0.
(H2) Both 𝑓

𝑖
(𝑥) and 𝑔

𝑖
(𝑥) satisfy the Lipschitz condition.

That is, for each 𝑖 = 1, 2, . . . , 𝑛, there exist constants
𝛼
𝑖
> 0, 𝛽

𝑖
> 0, such that

𝑓𝑖 (𝑥) − 𝑓
𝑖
(𝑦)

 ≤ 𝛼
𝑖

𝑥 − 𝑦
 ,

𝑔𝑖 (𝑥) − 𝑔
𝑖
(𝑦)

 ≤ 𝛽
𝑖

𝑥 − 𝑦
 , ∀𝑥, 𝑦 ∈ 𝑅

𝑛
.

(3)

(H3) 𝜎(𝑡, 𝑥, 𝑦) satisfies the Lipschitz condition, and there
are nonnegative constants 𝜇

𝑖
, ]
𝑖
such that

trace [𝜎𝑇 (𝑡, 𝑥, 𝑦) 𝜎 (𝑡, 𝑥, 𝑦)] ≤

𝑛

∑
𝑖=1

(𝜇
𝑖
𝑥
2

𝑖
+ ]
𝑖
𝑦
2

𝑖
) ,

∀ (𝑡, 𝑥, 𝑦) ∈ 𝑅
+
× 𝑅
𝑛
× 𝑅
𝑛
.

(4)

It follows from [33] that under the assumptions (H1)–
(H3), system (1) or (2) has a unique strong solution 𝑥(𝑡; 𝜉),
and 𝑥(𝑡) is a measurable, sample continuous andF

𝑡
-adapted

process. Clear, (2) admits the trivial solution 𝑥(𝑡, 0) ≡ 0.

Definition 1. The trivial solution of system (1) or system (2) is
said to be exponentially stable in mean square if there exists
a pair of positive constants 𝜆 and 𝐾 such that

E
𝑥(𝑡, 𝜉)


2

≤ 𝐾E
𝜉

2

𝑒
−𝜆𝑡

, 𝑡 ≥ 0, (5)

holds for any 𝜉. In this case

lim
𝑡→∞

sup 1

𝑡
lnE𝑥(𝑡, 𝜉)


2

≤ −𝜆. (6)

Using Itô’s formula and nonnegative semimartingale con-
vergence theorem, [12, 14] discussed the exponential stability
of stochastic delayed neural network. Employing the method
of variation parameter and inequality techniques, several suf-
ficient conditions ensuring 𝑝th moment exponential stability
of stochastic delayed recurrent neural networks are derived
in [17]. With the help of the Lyapunov function and Halanay-
type inequality, a set of novel sufficient conditions on mean-
square exponential stability of stochastic recurrent neural
networks with time-varying delays was established in [18]. In
this paper, wewill give a new sufficient condition to guarantee
exponential stability in mean square of stochastic delayed
recurrent neural networks (1) by using Itô’s formula and
inequality techniques.

Theorem 2. If (1) satisfies (H1)–(H3), and the following holds.
(H4) For 𝑖 = 1, 2, . . . , 𝑛,

−2𝑐
𝑖
+

𝑛

∑
𝑗=1


𝑎
𝑖𝑗


𝛼
𝑗
+

𝑛

∑
𝑗=1


𝑏
𝑖𝑗


𝛽
𝑗

+

𝑛

∑
𝑗=1


𝑎
𝑗𝑖


𝛼
𝑖
+

𝑛

∑
𝑗=1


𝑏
𝑗𝑖


𝛽
𝑖
+ 𝜇
𝑖
+ ]
𝑖
< 0.

(7)

Then (1) is exponentially stable in mean square.
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Proof. By (H4), there exists a sufficiently small positive
constant 𝜆 such that

𝜆 − 2𝑐
𝑖
+

𝑛

∑
𝑗=1


𝑎
𝑖𝑗


𝛼
𝑗
+

𝑛

∑
𝑗=1


𝑏
𝑖𝑗


𝛽
𝑗

+

𝑛

∑
𝑗=1


𝑎
𝑗𝑖


𝛼
𝑖
+ 𝑒
𝜆𝜏

𝑛

∑
𝑗=1


𝑏
𝑗𝑖


𝛽
𝑖
+ 𝜇
𝑖
+ 𝑒
𝜆𝜏]
𝑖
≤ 0.

(8)

Set 𝑉(𝑥, 𝑡) = 𝑒𝜆𝑡|𝑥|2; applying Itô’s formula to 𝑉(𝑥, 𝑡)

along (2), we obtain

𝑉 (𝑥, 𝑡)

= 𝑉 (𝑥 (0) , 0) + ∫
𝑡

0

𝜆𝑉 (𝑥 (𝑠) , 𝑠) d𝑠 + 𝑀 (𝑡)

+ ∫
𝑡

0

𝑒
𝜆𝑠trace [𝜎𝑇 (𝑠, 𝑥 (𝑠) , 𝑥

𝜏
(𝑠)) 𝜎 (𝑠, 𝑥 (𝑠) , 𝑥

𝜏
(𝑠))] d𝑠

+ ∫
𝑡

0

2𝑒
𝜆𝑠
𝑥
𝑇
(𝑠) [−𝐶𝑥 (𝑠) + 𝐴𝑓 (𝑥 (𝑠)) + 𝐵𝑔 (𝑥

𝜏
(𝑠))] d𝑠

≤ 𝑉 (𝑥 (0) , 0) + ∫
𝑡

0

𝜆𝑉 (𝑥 (𝑠) , 𝑠) d𝑠 + 𝑀 (𝑡)

+ 2∫
𝑡

0

𝑒
𝜆𝑠

𝑛

∑
𝑖=1

[

[

−𝑐
𝑖
𝑥
2

𝑖
(𝑠) +

𝑛

∑
𝑗=1


𝑎
𝑖𝑗


𝛼
𝑗

𝑥𝑖 (𝑠)


𝑥
𝑗
(𝑠)



+

𝑛

∑
𝑗=1


𝑏
𝑖𝑗


𝛽
𝑗

𝑥𝑖 (𝑠)


𝑥
𝑗
(𝑠 − 𝜏

𝑗
)

]

]

d𝑠

+ ∫
𝑡

0

𝑒
𝜆𝑠

𝑛

∑
𝑗=1

[𝜇
𝑗
𝑥
2

𝑗
(𝑠) + ]

