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We investigate the ruled surfaces generated by a straight line in Bishop framemoving along a spacelike curve inMinkowski 3-space.
We obtain the distribution parameters, mean curvatures.We give some results and theorems related to be developable andminimal
of them. Furthermore, we show that, if the base curve of the ruled surface is also an asymtotic curve and striction line, then the
ruled surface is developable.

1. Introduction

Recently, the theory of surfaces and their transformations
has been studied extensively in differential geometry. The
ruled surfaces have been a powerful subject in theMinkowski
space R3

1
for line geometry for a long time. In the literature,

Kobayashi [1] was the first author to address this problem and
examinedminimal spacelike ruled surfaces in theMinkowski
R3
1
. Kim and Yoon [2] have classified the Lorentz surfaces.
Izumiya and Takeuchi [3] obtained some characteriza-

tions for ruled surfaces. Turgut and Hacısalihoğlu [4, 5]
defined spacelike ruled surfaces and obtained some char-
acterizations in the three-dimensional Minkowski space.
Yaylı [6] obtained the distribution parameter of a spacelike
ruled surface generated by a spacelike straight line in Frenet
frame along a spacelike curve. Yaylı and Saracoglu [7, 8]
studied timelike and spacelike developable ruled surfaces
in Minkowski space. Orbay and Aydemir [9] obtained the
distrubition parameter, mean curvature, and Gaussian cur-
vature, and some new results and theorems were given for
developable and minimal spacelike ruled surfaces.

In this paper,making use of themethod in a paper of Yaylı
[6], we obtained some characterizations for spacelike Ruled
surfaces according to Bishop frame in Minkowski 3-space.

2. Preliminaries

Let R3
1
be a Minkowski 3-space with the metric tensor 𝐼 =

⟨⋅, ⋅⟩ = 𝑑𝑥
2

1
− 𝑑𝑥
2

2
+ 𝑑𝑥
2

3
. The norm of V ∈ R3

1
is defined by

‖V‖ = √|⟨V, V⟩|. A vector V ∈ R3
1
is said to be spacelike if

⟨V, V⟩ > 0 or V = 0, timelike if ⟨V, V⟩ < 0, and lightlike (or
null) if ⟨V, V⟩ = 0 and V ̸= 0.

Let 𝛼 : 𝐼 → R3
1
, 𝛼(𝑠) = (𝛼

1
(𝑠), 𝛼
2
(𝑠), 𝛼
3
(𝑠)) be a

smooth regular curve in R3
1
. We say that 𝛼 is a spacelike

(resp. timelike, lightlike) if 𝛼
󸀠
(𝑡), a spacelike (resp. timelike,

lightlike) vector for all 𝑠 ∈ 𝐼 ⊂ R.
A surface in the Minkowski 3-space is called a spacelike

surface if the Lorentz metric on the surface is a positive
definite [10]. A ruled surface is a surface swept out by a
straight line 𝑋 moving along a curve 𝛼. The various positions
of the generating line 𝑋 are called the rullings of the surface.
Such a surface has a parametrization in the ruled form as
follows:

𝜙 (𝑠, V) = 𝛼 (𝑠) + V𝑋 (𝑠) , (1)

where 𝛼 is the base curve and𝑋 is the director vector along 𝛼.
If the tangent plane is constant along a fixed rulling, then the
ruled surface is called a developable surface. The remaining
ruled surfaces are called skew surfaces [4].The spacelike ruled
surface 𝑀 in R3

1
is given by the parametrization

𝜙:𝐼 × R 󳨀→ R
3

1

(𝑠, V) 󳨀→ 𝜙 (𝑠, V) = 𝛼 (𝑠) + V𝑋 (𝑠) ,

(2)

where 𝛼 : 𝐼 → R3
1
is a differentiable spacelike curve para-

metrized by its arc length inR3
1
and𝑋(𝑠) is the director vector
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of the director curve such that 𝑋 is ortogonal the tangent
vector field 𝑇 of the base curve 𝛼.

