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We propose a projection-type method for multivalued variational inequality. The iteration sequence generated by the algorithm
is proven to be globally convergent to a solution, provided that the multivalued mapping is continuous with nonempty compact
convex values. Moreover, we present a necessary and sufficient condition on the nonemptiness of the solution set. Preliminary
computational experience is also reported.

1. Introduction

We consider the followingmultivalued variational inequality,
denoted by GVI(𝑇,𝐾) to find 𝑥∗ ∈ 𝐾 and 𝑤∗ ∈ 𝑇(𝑥∗) such
that

⟨𝑤
∗

, 𝑦 − 𝑥
∗

⟩ ≥ 0, ∀𝑦 ∈ 𝐾, (1)

where 𝐾 is a nonempty closed convex set in R𝑛, 𝑇 is a
multivalued mapping from𝐾 intoR𝑛 with nonempty values,
and ⟨⋅, ⋅⟩ and ‖ ⋅ ‖ denote the inner product and norm in R𝑛,
respectively.

Projection-type algorithms have been extensively studied
in the literature; see [1–8] and the references therein. Ref-
erence [2] proposes a subgradient extragradient algorithm
for solving single-valued variational inequality in which
the next iterate is a projection onto a halfspace whose
bounding hyperplane supports the feasible set 𝐾 at a certain
point. Reference [6] proposes a projection method for varia-
tional inequality problems in which the hyperplane strictly
separates the current iterate from the solution set of (1).
Theory and algorithm of multivalued variational inequality
have been much studied in the literature [1, 9–18]. Various
algorithms for computing the solution of (1) are proposed.
The well-known proximal point algorithm [19] requires the
multivaluedmapping 𝑇 to be monotone. Relaxing the mono-
tonicity assumption, [12] proposed the double projection

algorithm for solving (1); also see [5]. Assume that 𝑇 is pseu-
domonotone; [20] described a combined relaxation method
for solving (1); see also [21]. Recently, [22] proposed an
extragradient method for generalized variational inequality.
In [22], the next iterate is the projection of the current iterate
onto the feasible set 𝐾; also see [23].

In this paper, we introduce a projection-type method for
multivalued variational inequality in which the next iterate
is a projection of the initial iterate onto intersection of two
halfspaces containing the solution set. We obtain a global
convergence theorem, assuming that 𝑇 is pseudomonotone
on𝐾 with respect to the solution set; see (3) in the following.
Moreover, we show that the iterative sequence diverges if and
only if the solution set is empty. We also present numerical
results of the proposed method. Now let us compare our
algorithm with algorithms in [5, 12, 22, 23]. First, the next
iterate in our method relates to the initial point. In [5, 12],
the next iterate is the projection of the current iterate onto
the intersection of the hyperplane and the feasible set 𝐾.
Secondly, the next iterate in our method is a projection of
the initial point onto the intersection of the two hyperplanes
and the feasible set𝐾. In addition, ourArmijo-type linesearch
procedure is also different from those in [12, 22, 23].

The organization of this paper is as follows. In the next
section, we present the algorithm details and some lemmas.
We prove several preliminary results for convergence analysis
in Section 3.Numerical results are reported in the last section.
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2. Algorithms

Let us recall the definition of continuous multivalued map-
ping. 𝑇 is said to be upper semicontinuous at 𝑥 ∈ 𝐾 if,
for every open set 𝑉 containing 𝑇(𝑥), there is an open set
𝑈 containing 𝑥 such that 𝑇(𝑦) ⊂ 𝑉 for all 𝑦 ∈ 𝐾 ∩ 𝑈. 𝑇
is said to be lower semicontinuous at 𝑥 ∈ 𝐾 if, given any
sequence {𝑥

𝑘
} converging to 𝑥 and any 𝑦 ∈ 𝑇(𝑥), there exists

a sequence 𝑦
𝑘
∈ 𝑇(𝑥

𝑘
) that converges to 𝑦. 𝑇 is said to be

continuous at 𝑥 ∈ 𝑇 if, it is both upper semicontinuous and
lower semicontinuous at 𝑥. If 𝑇 is single valued, then both
upper semicontinuity and lower semicontinuity reduce to the
continuity of 𝑇.

𝑇 is called pseudomonotone on 𝐾 in the sense of
Karamardian [24], if, for any 𝑥, 𝑦 ∈ 𝐾,

⟨V, 𝑥 − 𝑦⟩ ≥ 0, ∀V ∈ 𝑇 (𝑦) 󳨐⇒ ⟨𝑢, 𝑥 − 𝑦⟩

≥ 0, ∀𝑢 ∈ 𝑇 (𝑥) .
(2)

Let 𝑆 be the solution set of (1), that is, those points
𝑥
∗ ∈ 𝐾 satisfying (1). Throughout this paper, we assume

that the solution set 𝑆 of the problem (1) is nonempty and
𝑇 is continuous on𝐾 with nonempty compact convex values
satisfying the following property:

⟨𝜁, 𝑦 − 𝑥⟩ ≥ 0, ∀𝑦 ∈ 𝐾, 𝜁 ∈ 𝑇 (𝑦) , ∀𝑥 ∈ 𝑆. (3)

The property (3) holds if 𝑇 is pseudomonotone on 𝐾.
Let Π

𝐾
denote the projector onto 𝐾, and let 𝜇 > 0 be a

parameter.