𝑗
𝑥
2

𝑗
(𝑠 − 𝜏

𝑗
)] d𝑠

≤ 𝑉 (𝑥 (0) , 0) + ∫
𝑡

0

𝜆𝑉 (𝑥 (𝑠) , 𝑠) d𝑠 + 𝑀 (𝑡)

+ ∫
𝑡

0

𝑒
𝜆𝑠

{

{

{

𝑛

∑
𝑖=1

[

[

−2𝑐
𝑖
+

𝑛

∑
𝑗=1


𝑎
𝑖𝑗


𝛼
𝑗
+

𝑛

∑
𝑗=1


𝑏
𝑖𝑗


𝛽
𝑗

+

𝑛

∑
𝑗=1


𝑎
𝑗𝑖


𝛼
𝑖
+ 𝜇
𝑖
]

]

𝑥
2

𝑖
(𝑠)

+

𝑛

∑
𝑗=1

[

𝑛

∑
𝑖=1


𝑏
𝑖𝑗


𝛽
𝑗
+ ]
𝑗
]𝑥
2

𝑗
(𝑠 − 𝜏

𝑗
)
}

}

}

d𝑠,

(9)

where

𝑀(𝑡) = ∫
𝑡

0

2𝑒
𝜆𝑠
𝑥
𝑇
(𝑠) 𝜎 (𝑠, 𝑥 (𝑠) , 𝑥

𝜏
(𝑠)) d𝑊(𝑠) . (10)

Notice that

∫
𝑡

𝑡−𝜏𝑗

𝑒
𝜆𝑠

𝑥
𝑗
(𝑠)



2

d𝑠

= ∫
𝑡

−𝜏𝑗

𝑒
𝜆𝑠

𝑥
𝑗
(𝑠)



2

d𝑠 − ∫
𝑡−𝜏𝑗

−𝜏𝑗

𝑒
𝜆𝑠

𝑥
𝑗
(𝑠)



2

d𝑠

= ∫
𝑡

−𝜏𝑗

𝑒
𝜆𝑠

𝑥
𝑗
(𝑠)



2

d𝑠 − 𝑒
−𝜆𝜏𝑗 ∫

𝑡

0

𝑒
𝜆𝑠

𝑥
𝑗
(𝑠 − 𝜏
𝑗
)


2

d𝑠

≤ ∫
𝑡

−𝜏𝑗

𝑒
𝜆𝑠

𝑥
𝑗
(𝑠)



2

d𝑠 − 𝑒
−𝜆𝜏

∫
𝑡

0

𝑒
𝜆𝑠

𝑥
𝑗
(𝑠 − 𝜏
𝑗
)


2

d𝑠.

(11)

Therefore, we have

𝑉 (𝑥, 𝑡) ≤ 𝑉 (𝑥 (0) , 0) + ∫
𝑡

0

𝜆𝑉 (𝑥 (𝑠) , 𝑠) d𝑠 + 𝑀 (𝑡)

+ 𝑒
𝜆𝜏

∫
0

−𝜏

𝑒
𝜆𝑠

𝑛

∑
𝑗=1

[

𝑛

∑
𝑖=1


𝑏
𝑖𝑗


𝛽
𝑗
+ ]
𝑗
]


𝑥
𝑗
(𝑠)



2

d𝑠

+ ∫
𝑡

0

𝑒
𝜆𝑠

𝑛

∑
𝑖=1

[

[

−2𝑐
𝑖
+

𝑛

∑
𝑗=1


𝑎
𝑖𝑗


𝛼
𝑗
+

𝑛

∑
𝑗=1


𝑏
𝑖𝑗


𝛽
𝑗

+

𝑛

∑
𝑗=1


𝑎
𝑗𝑖


𝛼
𝑖
+ 𝜇
𝑖
]

]

𝑥𝑖(𝑠)

2d𝑠

+ 𝑒
𝜆𝜏

∫
𝑡

0

𝑒
𝜆𝑠

𝑛

∑
𝑗=1

[

𝑛

∑
𝑖=1


𝑏
𝑖𝑗


𝛽
𝑗
+ ]
𝑗
]


𝑥
𝑗
(𝑠)



2

d𝑠

≤ 𝑉 (𝑥 (0) , 0) + 𝑀 (𝑡)

+ 𝑒
𝜆𝜏

∫
0

−𝜏

𝑒
𝜆𝑠

𝑛

∑
𝑗=1

[

𝑛

∑
𝑖=1


𝑏
𝑖𝑗


𝛽
𝑗
+ ]
𝑗
]


𝑥
𝑗
(𝑠)



2

d𝑠

+ ∫
𝑡

0

𝑒
𝜆𝑠

𝑛

∑
𝑖=1

{

{

{

𝑥𝑖(𝑠)

2 [

[

𝜆 − 2𝑐
𝑖
+

𝑛

∑
𝑗=1


𝑎
𝑖𝑗


𝛼
𝑗

+

𝑛

∑
𝑗=1


𝑏
𝑖𝑗


𝛽
𝑗
+

𝑛

∑
𝑗=1


𝑎
𝑗𝑖


𝛼
𝑖
+ 𝜇
𝑖

+𝑒
𝜆𝜏

𝑛

∑
𝑗=1


𝑏
𝑗𝑖


𝛽
𝑖
+ 𝑒
𝜆𝜏]
𝑖
]

]

}

}

}

d𝑠

≤ 𝑉 (𝑥 (0) , 0) + 𝑀 (𝑡)

+ 𝑒
𝜆𝜏

∫
0

−𝜏

𝑒
𝜆𝑠

𝑛

∑
𝑗=1

[

𝑛

∑
𝑖=1


𝑏
𝑖𝑗


𝛽
𝑗
+ ]
𝑗
]


𝑥
𝑗
(𝑠)



2

d𝑠.

(12)
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Notice that E𝑀(𝑡) = 0, so we can obtain from the
previous inequality

E𝑒
𝜆𝑡
|𝑥 (𝑡)|

2
≤ E|𝑥 (0)|

2

+ 𝑒
𝜆𝜏

𝑛

∑
𝑗=1

[

𝑛

∑
𝑖=1


𝑏
𝑖𝑗


𝛽
𝑗
+ ]
𝑗
]∫
0

−𝜏

𝑒
𝜆𝑠
E|𝑥(𝑠)|

2d𝑠,

(13)

which implies

lim
𝑡→∞

sup 1

𝑡
lnE|𝑥 (𝑡)|

2
≤ −𝜆. (14)

Corollary 3. If (1) satisfies (H1)–(H3), the following holds.