Denote by {𝑇, 𝑁, 𝐵} the moving Frenet frame along
the regular curve with arc-lenght parameter 𝑠. The Frenet
trihedron consists of the tangent vector 𝑇, the principal
normal vector𝑁, and the binormal vector𝐵. If𝛼 is a spacelike
curve with a spacelike binormal, then the Frenet frame has
the following properties:

𝑇
󸀠
(𝑠) = 𝜘 (𝑠) 𝑁,

𝑁
󸀠
(𝑠) = 𝜘 (𝑠) 𝑇 (𝑠) + 𝜏 (𝑠) 𝐵 (𝑠) ,

𝐵
󸀠
(𝑠) = 𝜏 (𝑠) 𝑁 (𝑠) ,

(3)

where

⟨𝑇, 𝑇⟩ = 1, ⟨𝑁, 𝑁⟩ = −1, ⟨𝐵, 𝐵⟩ = 1. (4)

TheBishop frameor parallel transport frame is an alterna-
tive approach to defining a moving frame that is well defined
even when the curve has a vanishing second derivative. One
can express parallel transport of an orthonormal frame along
a curve simply by parallel transporting each component of the
frame. The tangent vector and any convenient arbitrary basis
for the remainder of the frame are used.

Let us consider the Bishop frame {𝑇, 𝑁
1
, 𝑁
2
} of the

spacelike curve 𝛼(𝑠) such that 𝑇(𝑠) the spacelike unit tangent
vector, 𝑁

1
(𝑠) is timelike unit normal vector, and 𝑁

2
(𝑠) the

spacelike unit binormal vector. So scalar product and cross
product of the vectors {𝑇, 𝑁

1
, 𝑁
2
} are given by

⟨𝑇, 𝑇⟩ = − ⟨𝑁
1
, 𝑁
1
⟩ = ⟨𝑁

2
, 𝑁
2
⟩ = 1,

⟨𝑇, 𝑁
1
⟩ = ⟨𝑇, 𝑁

2
⟩ = ⟨𝑁

1
, 𝑁
2
⟩ = 0,

(5)

𝑇 ∧ 𝑁
1

= 𝑁
2
,

𝑁
1

∧ 𝑁
2

= 𝑇,

𝑁
2

∧ 𝑇 = −𝑁
1
.

(6)

The Bishop frame {𝑇, 𝑁
1
, 𝑁
2
} is expressed as

𝑇
󸀠
(𝑠) = 𝑘

1
𝑁
1

(𝑠) − 𝑘
2
𝑁
2

(𝑠) ,

𝑁
󸀠

1
(𝑠) = 𝑘

1
𝑇 (𝑠) ,

𝑁
󸀠

2
(𝑠) = 𝑘

2
𝑇 (𝑠) .

(7)

One can show that

𝜅 = √
󵄨󵄨󵄨󵄨𝑘
2

2
− 𝑘
2

1

󵄨󵄨󵄨󵄨,
(8)

𝜏 =
𝑑𝜃

𝑑𝑠
, 𝜃 (𝑠) = argtanh𝑘

2

𝑘
1

(9)

so that 𝑘
1
and 𝑘

2
effectively correspond to a cartesian

coordinate system for the polar coordinates 𝜅, 𝜃 with 𝜃 =

∫ 𝜏(𝑠)𝑑𝑠 [11].

Remark 1. From the definition of the argtanh function we
assume that |𝑘

2
/𝑘
1
| < 1.

The distribution parameter, the mean curvature, and the
Gaussian curvature of the ruled surface 𝜙(𝑠, V) are given by

𝑃
𝑥

=
det (𝑇, 𝑋, 𝐷

𝑇
𝑋)

⟨𝐷
𝑇
𝑋, 𝐷
𝑇
𝑋⟩

, (10)

𝐻 =
1

2
[

𝐺𝑙 + 𝐸𝑛 − 2𝐹𝑚

𝐸𝐺 − 𝐹2
] , (11)

where 𝐷 is the Levi-Civita connection on R3
1
.

Theorem 2. A spacelike ruled surface is a developable surface
if and only if the distrubition parameter of the spacelike ruled
surface is zero [4].

The foot on the main rulling of the common perpendic-
ular of two constructive rullings in the ruled surface is called
a central point. The locus of the central point is called the
striction curve.The parametrization of the striction curve on
the ruled surface is given by

𝛼 (𝑠) = 𝛼 (𝑠) −
⟨𝑇, 𝐷
𝑇
𝑋⟩

⟨𝐷
𝑇
𝑋, 𝐷
𝑇
𝑋⟩

𝑋 (𝑠) . (12)

3. One Parameter Spatial Motion in R3
1

Let 𝛼 : 𝐼 → R3
1
be a spacelike curve and {𝑇, 𝑁

1
, 𝑁
2
} be its

Bishop frame where 𝑇, 𝑁
1
, and 𝑁

2
are the tangent, principal

normal, and binormal vectors of the curve 𝛼, respectively. 𝑇

and 𝑁
2
are spacelike vectors and 𝑁

1
is a timelike vector.