Proposition 1. 𝑥 ∈ 𝐾 and 𝜉 ∈ 𝑇(𝑥) solves the problem (1) if
and only if

𝑟
𝜇
(𝑥, 𝜉) := 𝑥 − Π

𝐾
(𝑥 − 𝜇𝜉) = 0. (4)

Algorithm 2. Choose 𝑥
0

∈ 𝐾 and three parameters 𝜎 >

0, 𝜇 ∈ (0, 1/𝜎), and 𝛾 ∈ (0, 1). Set 𝑖 = 0.

Step 1. If 𝑟
𝜇
(𝑥
𝑖
, 𝑤) = 0 for some 𝑤 ∈ 𝑇(𝑥

𝑖
), stop; else take

arbitrarily 𝑤
𝑖
∈ 𝑇(𝑥

𝑖
).

Step 2. For every positive integer 𝑘, let 𝑦
𝑘

=

Π
𝑇(𝑥𝑖−𝛾

𝑘
𝑟𝜇(𝑥𝑖 ,𝑤𝑖))

(𝑤
𝑖
).

Step 3. Let 𝑘
𝑖
be the smallest nonnegative integer 𝑘 satisfying

⟨𝑦
𝑘
, 𝑟
𝜇
(𝑥
𝑖
, 𝑤
𝑖
)⟩ ≥ 𝜎

󵄩󵄩󵄩󵄩󵄩
𝑟
𝜇
(𝑥
𝑖
, 𝑤
𝑖
)
󵄩󵄩󵄩󵄩󵄩

2

. (5)

Set 𝜂
𝑖
= 𝛾𝑘𝑖 and 𝑧

𝑖
= 𝑥
𝑖
− 𝜂
𝑖
𝑟
𝜇
(𝑥
𝑖
, 𝑤
𝑖
).

Step 4. Compute 𝑥
𝑖+1

:= Π
𝐻
1

𝑖
∩𝐻
2

𝑖
∩𝐾

(𝑥
0
), where

𝐻
1

𝑖
:= {𝑥 ∈ 𝑅

𝑛

: ⟨𝑦
𝑘𝑖
, 𝑥 − 𝑧

𝑖
⟩ ≤ 0} ,

𝐻
2

𝑖
:= {𝑥 ∈ 𝑅

𝑛

: ⟨𝑥 − 𝑥
𝑖
, 𝑥
0
− 𝑥
𝑖
⟩ ≤ 0} .

(6)

Let 𝑖 := 𝑖 + 1, and go to Step 1.

Remark 3. Let us compare the previous algorithm with
Algorithm 3.1 in [11]. First, the parameter 𝜎 > 0 is required
to be strictly less than 1, and 𝜇 is assumed to be equal to
1 in their Algorithm 3.1. In our Algorithm 2, the parameter
𝜎 can take any positive scalar and 𝜇 ∈ (0, 1/𝜎). Secondly,
since 𝑇 has compact convex values, 𝑇 has closed convex
values. Therefore, 𝑦

𝑘
in Step 2 of our algorithm is uniquely

determined by 𝑘. Hence, it is easy to compute the value of
𝑦
𝑘
satisfying (5). In Step 1 of their Algorithm 3.1, since 𝐹

is a multivalued mapping, it is very difficult in practice to
compute the value of 𝜁𝑘 satisfying 𝜁𝑘 ∈ 𝐹(𝑥𝑘−𝛾𝑚𝑟(𝑥𝑘, 𝜉𝑘)) and
⟨𝜁
𝑘

, 𝑟(𝑥
𝑘

, 𝜉
𝑘

)⟩ ≥ 𝜎‖𝑟(𝑥
𝑘

, 𝜉
𝑘

)‖
2

at the same time. In addition,
we report numerical results concerning our algorithm, while
[11] does not present numerical experiments for the proposed
algorithm. Finally, we compare the performance of our
algorithm and Algorithm 3.1 in [11] (see Table 4).

Lemma 4. The sequence {𝑦
𝑘
} generated in Step 2 has the

following properties:

𝑦
𝑘
∈ 𝑇 (𝑥

𝑖
− 𝛾
𝑘

𝑟
𝜇
(𝑥
𝑖
, 𝑤
𝑖
)) , lim

𝑘→∞

𝑦
𝑘
= 𝑤
𝑖
. (7)

Proof. See Lemma 2.1 in [5].