(H5) For 𝑖 = 1, 2, . . . , 𝑛,

−2𝑐
𝑖
+

𝑛

∑
𝑗=1


𝑎
𝑖𝑗


𝛼
𝑗
+

𝑛

∑
𝑗=1


𝑏
𝑖𝑗


𝛽
𝑗

+

𝑛

∑
𝑗=1


𝑎
𝑗𝑖


𝛼
𝑖
+

𝑛

∑
𝑗=1


𝑏
𝑗𝑖


𝛽
𝑖
+

𝑛

∑
𝑗=1

(𝜇
𝑗
+ ]
𝑗
) < 0.

(15)

Then (1) is exponentially stable in mean square.

Proof. The 𝜇
𝑗
, ]
𝑗
(𝑗 = 1, . . . , 𝑛) are nonnegative constants, so

we have condition (H4) from (H5).Therefore we can directly
derive Corollary 3 byTheorem 2.

3. Stability of EM Numerical Solution

Let ℎ = 𝑡
𝑘+1

− 𝑡
𝑘
and Δ𝑊𝑘

𝑖
= 𝑊
𝑖
(𝑡
𝑘+1

) − 𝑊
𝑖
(𝑡
𝑘
) denote the

increments of the time and Brownian motion, respectively.
For system (1), the discrete EM approximate solution is
defined by

𝑦
𝑘+1

𝑖
= 𝑦
𝑘

𝑖
+ [

[

−𝑐
𝑖
𝑦
𝑘

𝑖
+

𝑛

∑
𝑗=1

𝑎
𝑖𝑗
𝑓
𝑗
(𝑦
𝑘

𝑗
) +

𝑛

∑
𝑗=1

𝑏
𝑖𝑗
𝑔
𝑗
(𝑦
𝑘−𝑚𝑗

𝑗
)]

]

ℎ

+

𝑛

∑
𝑗=1

𝜎
𝑖𝑗
(𝑘, 𝑦
𝑘

𝑗
, 𝑦
𝑘−𝑚𝑗

𝑗
)Δ𝑊

𝑘

𝑗
,

(16)

where 𝑖 = 1, 2, . . . , 𝑛, ℎ (0 < ℎ < 1) is a stepsize which satisfies
𝜏
𝑗

= 𝑚
𝑗
ℎ for a positive integer 𝑚

𝑗
, and 𝑡

𝑘
= 𝑘ℎ, 𝑦𝑘

𝑖
is an

approximation to 𝑥
𝑖
(𝑡
𝑘
); if 𝑡
𝑘

≤ 0, we have 𝑦𝑘
𝑖

= 𝜉
𝑖
(𝑡
𝑘
). We

assume that 𝑦𝑘
𝑖
isF
𝑡𝑘
-measurable at the mesh points 𝑡

𝑘
.

Suppose that the following condition is satisfied:

(H6) ∑
𝑛

𝑗=1
|𝑎
𝑖𝑗
|𝛼
𝑗
+ ∑
𝑛

𝑗=1
|𝑏
𝑖𝑗
|𝛽
𝑗
≤ ∑
𝑛

𝑗=1
|𝑎
𝑗𝑖
|𝛼
𝑖
+ ∑
𝑛

𝑗=1
|𝑏
𝑗𝑖
|𝛽
𝑖
.

Definition 4. A numerical method is said to be mean-square
stable (MS stable), if there exists an ℎ

0
> 0, such that

any application of the method to (1) generates numerical
approximations 𝑦𝑘

𝑖
, which satisfy

lim
𝑘→∞

E

𝑦
𝑘

𝑖



2

= 0, 𝑖 = 1, 2, . . . , 𝑛, (17)

for all ℎ ∈ (0, ℎ
0
) with ℎ = 𝜏

𝑗
/𝑚
𝑗
.

Now we analyze the stability of EM numerical solution.

Theorem 5. Under conditions (H1)–(H3) and (H5)-(H6), the
Euler method applied to (1) is MS stable with ℎ ∈ (0, ℎ

0
) and

ℎ
0
= min

1≤𝑖≤𝑛
{1, ℎ
𝑖
}, where

ℎ
𝑖
= min

{

{

{

1

𝑐
𝑖

,
2𝑐
𝑖
− 2∑
𝑛

𝑗=1


𝑎
𝑖𝑗


𝛼
𝑗
− 2∑
𝑛

𝑗=1


𝑏
𝑖𝑗


𝛽
𝑗
− ∑
𝑛

𝑗=1
(𝜇
𝑗
+ ]
𝑗
)

(𝑐
𝑖
− ∑
𝑛

𝑗=1
|𝑎
𝑖𝑗
|𝛼
𝑗
− ∑
𝑛

𝑗=1
|𝑏
𝑖𝑗
|𝛽
𝑗
)
2

}

}

}

.

(18)

Proof. From (16), we have

𝑦
𝑘+1

𝑖
= (1 − 𝑐

𝑖
ℎ) 𝑦
𝑘

𝑖
+ ℎ

𝑛

∑
𝑗=1

𝑎
𝑖𝑗
𝑓
𝑗
(𝑦
𝑘

𝑗
)

+ ℎ

𝑛

∑
𝑗=1

𝑏
𝑖𝑗
𝑔
𝑗
(𝑦
𝑘−𝑚𝑗

𝑗
) +

𝑛

∑
𝑗=1

𝜎
𝑖𝑗
(𝑘, 𝑦
𝑘

𝑗
, 𝑦
𝑘−𝑚𝑗

𝑗
)Δ𝑊

𝑘

𝑗
.

(19)

Squaring both sides of the previous equality, we obtain

(𝑦
𝑘+1

𝑖
)
2

= (1 − 𝑐
𝑖
ℎ)
2

(𝑦
𝑘

𝑖
)
2

+ ℎ
2[

[

𝑛

∑
𝑗=1

𝑎
𝑖𝑗
𝑓
𝑗
(𝑦
𝑘

𝑗
)]

]

2

+ ℎ
2[

[

𝑛

∑
𝑗=1

𝑏
𝑖𝑗
𝑔
𝑗
(𝑦
𝑘−𝑚𝑗

𝑗
)]

]

2

+ [

[

𝑛

∑
𝑗=1

𝜎
𝑖𝑗
(𝑘, 𝑦
𝑘

𝑗
, 𝑦
𝑘−𝑚𝑗

𝑗
)Δ𝑊

𝑘

𝑗
]

]

2

+ 2ℎ (1 − 𝑐
𝑖
ℎ) 𝑦
𝑘

𝑖
[

[

𝑛

∑
𝑗=1

𝑎
𝑖𝑗
𝑓
𝑗
(𝑦
𝑘

𝑗
)]