The two coordinate systems {𝑂; 𝑇, 𝑁
1
, 𝑁
2
} and {𝑂

󸀠
; 𝑒
1
,

𝑒
2
, 𝑒
3
} are orthogonal coordinate systems in R3

1
which repre-

sent the moving space 𝐻 and the fixed space 𝐻
󸀠, respectively.

Let 𝑋 be a unit spacelike vector

𝑋 ∈ Sp {𝑇 (𝑠) , 𝑁
1 (𝑠) , 𝑁

2 (𝑠)} ,

𝑋 = 𝑥
1
𝑇 (𝑠) + 𝑥

2
𝑁
1

(𝑠) + 𝑥
3
𝑁
2

(𝑠) ,

(13)

such that

⟨𝑋, 𝑋⟩ = 1. (14)

We can obtain the distrubition parameter of the spacelike
ruled surface generated by a straight line 𝑋 of the moving
space 𝐻. Differentiating (13) with respect to 𝑠, we get

𝐷
𝑇
𝑋 = 𝑥

1
𝑇
󸀠
(𝑠) + 𝑥

2
𝑁
󸀠

1
(𝑠) + 𝑥

3
𝑁
󸀠

2
(𝑠) ,

𝑥
2

1
− 𝑥
2

2
+ 𝑥
2

3
= 1.

(15)

By using the Bishop frame in (15), we obtain

𝐷
𝑇
𝑋 = (𝑥

2
𝑘
1

+ 𝑥
3
𝑘
2
) 𝑇 (𝑠) + 𝑥

1
𝑘
1
𝑁
1

(𝑠) − 𝑥
1
𝑘
2
𝑁
2

(𝑠) .

(16)

From (10) we get

𝑃
𝑥

= −
𝑥
1

(𝑥
2
𝑘
2

+ 𝑥
3
𝑘
1
)

(𝑥
2
𝑘
1

+ 𝑥
3
𝑘
2
)
2

+ 𝑥
2

1
(𝑘
2

2
− 𝑘
2

1
)

,

𝑥
2

1
− 𝑥
2

2
+ 𝑥
2

3
= 1.

(17)
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Theorem 3. Let 𝑀 be a spacelike ruled surface given by the
parametrization (2). 𝑀 is developable if and only if either the
director vector𝑋 lies in the plane generated by𝑁

1
(𝑠) and𝑁

2
(𝑠)

or the base curve 𝛼 is a planar curve such that the curvatures
of 𝛼, 𝑘

1
and 𝑘
2
satisfy

𝑘
1

𝑘
2

= −
𝑥
2

𝑥
3

. (18)

Proof. Let𝑀 be a ruled surface. By using (17) andTheorem 2,

𝑥
1

(𝑥
2
𝑘
2

+ 𝑥
3
𝑘
1
) = 0 (19)

is obtained. In that case, we have

𝑥
1

= 0 or (𝑥
2
𝑘
2

+ 𝑥
3
𝑘
1
) = 0. (20)

Thus

𝑋 (𝑠) ∈ Sp {𝑁
1 (𝑠) , 𝑁

2 (𝑠)}

or 𝑘
1

𝑘
2

= −
𝑥
2

𝑥
3

= constant.
(21)

From (9), we get

𝜏 = 0. (22)

So, 𝛼 is a planar curve. This completes the proof.

4. Special Cases

Let 𝑀 be a spacelike ruled surface given by the parametriza-
tion (2), and, 𝑋 be the director vector of the base curve 𝛼.

4.1. The Case 𝑋 = 𝑇 (Spacelike). In this case, 𝑥
1

= 1, 𝑥
2

=

𝑥
3

= 0 thus from (17)

𝑃
𝑇

= 0. (23)

Hence the following theorem is hold.

Theorem 4. During the one-parameter spatial motion 𝐻/𝐻
󸀠

the spacelike ruled surface in the fixed space 𝐻
󸀠 generated by

the tangent line 𝑇 of the curve 𝛼(𝑠) in the moving space 𝐻 is
developable.

4.2. The Case 𝑋 = 𝑁
2
(Spacelike). From Theorem 3, it is

obvious that 𝑃
𝑁
2

= 0.