Lemma 5. For every 𝑥 ∈ 𝐾 and 𝑤 ∈ 𝑇(𝑥),

⟨𝑤, 𝑟
𝜇
(𝑥, 𝑤)⟩ ≥ 𝜇

−1
󵄩󵄩󵄩󵄩󵄩
𝑟
𝜇
(𝑥, 𝑤)

󵄩󵄩󵄩󵄩󵄩

2

. (8)

Proof. See Lemma 2.3 in [5].

We show that Algorithm 2 is well defined and imple-
mentable.

Lemma 6. If 𝑟
𝜇
(𝑥
𝑖
, 𝑤
𝑖
) ̸= 0, there exists 𝑘 satisfying (5).

Proof. In view of Lemma 4, we have lim
𝑘→∞

𝑦
𝑘

= 𝑤
𝑖
.

Therefore,

lim
𝑘→∞

⟨𝑦
𝑘
, 𝑟
𝜇
(𝑥
𝑖
, 𝑤
𝑖
)⟩ = ⟨𝑤

𝑖
, 𝑟
𝜇
(𝑥
𝑖
, 𝑤
𝑖
)⟩

≥ 𝜇
−1
󵄩󵄩󵄩󵄩󵄩
𝑟
𝜇
(𝑥
𝑖
, 𝑤
𝑖
)
󵄩󵄩󵄩󵄩󵄩

2

> 𝜎
󵄩󵄩󵄩󵄩󵄩
𝑟
𝜇
(𝑥
𝑖
, 𝑤
𝑖
)
󵄩󵄩󵄩󵄩󵄩

2

,

(9)

where the first inequality follows from Lemma 5 and the
second one follows from 𝜇−1 > 𝜎 and 𝑟

𝜇
(𝑥
𝑖
, 𝑤
𝑖
) ̸= 0.

Lemma7. Let𝐾 be a closed convex subset ofR𝑛. For any𝑥, 𝑦 ∈

R𝑛 and 𝑧 ∈ 𝐾, the following statements hold:
(i) ⟨Π

𝐾
(𝑥) − 𝑥, 𝑧 − Π

𝐾
(𝑥)⟩ ≥ 0,

(ii) ‖ Π
𝐾
(𝑥) − Π

𝐾
(𝑦)‖
2

≤‖ 𝑥 − 𝑦‖
2

− ‖ Π
𝐾
(𝑥) − 𝑥 + 𝑦 −

Π
𝐾
(𝑦)‖
2.

Proof. See [25].

Lemma 8. Let 𝑥∗ ∈ 𝑆 and ℎ
𝑖
(𝑥) := ⟨𝑦

𝑘𝑖
, 𝑥 − 𝑧

𝑖
⟩. If

𝑟
𝜇
(𝑥
𝑖
, 𝑤
𝑖
) ̸= 0, then the hyperplane

𝜕𝐻
1

𝑖
= {𝑥 ∈ R

𝑛

: ℎ
𝑖
(𝑥) = 0} (10)

strictly separates 𝑥
𝑖
and the solution set 𝑆.
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Proof. Since 𝑧
𝑖
= 𝑥
𝑖
− 𝜂
𝑖
𝑟
𝜇
(𝑥
𝑖
, 𝑤
𝑖
),

ℎ
𝑖
(𝑥
𝑖
) = ⟨𝑦

𝑘𝑖
, 𝑥
𝑖
− 𝑧
𝑖
⟩

= 𝜂
𝑖
⟨𝑦
𝑘𝑖
, 𝑟
𝜇
(𝑥
𝑖
, 𝑤
𝑖
)⟩

≥ 𝜎𝜂
𝑖

󵄩󵄩󵄩󵄩󵄩
𝑟
𝜇
(𝑥
𝑖
, 𝑤
𝑖
)
󵄩󵄩󵄩󵄩󵄩

2

> 0,

(11)

where the first inequality follows from (5) and the last one
follows from 𝑟

𝜇
(𝑥
𝑖
, 𝑤
𝑖
)) ̸= 0. Since 𝑇 satisfies the property (3),

ℎ
𝑖
(𝑥∗) ≤ 0.

Lemma 9. If 𝑆 ̸= 0, then 𝑆 ⊂ 𝐻1
𝑖
∩ 𝐻2
𝑖
∩ 𝐾.

Proof. It follows from Lemma 8 that 𝑆 ⊂ 𝐻
1

𝑖
∩ 𝐾. Next, it is

sufficient to prove that 𝑆 ⊂ 𝐻2
𝑖
for all 𝑖 ≥ 0. The proof will be

given by induction.
Obviously, 𝑆 ⊂ 𝐻2

0
= R𝑛. Suppose that

𝑆 ⊂ 𝐻
2

𝑖
, for 𝑖 = 𝑚 ≥ 0. (12)

Then, 𝑆 ⊂ 𝐻
1

𝑚
∩ 𝐻2
𝑚
∩ 𝐾.