]

+ 2ℎ (1 − 𝑐
𝑖
ℎ) 𝑦
𝑘

𝑖
[

[

𝑛

∑
𝑗=1

𝑏
𝑖𝑗
𝑔
𝑗
(𝑦
𝑘−𝑚𝑗

𝑗
)]

]
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+ 2 (1 − 𝑐
𝑖
ℎ) 𝑦
𝑘

𝑖
[

[

𝑛

∑
𝑗=1

𝜎
𝑖𝑗
(𝑘, 𝑦
𝑘

𝑗
, 𝑦
𝑘−𝑚𝑗

𝑗
)Δ𝑊

𝑘

𝑗
]

]

+ 2ℎ

𝑛

∑
𝑗=1

𝑎
𝑖𝑗
𝑓
𝑗
(𝑦
𝑘

𝑗
)

𝑛

∑
𝑗=1

𝜎
𝑖𝑗
(𝑘, 𝑦
𝑘

𝑗
, 𝑦
𝑘−𝑚𝑗

𝑗
)Δ𝑊

𝑘

𝑗

+ 2ℎ
2

𝑛

∑
𝑗=1

𝑎
𝑖𝑗
𝑓
𝑗
(𝑦
𝑘

𝑗
)

𝑛

∑
𝑗=1

𝑏
𝑖𝑗
𝑔
𝑗
(𝑦
𝑘−𝑚𝑗

𝑗
)

+ 2ℎ

𝑛

∑
𝑗=1

𝑏
𝑖𝑗
𝑔
𝑗
(𝑦
𝑘−𝑚𝑗

𝑗
)

𝑛

∑
𝑗=1

𝜎
𝑖𝑗
(𝑘, 𝑦
𝑘

𝑗
, 𝑦
𝑘−𝑚𝑗

𝑗
)Δ𝑊

𝑘

𝑗
.

(20)

Noting that E(Δ𝑊𝑘
𝑖
) = 0, E(Δ𝑊𝑘

𝑖
Δ𝑊𝑘
𝑗
) = 0 (𝑖 ̸= 𝑗),

E(Δ𝑊𝑘
𝑖
)
2

= ℎ, and 𝑓
𝑗
(𝑦𝑘
𝑗
), 𝑔
𝑗
(𝑦
𝑘−𝑚𝑗

𝑗
), and 𝜎

𝑖𝑗
(𝑘, 𝑦𝑘
𝑗
, 𝑦
𝑘−𝑚𝑗

𝑗
),

where 𝑗 = 1, 2, . . . , 𝑛, areF
𝑡𝑘
-measurable; hence

E[

[

𝑛

∑
𝑗=1

𝜎
𝑖𝑗
(𝑘, 𝑦
𝑘

𝑗
, 𝑦
𝑘−𝑚𝑗

𝑗
)Δ𝑊

𝑘

𝑗
]

]

2

= E[

[

𝑛

∑
𝑗=1

𝜎
2

𝑖𝑗
(𝑘, 𝑦
𝑘

𝑗
, 𝑦
𝑘−𝑚𝑗

𝑗
)E(Δ𝑊

𝑘

𝑗
)
2

| F
𝑡𝑘

]

]

2

= ℎ

𝑛

∑
𝑗=1

[E𝜎
2

𝑖𝑗
(𝑘, 𝑦
𝑘

𝑗
, 𝑦
𝑘−𝑚𝑗

𝑗
)] ,

E [𝜎
𝑖𝑗
(𝑘, 𝑦
𝑘

𝑗
, 𝑦
𝑘−𝑚𝑗

𝑗
)Δ𝑊

𝑘

𝑗
]

= E [𝜎
𝑖𝑗
(𝑘, 𝑦
𝑘

𝑗
, 𝑦
𝑘−𝑚𝑗

𝑗
)E (Δ𝑊

𝑘

𝑗
| F
𝑡𝑘
)]

= 0,

E [𝑓
𝑗
(𝑦
𝑘

𝑗
) 𝜎
𝑖𝑗
(𝑘, 𝑦
𝑘

𝑗
, 𝑦
𝑘−𝑚𝑗

𝑗
)Δ𝑊

𝑘

𝑗
]

= E [𝑓
𝑗
(𝑦
𝑘

𝑗
) 𝜎
𝑖𝑗
(𝑘, 𝑦
𝑘

𝑗
, 𝑦
𝑘−𝑚𝑗

𝑗
)E (Δ𝑊

𝑘

𝑗
| F
𝑡𝑘
)]

= 0,

E [𝑔
𝑗
(𝑦
𝑘−𝑚𝑗

𝑗
) 𝜎
𝑖𝑗
(𝑘, 𝑦
𝑘

𝑗
, 𝑦
𝑘−𝑚𝑗

𝑗
)Δ𝑊

𝑘

𝑗
]

= E [𝑔
𝑗
(𝑦
𝑘−𝑚𝑗

𝑗
) 𝜎
𝑖𝑗
(𝑘, 𝑦
𝑘

𝑗
, 𝑦
𝑘−𝑚𝑗

𝑗
)E (Δ𝑊

𝑘

𝑗
| F
𝑡𝑘
)]

= 0.

(21)

Let 𝑌
𝑘

𝑖
= E(𝑦𝑘

𝑖
)
2. Applying the inequalities 2𝑎𝑏𝑥𝑦 ≤

|𝑎𝑏|(𝑥2 + 𝑦2) and conditions (H2) and (H3), we obtain from
(21) and (20)

𝑌
𝑘+1

𝑖
≤ (1 − 𝑐

𝑖
ℎ)
2

𝑌
𝑘

𝑖
+ ℎ
2

𝑛

∑
𝑗=1


𝑎
𝑖𝑗


𝛼
𝑗

𝑛

∑
𝑟=1

𝑎𝑖𝑟
 𝛼𝑟𝑌
𝑘

𝑗

+ ℎ
2

𝑛

∑
𝑗=1


𝑏
𝑖𝑗


𝛽
𝑗

𝑛

∑
𝑟=1

𝑏𝑖𝑟
 𝛽𝑟𝑌
𝑘−𝑚𝑗

𝑗

+ ℎ

𝑛

∑
𝑗=1

(𝜇
𝑗
𝑌
𝑘

𝑗
+ ]
𝑗
𝑌
𝑘−𝑚𝑗

𝑗
)

+ ℎ

𝑛

∑
𝑗=1


(1 − 𝑐
𝑖
ℎ) 𝑎
𝑖𝑗


𝛼
𝑗
(𝑌
𝑘

𝑖
+ 𝑌
𝑘

𝑗
)

+ ℎ

𝑛

∑
𝑗=1


(1 − 𝑐
𝑖
ℎ) 𝑏
𝑖𝑗


𝛽
𝑗
(𝑌
𝑘

𝑖
+ 𝑌
𝑘−𝑚𝑗

𝑗
)

+ ℎ
2

𝑛

∑
𝑗=1


𝑎
𝑖𝑗


𝛼
𝑗

𝑛

∑
𝑗=1


𝑏
𝑖𝑗


𝛽
𝑗
(𝑌
𝑘

𝑗
+ 𝑌
𝑘−𝑚𝑗

𝑗
) .