4.3. The Case 𝑋 ∈ Sp{𝑇(𝑠),𝑁
1
(𝑠)}. In this case, 𝑥

3
is zero. So,

the director vector 𝑋 is given by

𝑋 = 𝑥
1
𝑇 + 𝑥
2
𝑁
1
, 𝑥
2

1
− 𝑥
2

2
= 1. (24)

The distribution parameter of the ruled surface is given by

𝑃
𝑥

= −
𝑥
1
𝑥
2
𝑘
2

𝑥
2

2
𝑘
2

1
+ 𝑥
2

1
(𝑘
2

2
− 𝑘
2

1
)

= ±

𝑥
2
√1 + 𝑥

2

2
𝑘
2

𝑥
2

2
𝑘
2

1
+ (1 + 𝑥

2

2
) (𝑘
2

2
− 𝑘
2

1
)
.

(25)

The ruled surface is developable if and only if 𝑃
𝑥

= 0. Thus

𝑥
2

= 0 or 𝑘
2

= 0. (26)

If 𝑥
2

= 0, this is case 4.1. If the second curvature 𝑘
2
is zero,

then we can say that the base curve 𝛼 is a planar curve.

4.4. The Case𝑋 ∈ Sp{𝑇(𝑠), 𝑁
2
(𝑠)}. In this case, 𝑥

2
is zero. So,

the director vector 𝑋 is given by

𝑋 = 𝑥
1
𝑇 + 𝑥
3
𝑁
2
, 𝑥
2

1
+ 𝑥
2

3
= 1. (27)

From (17) the distribution parameter is obtained as

𝑃
𝑥

= −
𝑥
1
𝑥
3
𝑘
1

𝑘
2

2
− 𝑥
2

1
𝑘
2

1

(28)

𝑃
𝑥

= 0 if and only if

𝑥
1

= 0 or 𝑥
3

= 0. (29)

If 𝑥
1
is zero, this is case 4.3. If 𝑥

3
is zero, this is The case 4.1.

From Theorem 3, 𝑀 is a developable spacelike ruled
surface.

4.5. The Case 𝑋 ∈ Sp{𝑁
1
(𝑠), 𝑁
2
(𝑠)}. From Theorem 3 it is

obvious that the spacelike ruled surface is developable.
By using (11) we compute the mean curvatures of

the spacelike ruled surfaces generated by spacelike vectors
𝑇(𝑠), 𝑁

2
(𝑠), and 𝑋.

Proposition 5. Let 𝑀
𝑇
be a spacelike ruled surface generated

by the tangent line 𝑇 of the curve 𝛼. From (11) the mean
curvature is obtained as follows:

𝐻
𝑇

=
1

2

𝜀 (𝑘
1
𝑘
󸀠

2
− 𝑘
2
𝑘
󸀠

1
)

V√󵄨󵄨󵄨󵄨𝑘
2

1
− 𝑘
2

2

󵄨󵄨󵄨󵄨

, 𝜖 = ±1. (30)

Thus from (6) we have

𝐻
𝑇

= −
1

2

𝜀

V

𝜏

𝜅
. (31)

Corollary 6. The surface 𝑀
𝑇
is minimal if and only if 𝛼 is a

planar curve.

Proof. Let 𝑀
𝑇
be minimal. In this case, from (31), we get

𝜏 = 0. (32)

Conversely, let 𝛼 be a planar curve. Then 𝜏 = 0 implies
that 𝐻

𝑇
= 0. This completes the proof.

Proposition 7. Let𝑀
𝑁
2

be a spacelike ruled surface generated
by the binormal line𝑁

2
of the base curve 𝛼. From (11) the mean

curvature is obtained as follows:

𝐻
𝑁
2

= −
𝜀𝑘
1

2 (1 + V𝑘
2
)
, 𝜀 = ±1. (33)

So, the following result may be given.
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Corollary 8. According to the Bishop frame, there is no
minimal spacelike ruled surface generated by the binormal line
𝑁
2
in R3
1
.