Let 𝑥∗ ∈ 𝑆. Since

𝑥
𝑚+1

= Π
𝐻
1

𝑚
∩𝐻
2

𝑚
∩𝐾

(𝑥
0
) , (13)

it follows from Lemma 7 (i) that

⟨𝑥
∗

− 𝑥
𝑚+1

, 𝑥
0
− 𝑥
𝑚+1

⟩ ≤ 0. (14)

Thus, 𝑆 ⊂ 𝐻2
𝑚+1

. Therefore, we obtain that 𝑆 ⊂ 𝐻2
𝑖
for all

𝑖.

Lemma 10. Let𝐾 ⊂ R𝑛 be a nonempty bounded closed convex
set, and let themapping𝑇 : 𝐾 → 2R

𝑛

be lower semicontinuous
with nonempty closed convex values; then, the solution set 𝑆 of
𝐺𝑉𝐼(𝑇,𝐾) is nonempty.

Proof. See Lemma 2.9 in [22].

The following lemma says that if the solution set 𝑆 is
empty, then 𝐻1

𝑖
∩ 𝐻2
𝑖
∩ 𝐾 is a nonempty set, which implies

the feasibility of Algorithm 2.

Lemma 11. Let 𝑇 : 𝐾 → 2
R𝑛 be continuous with nonempty

compact convex values on 𝐾, and suppose that 𝑆 = 0; then,
𝐻
1

𝑖
∩ 𝐻2
𝑖
∩ 𝐾 ̸= 0 for all 𝑖.

Proof. On the contrary, suppose that there exists 𝑖
0
≥ 0 such

that 𝐻1
𝑖0

∩ 𝐻2
𝑖0

∩ 𝐾 = 0. Then, there exists a positive number
𝑀 such that

{𝑥
𝑖
: 0 ≤ 𝑖 ≤ 𝑖

0
} ⊆ 𝐵 (𝑥

0
,𝑀) , (15)

where

𝐵 (𝑥
0
,𝑀) := {𝑥 ∈ 𝑅

𝑛

:
󵄩󵄩󵄩󵄩𝑥 − 𝑥

0

󵄩󵄩󵄩󵄩 ≤ 𝑀} . (16)

Since 𝑇(𝑥) is continuous with compact values, Proposi-
tion 3.11 in [26] implies that {𝑇(𝑥

𝑖
) : 0 ≤ 𝑖 ≤ 𝑖

0
} is a bounded

set, and so {𝑥
𝑖
− 𝜇𝑤
𝑖
: 𝑤
𝑖
∈ 𝑇(𝑥

𝑖
), 0 ≤ 𝑖 ≤ 𝑖

0
} is bounded.

Without loss of generality, we assume that

{𝑥
𝑖
− 𝜇𝑤
𝑖
: 𝑤
𝑖
∈ 𝑇 (𝑥

𝑖
) , 0 ≤ 𝑖 ≤ 𝑖

0
} ⊆ 𝐵 (𝑥

0
,𝑀) . (17)

Consider the variational inequality GVI(𝑇, 𝐶), where

𝐶 = 𝐾 ∩ 𝐵 (𝑥
0
, 2𝑀) . (18)

It follows from Lemma 10 that the solution set of GVI(𝑇, 𝐶),
denoted by 𝑆

1
, is nonempty. We denote the three sequences

{𝐻1
𝑖
}, {𝐻2
𝑖
}, and {𝑥

𝑖
} by {𝐻̃1

𝑖
}, {𝐻̃2
𝑖
}, and {𝑥

𝑖
}, respectively,

when Algorithm 2 is applied to GVI(𝑇, 𝐶)with starting point
𝑥
0
. We claim that

(i) the set {𝑥
𝑖
} has at least 𝑖

0
+ 1 elements;

(ii) 𝑥
𝑖
= 𝑥
𝑖
, 𝐻1
𝑖
= 𝐻̃1
𝑖
, and 𝐻2

𝑖
= 𝐻̃2
𝑖
for 0 ≤ 𝑖 ≤ 𝑖

0
;

(iii) 𝑥
𝑖0
is not a solution of GVI(𝑇, 𝐶).

Items (i) and (iii) are obvious. Next we prove the item (ii).
It is sufficient to prove that

Π
𝐾
(𝑥
𝑖
− 𝜇𝑤
𝑖
) = Π

𝐶
(𝑥
𝑖
− 𝜇𝑤
𝑖
) , (19)

where 𝑤
𝑖
∈ 𝑇(𝑥

𝑖
), 0 ≤ 𝑖 ≤ 𝑖

0
.