(22)

Thus

𝑌
𝑘+1

𝑖
≤ 𝑃 (ℎ) 𝑌

𝑘

𝑖
+

𝑛

∑
𝑗=1

𝑄
𝑗
(ℎ) 𝑌
𝑘

𝑗
+

𝑛

∑
𝑗=1

𝑅
𝑗
(ℎ) 𝑌
𝑘−𝑚𝑗

𝑗
, (23)

where

𝑃 (ℎ) = (1 − 𝑐
𝑖
ℎ)
2

+ ℎ

𝑛

∑
𝑗=1


(1 − 𝑐
𝑖
ℎ) 𝑎
𝑖𝑗


𝛼
𝑗

+ℎ

𝑛

∑
𝑗=1


(1 − 𝑐
𝑖
ℎ) 𝑏
𝑖𝑗


𝛽
𝑗
,

𝑄
𝑗
(ℎ) = ℎ

2 
𝑎
𝑖𝑗


𝛼
𝑗

𝑛

∑
𝑟=1

𝑎𝑖𝑟
 𝛼𝑟 + ℎ𝜇

𝑗

+ℎ

(1 − 𝑐
𝑖
ℎ) 𝑎
𝑖𝑗


𝛼
𝑗
+ ℎ2


𝑎
𝑖𝑗


𝛼
𝑗

𝑛

∑
𝑗=1


𝑏
𝑖𝑗


𝛽
𝑗
,

𝑅
𝑗
(ℎ) = ℎ2


𝑏
𝑖𝑗


𝛽
𝑗

𝑛

∑
𝑟=1

𝑏𝑖𝑟
 𝛽𝑟 + ℎ]

𝑗

+ℎ

(1 − 𝑐
𝑖
ℎ) 𝑏
𝑖𝑗


𝛽
𝑗
+ ℎ2


𝑎
𝑖𝑗


𝛼
𝑗

𝑛

∑
𝑗=1


𝑏
𝑖𝑗


𝛽
𝑗
.

(24)

Then

𝑌
𝑘+1

𝑖
≤ (𝑃 (ℎ) +

𝑛

∑
𝑗=1

𝑄
𝑗
(ℎ) +

𝑛

∑
𝑗=1

𝑅
𝑗
(ℎ))

× max
1≤𝑗≤𝑛

{𝑌
𝑘

𝑖
, 𝑌
𝑘

𝑗
, 𝑌
𝑘−𝑚𝑗

𝑗
} .

(25)
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By the recursion we conclude that 𝑌𝑘
𝑖

→ 0 (𝑘 → ∞) if

𝑃 (ℎ) +

𝑛

∑
𝑗=1

𝑄
𝑗
(ℎ) +

𝑛

∑
𝑗=1

𝑅
𝑗
(ℎ) < 1, (26)

which is equivalent to

[

[

𝑐
2

𝑖
+ (

𝑛

∑
𝑗=1


𝑎
𝑖𝑗


𝛼
𝑗
)

2

+ (

𝑛

∑
𝑗=1


𝑏
𝑖𝑗


𝛽
𝑗
)

2

+2

𝑛

∑
𝑗=1


𝑎
𝑖𝑗


𝛼
𝑗

𝑛

∑
𝑗=1


𝑏
𝑖𝑗


𝛽
𝑗
]

]

ℎ
2

+ [

[

−2𝑐
𝑖
+

𝑛

∑
𝑗=1

(𝜇
𝑗
+ ]
𝑗
) + 2

𝑛

∑
𝑗=1


(1 − 𝑐
𝑖
ℎ) 𝑎
𝑖𝑗


𝛼
𝑗

+2

𝑛

∑
𝑗=1


(1 − 𝑐
𝑖
ℎ) 𝑏
𝑖𝑗


𝛽
𝑗
]

]

ℎ < 0.

(27)

If 0 < ℎ < 1/𝑐
𝑖
, (27) reduces to

(𝑐
𝑖
−

𝑛

∑
𝑗=1


𝑎
𝑖𝑗


𝛼
𝑗
−

𝑛

∑
𝑗=1


𝑏
𝑖𝑗


𝛽
𝑗
)

2

ℎ

< 2𝑐
𝑖
− 2

𝑛

∑
𝑗=1


𝑎
𝑖𝑗


𝛼
𝑗
− 2

𝑛

∑
𝑗=1


𝑏
𝑖𝑗


𝛽
𝑗
−

𝑛

∑
𝑗=1

(𝜇
𝑗
+ ]
𝑗
) .

(28)

By conditions (H5) and (H6), we know that ℎ
𝑖
> 0. Thus,

(28) holds for ℎ ∈ (0, ℎ
𝑖
). Let ℎ

0
= min

1≤𝑖≤𝑛
{1, ℎ
𝑖
}; then

lim
𝑘→∞

E(𝑦𝑘
𝑖
)
2

= 0. That is, the EM method of (1) is MS
stable. This proof is completed.

Theorem 6. For 𝑖 = 1, 2, . . . , 𝑛, and 𝑘 = 1, 2, . . ., there exists a
positive constant 𝐶

1
such that

E

𝑥
𝑖
(𝑘ℎ) − 𝑦

𝑘

𝑖



2

≤ 𝐶
1
ℎ, (29)

where 𝐶
1
depends on 𝑐

𝑖
, 𝑎
𝑖𝑗
, 𝑏
𝑖𝑗
, and so on but not upon ℎ. 𝑦𝑘

𝑖
is

defined in (16).

The proof is similar to Theorem 7 in [20].