Proposition 9. Let 𝑀 be a spacelike ruled surface which is
given by the parametrization (2):

𝐻
𝑥

=
1

2
[

𝐺𝑙 + 𝐸𝑛 − 2𝐹𝑚

𝐸𝐺 − 𝐹2
] , (34)

where

𝐸 = ⟨𝜙
𝑠
, 𝜙
𝑠
⟩ = (1 + V (𝑘

1
𝑥
2

+ 𝑘
2
𝑥
3
))
2

+ V2𝑘2
1

(𝑘
2

2
− 𝑘
2

1
) ,

𝐹 = ⟨𝜙
𝑠
, 𝜙V⟩ = 𝑥

1
,

𝐺 = ⟨𝜙V, 𝜙V⟩ = 1,

(35)

𝑙 =
1

󵄩󵄩󵄩󵄩𝜙
𝑠

× 𝜙V
󵄩󵄩󵄩󵄩

⟨𝜙
𝑠𝑠

, 𝜙
𝑠

× 𝜙V⟩

=
1

󵄩󵄩󵄩󵄩𝜙
𝑠

× 𝜙V
󵄩󵄩󵄩󵄩

×

[
[
[
[
[
[
[

[

−(1 + V (𝑥
2
𝑘
1

+ 𝑥
3
𝑘
2
))
2

(𝑥
3
𝑘
1

+ 𝑥
2
𝑘
2
)

− (1 + V (𝑥
2
𝑘
1

+ 𝑥
3
𝑘
2
)) V𝑥
1

(𝑥
3
𝑘
󸀠

1
+ 𝑥
2
𝑘
󸀠

2
)

+V2𝑥3
1

(𝑘
1
𝑘
󸀠

2
− 𝑘
󸀠

1
𝑘
2
)

+V2𝑥
1

(𝑥
2
𝑘
1

+ 𝑥
3
𝑘
2
) (𝑥
2
𝑘
󸀠

1
+ 𝑥
3
𝑘
󸀠

2
)

+V2𝑥2
1

(𝑥
3
𝑘
1

+ 𝑥
2
𝑘
2
) (𝑘
2

1
− 𝑘
2

2
)

]
]
]
]
]
]
]

]

(36)

𝑚 =
1

󵄩󵄩󵄩󵄩𝜙
𝑠

× 𝜙V
󵄩󵄩󵄩󵄩

⟨𝜙
𝑠V, 𝜙
𝑠

× 𝜙V⟩ =
−𝑥
1

(𝑘
1
𝑥
3

+ 𝑘
2
𝑥
2
)

󵄩󵄩󵄩󵄩𝜙
𝑠

× 𝜙V
󵄩󵄩󵄩󵄩

, (37)

𝑛 =
1

󵄩󵄩󵄩󵄩𝜙
𝑠

× 𝜙V
󵄩󵄩󵄩󵄩

⟨𝜙VV, 𝜙
𝑠

× 𝜙V⟩ = 0, (38)

where

𝑁 =
𝜙
𝑠

× 𝜙V
󵄩󵄩󵄩󵄩𝜙
𝑠

× 𝜙V
󵄩󵄩󵄩󵄩

=
1

󵄩󵄩󵄩󵄩𝜙
𝑠

× 𝜙V
󵄩󵄩󵄩󵄩

{{

{{

{

[V𝑥
1

(𝑥
3
𝑘
1

+ 𝑥
2
𝑘
2
)] 𝑇

+ [𝑥
3

(1 + V (𝑥
2
𝑘
1

+ 𝑥
3
𝑘
2
)) + V𝑥2

1
𝑘
2
] 𝑁
1

+ [𝑥
2

(1 + V (𝑥
2
𝑘
1

+ 𝑥
3
𝑘
2
)) − V𝑥2

1
𝑘
1
] 𝑁
2

}}

}}

}

(39)

is a unit normal vector of the spacelike ruled surface 𝑀.

Proposition 10. Let 𝑀 be a spacelike ruled surface given by
the parametrization (2). If the base curve of𝑀 is also a striction
curve, then the curvature functions 𝑘

1
and 𝑘
2
of the base curve

𝛼 satisfy the following equation:

𝑥
2
𝑘
1

+ 𝑥
3
𝑘
2

= 0. (40)

Proof. Let the base curve 𝛼 be the striction curve.Thus, from
(12),

⟨𝑇, 𝐷
𝑇
𝑋⟩ = 0. (41)

Then we have

𝑥
2
𝑘
1

+ 𝑥
3
𝑘
2

= 0. (42)

Hence the following result holds.

Corollary 11. Let 𝑀 be a spacelike ruled surface given by the
parametrization (2). If the base curve of 𝑀 is also striction
curve, then 𝛼 is a planar curve.