Since
󵄩󵄩󵄩󵄩𝑥0 − Π

𝐾
(𝑥
𝑖
− 𝜇𝑤
𝑖
)
󵄩󵄩󵄩󵄩 ≤

󵄩󵄩󵄩󵄩𝑥0 − Π
𝐾
(𝑥
0
)
󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩Π𝐾 (𝑥0) − Π

𝐾
(𝑥
𝑖
− 𝜇𝑤
𝑖
)
󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝑥
0
− 𝑥
𝑖0

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩𝑥0 − (𝑥

𝑖
− 𝜇𝑤
𝑖
)
󵄩󵄩󵄩󵄩

≤ 2𝑀,

(20)

where the second inequality follows from 𝑥
𝑖0

∈ 𝐾 and
Lemma 7 (ii), so Π

𝐾
(𝑥
𝑖
− 𝜇𝑤
𝑖
) ∈ 𝐵(𝑥

0
, 2𝑀), and hence,

Π
𝐾
(𝑥
𝑖
− 𝜇𝑤
𝑖
) ∈ 𝐾 ∩ 𝐵(𝑥

0
, 2𝑀) = 𝐶. Therefore,

Π
𝐾
(𝑥
𝑖
− 𝜇𝑤
𝑖
) = Π

𝐶
(𝑥
𝑖
− 𝜇𝑤
𝑖
) . (21)

Since 𝑆
1

̸= 0, it follows fromLemma 9 that 𝐻̃1
𝑖
∩𝐻̃2
𝑖
∩𝐶 ̸= 0.

Therefore,𝐻1
𝑖
∩ 𝐻2
𝑖
∩ 𝐾 ̸= 0 for 0 ≤ 𝑖 ≤ 𝑖

0
, which contradicts

the supposition that𝐻1
𝑖0

∩ 𝐻2
𝑖0

∩ 𝐾 = 0.

3. Main Results

Theorem 12. Let 𝑇 : 𝐾 → 2R
𝑛

be continuous with nonempty
compact convex values on 𝐾 satisfying condition (3). Suppose
that Algorithm 2 generates an infinite sequence {𝑥

𝑖
}. If the

solution set 𝑆 of 𝐺𝑉𝐼(𝑇,𝐾) is nonempty, then {𝑥
𝑖
} globally

converges to a solution 𝑥∗ of 𝐺𝑉𝐼(𝑇,𝐾) satisfying 𝑥∗ =

Π
𝑆
(𝑥
0
).

Proof. Since 𝑥
𝑖+1

= Π
𝐻
1

𝑖
∩𝐻
2

𝑖
∩𝐾

(𝑥
0
), by Lemma 9 and the defi-

nition of projection, it follows that
󵄩󵄩󵄩󵄩𝑥𝑖+1 − 𝑥

0

󵄩󵄩󵄩󵄩 ≤
󵄩󵄩󵄩󵄩𝑥
∗

− 𝑥
0

󵄩󵄩󵄩󵄩 , ∀𝑥
∗

∈ 𝑆. (22)

Therefore, {𝑥
𝑖
} is a bounded sequence.
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Since 𝑥
𝑖+1

∈ 𝐻1
𝑖
∩ 𝐻2
𝑖
∩ 𝐾 ⊂ 𝐻2

𝑖
, 𝑃
𝐻
2

𝑖

(𝑥
𝑖+1

) = 𝑥
𝑖+1

. Since

⟨𝑧 − 𝑥
𝑖
, 𝑥
0
− 𝑥
𝑖
⟩ ≤ 0, ∀𝑧 ∈ 𝐻

2

𝑖
, (23)

it follows that

𝑥
𝑖
= Π
𝐻
2

𝑖

(𝑥
0
) . (24)

Thus, it follows from Lemma 7 (ii) that

󵄩󵄩󵄩󵄩󵄩
Π
𝐻
2

𝑖

(𝑥
𝑖+1

) − Π
𝐻
2

𝑖

(𝑥
0
)
󵄩󵄩󵄩󵄩󵄩

2

≤
󵄩󵄩󵄩󵄩𝑥𝑖+1 − 𝑥

0

󵄩󵄩󵄩󵄩
2

−
󵄩󵄩󵄩󵄩󵄩
Π
𝐻
2

𝑖

(𝑥
𝑖+1

) − 𝑥
𝑖+1

+ 𝑥
0
− Π
𝐻
2

𝑖

(𝑥
0
)
󵄩󵄩󵄩󵄩󵄩

2

;

(25)

that is,

󵄩󵄩󵄩󵄩𝑥𝑖+1 − 𝑥
𝑖

󵄩󵄩󵄩󵄩
2

≤
󵄩󵄩󵄩󵄩𝑥𝑖+1 − 𝑥

0

󵄩󵄩󵄩󵄩
2

−
󵄩󵄩󵄩󵄩𝑥𝑖 − 𝑥

0

󵄩󵄩󵄩󵄩
2

. (26)

Thus, the sequence {‖𝑥
𝑖
−𝑥
0
‖} is nondecreasing and bounded

and hence convergent, which implies that

lim
𝑖→∞

󵄩󵄩󵄩󵄩𝑥𝑖+1 − 𝑥
𝑖

󵄩󵄩󵄩󵄩
2

= 0. (27)