4. Stability of SSBE Numerical Solution

In this section, we will construct the SSBE scheme to (1) and
analyze the stability of the numerical solution.The adaptation
of SSBE method to (1) leads to a numerical process of the
following type:

𝑦
𝑖

𝑘
= 𝑦
𝑘

𝑖

+ [

[

−𝑐
𝑖
𝑦
𝑖

𝑘
+

𝑛

∑
𝑗=1

𝑎
𝑖𝑗
𝑓
𝑗
(𝑦
𝑘

𝑗
) +

𝑛

∑
𝑗=1

𝑏
𝑖𝑗
𝑔
𝑗
(𝑦
𝑘−𝑚𝑗+1

𝑗
)]

]

ℎ,

𝑦
𝑘+1

𝑖
= 𝑦
𝑖

𝑘
+

𝑛

∑
𝑗=1

𝜎
𝑖𝑗
(𝑘, 𝑦
𝑘

𝑗
, 𝑦
𝑘−𝑚𝑗

𝑗
)Δ𝑊

𝑘

𝑗
.

(30)

The notations are same to the definition in (16). Now we
present another main results of this paper.

Theorem 7. Assume that (H1)–(H3) and (H5)-(H6) hold.
Define

A
𝑖
= 𝑐
2

𝑖

𝑛

∑
𝑗=1

(𝜇
𝑗
+ ]
𝑗
) ,

B
𝑖
= (

𝑛

∑
𝑗=1


𝑎
𝑖𝑗


𝛼
𝑗
+

𝑛

∑
𝑗=1


𝑏
𝑖𝑗


𝛽
𝑗
)

2

+ 2𝑐
𝑖

𝑛

∑
𝑗=1

(𝜇
𝑗
+ ]
𝑗
) − 𝑐
2

𝑖
,

C
𝑖
= 2(

𝑛

∑
𝑗=1


𝑎
𝑖𝑗


𝛼
𝑗
+

𝑛

∑
𝑗=1


𝑏
𝑖𝑗


𝛽
𝑗
− 𝑐
𝑖
)

+

𝑛

∑
𝑗=1

(𝜇
𝑗
+ ]
𝑗
) .

(31)

Then the SSBE method applied to (1) is MS stable with ℎ ∈

(0, ℎ
0
) and ℎ

0
= min

1≤𝑖≤𝑛
{1, ℎ
𝑖
}, where ℎ

𝑖
= min

1≤𝑖≤𝑛
{(−B
𝑖
+

√B2
𝑖
− 4A
𝑖
C
𝑖
)/2A
𝑖
}.

Proof. From (30), we have

(1 + 𝑐
𝑖
ℎ) 𝑦
𝑖

𝑘
= 𝑦
𝑘

𝑖
+ ℎ

𝑛

∑
𝑗=1

𝑎
𝑖𝑗
𝑓
𝑗
(𝑦
𝑘

𝑗
)

+ ℎ

𝑛

∑
𝑗=1

𝑏
𝑖𝑗
𝑔
𝑗
(𝑦
𝑘−𝑚j+1

𝑗
) .

(32)



Abstract and Applied Analysis 7

Squaring both sides of (32), we obtain

(1 + 𝑐
𝑖
ℎ)
2

(𝑦
𝑖

𝑘
)
2

= (𝑦
𝑘

𝑖
)
2

+ ℎ
2[

[

𝑛

∑
𝑗=1

𝑎
𝑖𝑗
𝑓
𝑗
(𝑦
𝑘

𝑗
)]

]

2

+ ℎ
2[

[

𝑛

∑
𝑗=1

𝑏
𝑖𝑗
𝑔
𝑗
(𝑦
𝑘−𝑚𝑗+1

𝑗
)]

]

2

+ 2ℎ𝑦
𝑘

𝑖

𝑛

∑
𝑗=1

𝑎
𝑖𝑗
𝑓
𝑗
(𝑦
𝑘

𝑗
)

+ 2ℎ𝑦
𝑘

𝑖

𝑛

∑
𝑗=1

𝑏
𝑖𝑗
𝑔
𝑗
(𝑦
𝑘−𝑚𝑗+1

𝑗
)

+ 2ℎ
2

𝑛

∑
𝑗=1

𝑎
𝑖𝑗
𝑓
𝑗
(𝑦
𝑘

𝑗
)

𝑛

∑
𝑗=1

𝑏
𝑖𝑗
𝑔
𝑗
(𝑦
𝑘−𝑚𝑗+1

𝑗
) .

(33)

It follows from inequality 2𝑎𝑏𝑥𝑦 ≤ |𝑎𝑏|(𝑥2+𝑦2) and (H2)
that

(1 + 𝑐
𝑖
ℎ)
2

(𝑦
𝑖

𝑘
)
2

≤ (𝑦
𝑘

𝑖
)
2

+ ℎ
2

𝑛

∑
𝑗=1


𝑎
𝑖𝑗


𝛼
𝑗

𝑛

∑
𝑟=1

𝑎𝑖𝑟
 𝛼𝑟(𝑦

𝑘

𝑗
)
2

+ ℎ
2

𝑛

∑
𝑗=1


𝑏
𝑖𝑗


𝛽
𝑗

𝑛

∑
𝑟=1

𝑏𝑖𝑟
 𝛽𝑟(𝑦

𝑘−𝑚𝑗+1

𝑗
)
2

+ ℎ

𝑛

∑
𝑗=1


𝑎
𝑖𝑗


𝛼
𝑗
[(𝑦
𝑘

𝑖
)
2

+ (𝑦
𝑘

𝑗
)
2

]

+ ℎ

𝑛

∑
𝑗=1


𝑏
𝑖𝑗


𝛽
𝑗
[(𝑦
𝑘

𝑖
)
2

+ (𝑦
𝑘−𝑚𝑗+1

𝑗
)
2

]

+ ℎ
2

𝑛

∑
𝑗=1


𝑎
𝑖𝑗


𝛼
𝑗

𝑛

∑
𝑗=1


𝑏
𝑖𝑗


𝛽
𝑗
[(𝑦
𝑘

𝑗
)
2

+ (𝑦
𝑘−𝑚𝑗+1

𝑗
)
2

] .