Proof. Let the base curve 𝛼 be also striction curve.Thus from
(42)

𝑥
2
𝑘
1

+ 𝑥
3
𝑘
2

= 0. (43)

Hence we get

𝑘
1

𝑘
2

= −
𝑥
3

𝑥
2

= constant. (44)

From (9), 𝛼 is a planar curve.

Proposition 12. Let 𝑀 be a spacelike ruled surface given by
the parametrization (2). If the base curve of𝑀 is also asymtotic
curve, then

(1 + V (𝑥
2
𝑘
1

+ 𝑥
3
𝑘
2
)) (𝑥
2
𝑘
2

+ 𝑥
3
𝑘
1
) = 0. (45)

Proof. We assume that the base curve of the surface 𝑀 is the
asymtotic curve. In that case,

⟨𝛼
󸀠󸀠

, 𝑁⟩ = 0. (46)

From (46), we have

(1 + V (𝑥
2
𝑘
1

+ 𝑥
3
𝑘
2
)) (𝑥
2
𝑘
2

+ 𝑥
3
𝑘
1
) = 0. (47)

Theorem 13. Let the base curve of the surface 𝑀 be an
asymtotic curve. If the base curve of 𝑀 is also a striction curve,
the spacelike ruled surface 𝑀 is developable.

Proof. Let the base curve of the surface 𝑀 be both an
asymtotic curve and striction curve. By using (42) and (45)
we obtain

(𝑥
2
𝑘
2

+ 𝑥
3
𝑘
1
) = 0. (48)

From (17), the surface is developable.

Proposition 14. Let 𝑀 be a spacelike ruled surface given by
the parametrization (2). We obtain the following results for the
spacelike ruled surfaces.

(i) The 𝑠-parameter curve of 𝑀 is also an asymtotic curve
if and only if

[
[
[
[
[
[
[

[

− (1 + V (𝑥
2
𝑘
1

+ 𝑥
3
𝑘
2
))
2

(𝑥
3
𝑘
1

+ 𝑥
2
𝑘
2
)

− (1 + V (𝑥
2
𝑘
1

+ 𝑥
3
𝑘
2
)) V𝑥
1

(𝑥
3
𝑘
󸀠

1
+ 𝑥
2
𝑘
󸀠

2
)

+V2𝑥3
1

(𝑘
1
𝑘
󸀠

2
− 𝑘
󸀠

1
𝑘
2
)

+V2𝑥
1

(𝑥
2
𝑘
1

+ 𝑥
3
𝑘
2
) (𝑥
2
𝑘
󸀠

1
+ 𝑥
3
𝑘
󸀠

2
)

+V2𝑥2
1

(𝑥
3
𝑘
1

+ 𝑥
2
𝑘
2
) (𝑘
2

1
− 𝑘
2

2
)

]
]
]
]
]
]
]

]

= 0. (49)
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(ii) The V-parameter curve of 𝑀 is also an asymtotic curve.

Proof. (i) If the 𝑠-parameter curve of 𝑀 is also an asymtotic
curve, then

⟨𝜙
𝑠𝑠

, 𝑁⟩ = 0. (50)

From (36), we obtain (46).
(ii) If the V-parameter curve of 𝑀 is also an asymtotic

curve, then

⟨𝜙VV, 𝑁⟩ = 0. (51)

V-parameter curve of 𝑀 is an asymtotic curve.

Theorem 15. Let 𝑀 be a developable spacelike ruled surface
given by the parametrization (2). The s-parameter curve of 𝑀

is also asymtotic curve if and only if 𝑀 is a minimal surface.

Proof. Assume that 𝑠-parameter curve of the surface 𝑀 an
asymtotic curve. Then

𝑙 = ⟨𝜙
𝑠𝑠

, 𝑁⟩ = 0, (52)

where 𝑁 is a unit normal vector field of the surface 𝑀. Since
𝑀 is a developable ruled surface,

𝑥
1

(𝑥
2
𝑘
1

+ 𝑥
3
𝑘
2
) = 0. (53)

Thus from (34)

𝐻
𝑥

= 0 (54)

is obtained.
Conversely, let𝑀 be aminimal surface. From (14), we get

𝑙 − 2𝐹𝑚 = 0 (55)

since 𝑀 is a developable ruled surface, we obtain

𝑙 = 0. (56)

This completes the proof.
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