On the other hand, since

Π
𝐻
1

𝑖

(𝑥
𝑖
) = 𝑥
𝑖
− [

[

⟨𝑦
𝑘𝑖
, 𝑥
𝑖
− 𝑧
𝑖
⟩

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘𝑖

󵄩󵄩󵄩󵄩󵄩

2

]

]

𝑦
𝑘𝑖

(28)

and since 𝑥
𝑖+1

∈ 𝐻1
𝑖
, we have

󵄩󵄩󵄩󵄩𝑥𝑖 − 𝑥
𝑖+1

󵄩󵄩󵄩󵄩 ≥
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖
− Π
𝐻
1

𝑖

(𝑥
𝑖
)
󵄩󵄩󵄩󵄩󵄩

=
⟨𝑦
𝑘𝑖
, 𝑥
𝑖
− 𝑧
𝑖
⟩

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘𝑖

󵄩󵄩󵄩󵄩󵄩

≥ 𝜎𝜂
𝑖

󵄩󵄩󵄩󵄩󵄩
𝑟
𝜇
(𝑥
𝑖
, 𝑤
𝑖
)
󵄩󵄩󵄩󵄩󵄩

2

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘𝑖

󵄩󵄩󵄩󵄩󵄩

,

(29)

where the second inequality follows from (5). Therefore, it
follows from (27) that

lim
𝑖→∞

𝜂
𝑖

󵄩󵄩󵄩󵄩󵄩
𝑟
𝜇
(𝑥
𝑖
, 𝑤
𝑖
)
󵄩󵄩󵄩󵄩󵄩

2

󵄩󵄩󵄩󵄩󵄩
𝑦
𝑘𝑖

󵄩󵄩󵄩󵄩󵄩

= 0. (30)

Since 𝑇 is continuous with compact values, Proposition 3.11
in [26] implies that {𝑇(𝑥

𝑖
)} is a bounded set, and so the

sequences {𝑤
𝑖
} and {𝑧

𝑖
} are bounded. Thus, the continuity

of 𝑇 implies that {𝑇(𝑧
𝑖
)} is a bounded set. Therefore, {𝑦

𝑘𝑖
} is

bounded. It follows that

lim
𝑖→∞

𝜂
𝑖

󵄩󵄩󵄩󵄩󵄩
𝑟
𝜇
(𝑥
𝑖
, 𝑤
𝑖
)
󵄩󵄩󵄩󵄩󵄩

2

= 0. (31)

By the boundedness of {𝑥
𝑖
}, there exists a convergent subse-

quence {𝑥
𝑖𝑗
} converging to 𝑥.

If 𝑥 is a solution of the problem (1), we show next that the
whole sequence {𝑥

𝑖
} converges to 𝑥. Let 𝑥∗ = Π

𝑆
(𝑥
0
). Since

𝑥∗ ∈ 𝑆, by Lemma 9,

𝑥
∗

∈ 𝐻
1

𝑖𝑗−1
∩ 𝐻
2

𝑖𝑗−1
∩ 𝐾, ∀𝑗 ≥ 1. (32)

Therefore,
󵄩󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖𝑗
− 𝑥
0

󵄩󵄩󵄩󵄩󵄩󵄩
≤
󵄩󵄩󵄩󵄩𝑥
∗

− 𝑥
0

󵄩󵄩󵄩󵄩 . (33)

Thus,

󵄩󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖𝑗
− 𝑥
∗
󵄩󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩󵄩
𝑥
𝑖𝑗
− 𝑥
0

󵄩󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝑥0 − 𝑥

∗󵄩󵄩󵄩󵄩
2

+ 2⟨𝑥
𝑖𝑗
− 𝑥
0
, 𝑥
0
− 𝑥
∗

⟩

≤ 2
󵄩󵄩󵄩󵄩𝑥0 − 𝑥

∗󵄩󵄩󵄩󵄩
2

+ 2⟨𝑥
𝑖𝑗
− 𝑥
0
, 𝑥
0
− 𝑥
∗

⟩ .

(34)

Letting 𝑗 → ∞ in (34), we have

󵄩󵄩󵄩󵄩𝑥 − 𝑥
∗󵄩󵄩󵄩󵄩
2

≤ 2
󵄩󵄩󵄩󵄩𝑥0 − 𝑥

∗󵄩󵄩󵄩󵄩
2

+ 2 ⟨𝑥 − 𝑥
0
, 𝑥
0
− 𝑥
∗

⟩

= 2 ⟨𝑥 − 𝑥
∗

, 𝑥
0
− 𝑥
∗

⟩

≤ 0,

(35)

where the last inequality follows from Lemma 7 (i) and the
fact that 𝑥∗ = Π

𝑆
(𝑥
0
) and 𝑥 ∈ 𝑆. Therefore,

𝑥 = 𝑥
∗

= Π
𝑆
(𝑥
0
) . (36)

Thus, the sequence {𝑥
𝑖
} has a unique cluster point Π

𝑆
(𝑥
0
),

which shows the global convergence of {𝑥
𝑖
}.