(34)

Letting 𝑌
𝑘

𝑖
= E(𝑦

𝑘

𝑖
)
2, we have

(1 + 𝑐
𝑖
ℎ)
2

𝑌
𝑖

𝑘

≤ 𝑌
𝑘

𝑖
+ ℎ
2

𝑛

∑
𝑗=1


𝑎
𝑖𝑗


𝛼
𝑗

𝑛

∑
𝑟=1

𝑎𝑖𝑟
 𝛼𝑟𝑌
𝑘

𝑗

+ ℎ
2

𝑛

∑
𝑗=1


𝑏
𝑖𝑗


𝛽
𝑗

𝑛

∑
𝑟=1

𝑏𝑖𝑟
 𝛽𝑟𝑌
𝑘−𝑚𝑗+1

𝑗

+ ℎ

𝑛

∑
𝑗=1


𝑎
𝑖𝑗


𝛼
𝑗
(𝑌
𝑘

𝑖
+ 𝑌
𝑘

𝑗
)

+ ℎ

𝑛

∑
𝑗=1


𝑏
𝑖𝑗


𝛽
𝑗
(𝑌
𝑘

𝑖
+ 𝑌
𝑘−𝑚𝑗+1

𝑗
)

+ ℎ
2

𝑛

∑
𝑗=1


𝑎
𝑖𝑗


𝛼
𝑗

𝑛

∑
𝑗=1


𝑏
𝑖𝑗


𝛽
𝑗
(𝑌
𝑘

𝑗
+ 𝑌
𝑘−𝑚𝑗+1

𝑗
) .

(35)

On the other hand, from (30), we obtain

(𝑦
𝑘+1

𝑖
)
2

= (𝑦
𝑖

𝑘
)
2

+ [

[

𝑛

∑
𝑗=1

𝜎
𝑖𝑗
(𝑘, 𝑦
𝑘

𝑗
, 𝑦
𝑘−𝑚𝑗

𝑗
)Δ𝑊

𝑘

𝑗
]

]

2

+ 2𝑦
𝑖

𝑘

𝑛

∑
𝑗=1

𝜎
𝑖𝑗
(𝑘, 𝑦
𝑘

𝑗
, 𝑦
𝑘−𝑚𝑗

𝑗
)Δ𝑊

𝑘

𝑗
.

(36)

Noting that E(Δ𝑊𝑘
𝑖
) = 0, E(Δ𝑊𝑘

𝑖
Δ𝑊𝑘
𝑗
) = 0 (𝑖 ̸= 𝑗),

E(Δ𝑊𝑘
𝑖
)
2
= ℎ. From (36) and (H3), we have

𝑌
𝑘+1

𝑖
≤ 𝑌
𝑖

𝑘

+ ℎ

𝑛

∑
𝑗=1

(𝜇
𝑗
𝑌
𝑘

𝑗
+ ]
𝑗
𝑌
𝑘−𝑚𝑗

𝑗
) . (37)

Substituting (35) into (37), we obtain

𝑌
𝑘+1

𝑖
≤ 𝑃 (ℎ) 𝑌

𝑘

𝑖
+

𝑛

∑
𝑗=1

𝑄
𝑗
(ℎ) 𝑌
𝑘

𝑗

+

𝑛

∑
𝑗=1

𝑅
𝑗
(ℎ) 𝑌
𝑘−𝑚𝑗

𝑗
+

𝑛

∑
𝑗=1

𝑆
𝑗
(ℎ) 𝑌
𝑘−𝑚𝑗+1

𝑗
,

(38)

where

𝑃 (ℎ) =
1

(1 + 𝑐
𝑖
ℎ)
2
(1 + ℎ

𝑛

∑
𝑗=1


𝑎
𝑖𝑗


𝛼
𝑗
+ ℎ

𝑛

∑
𝑗=1


𝑏
𝑖𝑗


𝛽
𝑗
) ,

𝑄
𝑗
(ℎ)

=
1

(1 + 𝑐
𝑖
ℎ)
2
(ℎ
2 

𝑎
𝑖𝑗


𝛼
𝑗

𝑛

∑
𝑟=1

𝑎𝑖𝑟
 𝛼𝑟 + ℎ


𝑎
𝑖𝑗


𝛼
𝑗

+ℎ
2 

𝑎
𝑖𝑗


𝛼
𝑗

𝑛

∑
𝑗=1


𝑏
𝑖𝑗


𝛽
𝑗
) + ℎ𝜇

𝑗
,

𝑅
𝑗
(ℎ) = ℎ]

𝑗
,

𝑆
𝑗
(ℎ)

=
1

(1 + 𝑐
𝑖
ℎ)
2
(ℎ
2 

𝑏
𝑖𝑗


𝛽
𝑗

𝑛

∑
𝑟=1

𝑏𝑖𝑟
 𝛽𝑟 + ℎ


𝑏
𝑖𝑗


𝛽
𝑗

+ℎ
2 

𝑎
𝑖𝑗


𝛼
𝑗

𝑛

∑
𝑗=1


𝑏
𝑖𝑗


𝛽
𝑗
) .

(39)
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Then

𝑌
𝑘+1

𝑖
≤ (𝑃 (ℎ) +

𝑛

∑
𝑗=1

𝑄
𝑗
(ℎ) +

𝑛

∑
𝑗=1

𝑅
𝑗
(ℎ) +

𝑛

∑
𝑗=1

𝑆
𝑗
(ℎ))

× max
1≤𝑗≤𝑛

{𝑌
𝑘

𝑖
, 𝑌
𝑘

𝑗
, 𝑌
𝑘−𝑚𝑗

𝑗
, 𝑌
𝑘−𝑚𝑗+1

𝑗
} .

(40)

By the recursion we conclude that 𝑌𝑘
𝑖

→ 0 (𝑘 → ∞) if

𝑃 (ℎ) +

𝑛

∑
𝑗=1

𝑄
𝑗
(ℎ) +

𝑛

∑
𝑗=1

𝑅
𝑗
(ℎ) +

𝑛

∑
𝑗=1

𝑆
𝑗
(ℎ) < 1, (41)

which is equivalent toA
𝑖
ℎ2 + B

𝑖
ℎ + C

𝑖
< 0, where

A
𝑖
= 𝑐
2

𝑖

𝑛

∑
𝑗=1

(𝜇
𝑗
+ ]
𝑗
) ,

B
𝑖
= (

𝑛

∑
𝑗=1


𝑎
𝑖𝑗


𝛼
𝑗
+

𝑛

∑
𝑗=1


𝑏
𝑖𝑗


𝛽
𝑗
)

2

+ 2𝑐
𝑖

𝑛

∑
𝑗=1

(𝜇
𝑗
+ ]
𝑗
) − 𝑐
2

𝑖
,

C
𝑖
= 2(

𝑛

∑
𝑗=1


𝑎
𝑖𝑗


𝛼
𝑗
+

𝑛

∑
𝑗=1


𝑏
𝑖𝑗


𝛽
𝑗
− 𝑐
𝑖
)

+

𝑛

∑
𝑗=1

(𝜇
𝑗
+ ]
𝑗
) .