Suppose now that 𝑥 is not a solution of the problem
(1). We show first that 𝑘

𝑖
in Algorithm 2 cannot tend to ∞.

Since 𝑇 is continuous with compact values, Proposition 3.11

in [26] implies that {𝑇(𝑥
𝑖
) : 𝑖 ∈ 𝑁} is a bounded

set, and so the sequence {𝑤
𝑖
} is bounded. Therefore, there

exists a subsequence {𝑤
𝑖𝑗
} converging to 𝑤. Since 𝑇 is upper

semicontinuous with compact values, Proposition 3.7 in [26]
implies that 𝑇 is closed, and so𝑤 ∈ 𝑇(𝑥). By the definition of
𝑘
𝑖
, we have

⟨𝑢
𝑖
, 𝑟
𝜇
(𝑥
𝑖
, 𝑤
𝑖
)⟩ < 𝜎

󵄩󵄩󵄩󵄩󵄩
𝑟
𝜇
(𝑥
𝑖
, 𝑤
𝑖
)
󵄩󵄩󵄩󵄩󵄩

2

,

∀𝑢
𝑖
= Π
𝑇(𝑥𝑖−𝛾

𝑘𝑖−1𝑟𝜇(𝑥𝑖 ,𝑤𝑖))
(𝑤
𝑖
) .

(37)

If 𝑘
𝑖𝑗

→ ∞, then 𝑥
𝑖𝑗
− 𝛾
𝑘𝑖𝑗
−1

𝑟
𝜇
(𝑥
𝑖𝑗
, 𝑤
𝑖𝑗
) → 𝑥. The lower

continuity of 𝑇, in turn, implies the existence of 𝑤
𝑖𝑗

∈

𝑇(𝑥
𝑖𝑗
− 𝛾
𝑘𝑖𝑗
−1

𝑟
𝜇
(𝑥
𝑖𝑗
, 𝑤
𝑖𝑗
)) such that 𝑤

𝑖𝑗
converges to 𝑤. Since

𝑢
𝑖𝑗

= Π
𝑇(𝑥𝑖𝑗
−𝛾

𝑘𝑖𝑗
−1

𝑟𝜇(𝑥𝑖𝑗
,𝑤𝑖𝑗
))

(𝑤
𝑖𝑗
), we have 𝑢

𝑖𝑗
∈ 𝑇(𝑥

𝑖𝑗
−

𝛾
𝑘𝑖𝑗
−1

𝑟
𝜇
(𝑥
𝑖𝑗
, 𝑤
𝑖𝑗
)) and ‖𝑢

𝑖𝑗
− 𝑤
𝑖𝑗
‖ ≤ ‖𝑤

𝑖𝑗
− 𝑤
𝑖𝑗
‖. Therefore

lim
𝑗→∞

𝑢
𝑖𝑗
= 𝑤 and

⟨𝑢
𝑖𝑗
, 𝑟
𝜇
(𝑥
𝑖𝑗
, 𝑤
𝑖𝑗
)⟩ < 𝜎

󵄩󵄩󵄩󵄩󵄩󵄩
𝑟
𝜇
(𝑥
𝑖𝑗
, 𝑤
𝑖𝑗
)
󵄩󵄩󵄩󵄩󵄩󵄩

2

. (38)
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Letting 𝑗 → ∞ in (38), we have

⟨𝑤, 𝑟
𝜇
(𝑥, 𝑤)⟩ ≤ 𝜎

󵄩󵄩󵄩󵄩󵄩
𝑟
𝜇
(𝑥, 𝑤)

󵄩󵄩󵄩󵄩󵄩

2

, (39)

with 𝑟
𝜇
(⋅, ⋅) being continuous. It follows from Lemma 5 that

𝜇
−1
󵄩󵄩󵄩󵄩󵄩
𝑟
𝜇
(𝑥, 𝑤)

󵄩󵄩󵄩󵄩󵄩

2

≤ 𝜎
󵄩󵄩󵄩󵄩󵄩
𝑟
𝜇
(𝑥, 𝑤)

󵄩󵄩󵄩󵄩󵄩

2

. (40)

Thus, we obtain the contradiction because 𝜇<1/𝜎.Therefore,
{𝑘
𝑖
} is bounded and so is {𝜂

𝑖
}.

By (31) and the boundedness of {𝜂
𝑖
}, we obtain that

lim
𝑖→∞

‖𝑟
𝜇
(𝑥
𝑖
, 𝑤
𝑖
)‖ = 0. Since 𝑟

𝜇
(⋅, ⋅) is continuous and

the sequences {𝑥
𝑖
} and {𝑤

𝑖
} are bounded, there exists an

accumulation point (𝑥, 𝑤) of {(𝑥
𝑖
, 𝑤
𝑖
)} such that 𝑟

𝜇
(𝑥, 𝑤) =

0. This implies that 𝑥 solves the variational inequality (1).
Similar to the preceding proof, we obtain that {𝑥

𝑖
} globally

converges to 𝑥 = Π
𝑆
(𝑥
0
).