(42)

Since A
𝑖
> 0, C

𝑖
< 0, by (H3), (H5), and (H6), we have

B2
𝑖
− 4A
𝑖
C
𝑖
> 0. This implies that

ℎ
𝑖
= min
1≤𝑖≤𝑛

{{

{{

{

−B
𝑖
+ √B2

𝑖
− 4A
𝑖
C
𝑖

2A
𝑖

}}

}}

}

> 0. (43)

Thus, (41) holds for ℎ ∈ (0, ℎ
𝑖
). Let ℎ

0
= min

1≤𝑖≤𝑛
{1, ℎ
𝑖
};

then lim
𝑘→∞

E(𝑦𝑘
𝑖
)
2

= 0. That is, the SSBE method of (1) is
MS stable. The proof of the theorem is completed.

Theorem 8. For 𝑖 = 1, 2, . . . , 𝑛, and 𝑘 = 1, 2, . . ., there exists a
positive constant 𝐶

2
such that

E

𝑥
𝑖
(𝑘ℎ) − 𝑦

𝑘

𝑖



2

≤ 𝐶
2
ℎ, (44)

where 𝐶
2
depends on 𝑐

𝑖
, 𝑎
𝑖𝑗
, 𝑏
𝑖𝑗
, and so on but not upon ℎ. 𝑦𝑘

𝑖

is defined in (30).

The proof is similar to Theorem 3.2 in [26].

5. Example

In this section, we will discuss an example to illustrate our
theory and compare the restrictions on stepsize of the stable
SSBE method with that of the EMmethod.

Example 1. Let 𝑊(𝑡) be a two-dimensional Brown motion.
Consider the following stochastic delay recurrent neural
networks:

d(
𝑥
1
(𝑡)

𝑥
2
(𝑡)

) = − 𝐶(
𝑥
1
(𝑡)

𝑥
2
(𝑡)

) d𝑡 + 𝐴(
𝑓 (𝑥
1
(𝑡))

𝑓 (𝑥
2
(t))) d𝑡

+ 𝐵(
𝑔 (𝑥
1
(𝑡 − 1))

𝑔 (𝑥
2
(𝑡 − 2))

) d𝑡

+ 𝜎(
𝑥
1
(𝑡) 𝑥
1
(𝑡 − 1)

𝑥
2
(𝑡) 𝑥
2
(𝑡 − 2)

) d𝑊(𝑡) .

(45)

Let 𝑓(𝑥) = sin𝑥, 𝑔(𝑥) = arctan𝑥,

𝐶 = (
10 0

0 7
) , 𝐴 = (

2 0.4

0.6 1
) ,

𝐵 = (
4 −0.3

0.1 2
) , 𝜎 = (

1 0

0 √2
) .

(46)

It is obvious that 𝛼i = 𝛽
𝑖
= 1, 𝑖 = 1, 2, 𝜇

1
= ]
1

= 1, and
𝜇
2
= ]
2
= 2. So (H1)–(H3) are satisfied. By computation,

− 2𝑐
𝑖
+

𝑛

∑
𝑗=1


𝑎
𝑖𝑗


𝛼
𝑗
+

𝑛

∑
𝑗=1


𝑏
𝑖𝑗


𝛽
𝑗

+

𝑛

∑
𝑗=1


𝑎
𝑗𝑖


𝛼
𝑖
+

𝑛

∑
𝑗=1


𝑏
𝑗𝑖


𝛽
𝑖
+ 𝜇
𝑖
+ ]
𝑖

= {
−4.6, 𝑖 = 1,

−2.6, 𝑖 = 2,

− 2𝑐
𝑖
+

𝑛

∑
𝑗=1


𝑎
𝑖𝑗


𝛼
𝑗
+

𝑛

∑
𝑗=1


𝑏
𝑖𝑗


𝛽
𝑗

+

𝑛

∑
𝑗=1


𝑎
𝑗𝑖


𝛼
𝑖
+

𝑛

∑
𝑗=1


𝑏
𝑗𝑖


𝛽
𝑖
+

𝑛

∑
𝑗=1

(𝜇
𝑗
+ ]
𝑗
)

= −0.6, 𝑖 = 1, 2,

𝑛

∑
𝑗=1


𝑎
𝑖𝑗


𝛼
𝑗
+

𝑛

∑
𝑗=1


𝑏
𝑖𝑗


𝛽
𝑗

=

𝑛

∑
𝑗=1


𝑎
𝑗𝑖


𝛼
𝑖
+

𝑛

∑
𝑗=1


𝑏
𝑗𝑖


𝛽
𝑖

= {
6.7, 𝑖 = 1,

3.7, 𝑖 = 2.

(47)

Therefore conditions (H4)–(H6) also hold. By Theorem 2,
system (45) is exponentially stable in mean square. The EM
scheme and the SSBE scheme to (45) are also MS stable by
Theorems 5 and 7.

Now, we can conclude that the EMmethod and the SSBE
method to (45) are MS stable with ℎ = 0.125 from Figure 1. It
verifies the validity of Theorems 5 and 7. The EM method is
not stable, and the SSBEmethod isMS stable with ℎ = 0.1925
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Figure 1: MS stability of the numerical solutions to (45) with ℎ = 0.125; (a) EM, (b) SSBE.
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Figure 2: Instability of EM numerical solutions and MS stability of SSBE numerical solutions to (45) with ℎ = 0.1925; (a) EM, (b) SSBE.

from Figure 2, which shows that the stability of the SSBE
method is more superior to EM. Figure 3 illustrates that the
SSBE method is unstable with ℎ = 0.25.

6. Conclusions

The model of stochastic neural network can be viewed
as a special kind of stochastic differential equation; the
solution is hard to be explicitly expressed. It not only has the

characteristics of the general stochastic differential equations
but also has its own features; its stability is connected with
the activation functions and the connection weight matrixes.
So it is necessary to discuss the stability of stochastic neural
network. Different from the previous works on exponential
stability of stochastic neural networks, both Lyapunov func-
tion method and two numerical methods are used to study
the stability of stochastic delay recurrent neural networks.
Under the conditions which guarantee the stability of the
analytical solution, the EMmethod and the SSBEmethod are
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Figure 3: Instability of SSBEnumerical solutions of system (45)with
ℎ = 0.25.

proved to be MS stable if the step size meets a certain limit.
We can analyze other numerical methods for different types
of stochastic delay neural networks in future.
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