Remark 13. In [11], the mapping 𝐹 is required to be pseu-
domonotone. Since the pseudomonotonicity implies condi-
tion (3), our assumptions of the mapping 𝑇 are more general.

Theorem 14. Let 𝑇 : 𝐾 → 2
R𝑛 be continuous with nonempty

compact convex values on 𝐾 satisfying condition (3). Suppose
that Algorithm 2 generates an infinite sequence {𝑥

𝑖
}. Then the

solution set 𝑆 of 𝐺𝑉𝐼(𝑇,𝐾) is empty if and only if the sequence
generated by Algorithm 2 diverges.

Proof. In view of Theorem 12, it is sufficient to prove that
if the solution set is empty, then the sequence generated by
Algorithm 2 diverges. Since inequality (26) also holds in this
case, the sequence {‖𝑥

𝑖
−𝑥
0
‖} is still nondecreasing.We claim

that
lim
𝑖→∞

󵄩󵄩󵄩󵄩𝑥𝑖 − 𝑥
0

󵄩󵄩󵄩󵄩
2

= ∞. (41)

Otherwise, {𝑥
𝑖
} is bounded, and hence it follows from (26)

that
lim
𝑖→∞

󵄩󵄩󵄩󵄩𝑥𝑖+1 − 𝑥
𝑖

󵄩󵄩󵄩󵄩
2

= 0. (42)

A similar discussion as in Theorem 12 would lead to the
conclusion that every cluster point of {𝑥

𝑖
} is a solution of

GVI(𝑇,𝐾), which contradicts the emptiness of the solution
set to GVI(𝑇,𝐾).

4. Numerical Experiments

In this section, we present some numerical experiments for
the proposed algorithm. The MATLAB codes are run on
a PC (with CPU Intel P-T2390) under MATLAB Version
7.0.1.24704(R14) Service Pack 1.We compare the performance
of our Algorithm 2 and the algorithms in [5, 11, 12, 22]. In
Tables 1, 2, 3, and 4, “It.” denotes number of iteration, and
“CPU” denotes the CPU time in seconds. The tolerance 𝜀

means that when ‖𝑟
𝜇
(𝑥, 𝑤)‖ ≤ 𝜀, the procedure stops.

Example 15. Let 𝑛 = 3,

𝐾 := {𝑥 ∈ R
𝑛

+
:

𝑛

∑
𝑖=1

𝑥
𝑖
= 1} , (43)

Table 1: Example 15.

𝜀
Algorithm 2 [5, Algorithm 1]

It. (no.) CPU (Sec.) It. (no.) CPU (Sec.)
10−7 23 0.34375 80 1.01563
10−5 17 0.3125 57 0.828125
10
−3 10 0.265625 34 0.5625

Table 2: Example 15.

𝜀
Algorithm 2 [12, Algorithm 1]

It. (no.) CPU (Sec.) It. (no.) CPU (Sec.)
10−7 23 0.34375 35 0.375
10
−5 17 0.3125 25 0.3125

10−3 10 0.265625 15 0.28125

Table 3: Example 15.

𝜀
Algorithm 2 [22, Algorithm 2.2]

It. (no.) CPU (Sec.) It. (no.) CPU (Sec.)
10
−7 23 0.34375 27 0.390625

10−5 17 0.3125 21 0.375
10−3 10 0.265625 14 0.3125

Table 4: Example 15.

𝜀
Algorithm 2 [11, Algorithm 3.1]

It. (no.) CPU (Sec.) It. (no.) CPU (Sec.)
10−7 23 0.34375 190 1.15625
10−5 17 0.3125 134 0.875
10
−3 10 0.265625 79 0.5625

and 𝑇 : 𝐾 → 2R
𝑛

be defined by

𝑇 (𝑥) := {(𝑡, 𝑡 − 𝑥
1
, 𝑡 − 𝑥

2
) : 𝑡 ∈ [0, 1]} . (44)

Then, the set 𝐾 and the mapping 𝑇 satisfy the assumptions
of Theorem 12, and (0, 0, 1) is a solution of the multivalued
variational inequality. Example 15 is tested in [5, 12, 22]. We
choose 𝜎 = 0.8, 𝛾 = 0.6, and 𝜇 = 1 for our algorithm
and Algorithm 1 in [5]; 𝜎 = 0.4, 𝛾 = 0.9, and 𝜇 = 1 for
Algorithm 1 in [12]; 𝜎 = 4, 𝛾 = 0.8, and 𝜇 = 0.01 for
Algorithm 1 in [22]; 𝜎 = 0.9, 𝛾 = 0.4 for Algorithm 3.1 in
[11]. We use 𝑥

0
= (0, 1, 0) as the initial point (Tables 1– 4).
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